
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 14

Caching and
Demand Paging

March 4, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 14.2 3/4/10 CS162 ©UCB Spring 2010

Review: Memory Hierarchy of a Modern Computer System
•  Take advantage of the principle of locality to:

–  Present as much memory as in the cheapest technology
–  Provide access at speed offered by the fastest technology

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

1s 10,000,000s
 (10s ms)

Speed (ns): 10s-100s 100s

100s Gs Size (bytes): Ks-Ms Ms

Tertiary
Storage
(Tape)

10,000,000,000s
 (10s sec)

Ts

Lec 14.3 3/4/10 CS162 ©UCB Spring 2010

Example

Processor

Main
Memory
(DRAM)

100ns

Access time = 100ns

Average Access time =
(Hit Rate x HitTime) + (Miss Rate x MissTime)

•  Data in memory, 10ns cache:

•  HitRate + MissRate = 1
•  HitRate = 90% Average Access Time = 19ns
•  HitRate = 99% Average Access Time = 10.9ns

Processor

Main
Memory
(DRAM)

100ns 10ns

Second
Level
Cache

(SRAM)

•  Data in memory, no cache:

Lec 14.4 3/4/10 CS162 ©UCB Spring 2010

•  Compulsory (cold start): first reference to a block
–  “Cold” fact of life: not a whole lot you can do about it
– Note: When running “billions” of instruction, Compulsory
Misses are insignificant

•  Capacity:
–  Cache cannot contain all blocks access by the program
–  Solution: increase cache size

•  Conflict (collision):
– Multiple memory locations mapped to same cache location
–  Solutions: increase cache size, or increase associativity

•  Two others:
–  Coherence (Invalidation): other process (e.g., I/O)
updates memory

–  Policy: Due to non-optimal replacement policy

Review: A Summary on Sources of Cache Misses

Page 2

Lec 14.5 3/4/10 CS162 ©UCB Spring 2010

Cache Index
0 4 31

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Mux 0 1 Sel1 Sel0

OR

Hit

Review: Set Associative Cache
•  N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
•  Example: Two-way set associative cache

–  Cache Index selects a “set” from the cache
–  Two tags in the set are compared to input in parallel
–  Data is selected based on the tag result

Compare Compare

Cache Block
Lec 14.6 3/4/10 CS162 ©UCB Spring 2010

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7 Block
no.

Direct mapped:
block 12 (01100)
can go only into
block 4 (12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7 Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7 Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 Block
no.

Review: Where does a Block Get Placed in a Cache?

01 100

tag block

011 00

tag block

01100

tag

Lec 14.7 3/4/10 CS162 ©UCB Spring 2010

•  Easy for Direct Mapped: Only one possibility
•  Set Associative or Fully Associative:

–  Random
–  LRU (Least Recently Used)

 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random

 16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
 64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
 256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Review: Which block should be replaced on a miss?

Lec 14.8 3/4/10 CS162 ©UCB Spring 2010

Goals for Today

•  Finish discussion of Caching/TLBs
•  Concept of Paging to Disk
•  Page Faults and TLB Faults
•  Precise Interrupts
•  Page Replacement Policies

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Page 3

Lec 14.9 3/4/10 CS162 ©UCB Spring 2010

•  Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

•  Write back: The information is written only to the
block in the cache.
– Modified cache block is written to main memory only
when it is replaced

– Question is block clean or dirty?
•  Pros and Cons of each?

– WT:
»  PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
»  PRO: repeated writes not sent to DRAM

 processor not held up on writes
» CON: More complex

 Read miss may require writeback of dirty data

What happens on a write?

Lec 14.10 3/4/10 CS162 ©UCB Spring 2010

Caching Applied to Address Translation

•  Question is one of page locality: does it exist?
–  Instruction accesses spend a lot of time on the same
page (since accesses sequential)

–  Stack accesses have definite locality of reference
–  Data accesses have less page locality, but still some…

•  Can we have a TLB hierarchy?
–  Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address Physical

Address
Yes

Cached?

Sa
ve

Re
sul

t

Lec 14.11 3/4/10 CS162 ©UCB Spring 2010

What Actually Happens on a TLB Miss?
•  Hardware traversed page tables:

– On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)

»  If PTE valid, hardware fills TLB and processor never knows
»  If PTE marked as invalid, causes Page Fault, after which

kernel decides what to do afterwards
•  Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault
–  Kernel traverses page table to find PTE

»  If PTE valid, fills TLB and returns from fault
»  If PTE marked as invalid, internally calls Page Fault handler

•  Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults
since they use translation for many things

–  Examples:
»  shared segments
»  user-level portions of an operating system

Lec 14.12 3/4/10 CS162 ©UCB Spring 2010

What happens on a Context Switch?

•  Need to do something, since TLBs map virtual
addresses to physical addresses
–  Address Space just changed, so TLB entries no
longer valid!

•  Options?
–  Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
–  Include ProcessID in TLB

» This is an architectural solution: needs hardware
•  What if translation tables change?

–  For example, to move page from memory to disk or
vice versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

Page 4

Lec 14.13 3/4/10 CS162 ©UCB Spring 2010

Administrative
•  Midterm next week:

–  Tuesday, 3/9, 3:30-6:30pm, 277 Cory Hall
–  Should be 2 hour exam with extra time
–  Closed book, one page of hand-written notes (both sides)

•  No class on day of Midterm
–  Extra Office Hours: Tuesday 10-11am and 1:00-3:00pm

•  Midterm Topics
–  Topics: Everything up to today (3/4)
–  History, Concurrency, Multithreading, Synchronization,
Protection/Address Spaces, TLBs

•  Project 2
–  Initial Design Document due today (Thursday 3/4)
–  Look at the lecture schedule to keep up with due dates!

Lec 14.14 3/4/10 CS162 ©UCB Spring 2010

What TLB organization makes sense?

•  Needs to be really fast
–  Critical path of memory access

»  In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

–  Seems to argue for Direct Mapped or Low Associativity
•  However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
–  This argues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)

•  Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

»  First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

Lec 14.15 3/4/10 CS162 ©UCB Spring 2010

TLB organization: include protection
• How big does TLB actually have to be?

– Usually small: 128-512 entries
– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• Example for MIPS R3000:

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• When does TLB lookup occur?
– Before cache lookup?
– In parallel with cache lookup?

 0xFA00 0x0003 Y N Y R/W 34
 0x0040 0x0010 N Y Y R 0
 0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

Lec 14.16 3/4/10 CS162 ©UCB Spring 2010

•  As described, TLB lookup is in serial with cache lookup:

•  Machines with TLBs go one step further: they overlap
TLB lookup with cache access.
– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

Page 5

Lec 14.17 3/4/10 CS162 ©UCB Spring 2010

•  Here is how this might work with a 4K cache:

•  What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

•  Another option: Virtual Caches
–  Tags in cache are virtual addresses
–  Translation only happens on cache misses

TLB 4K Cache

10 2
00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

= FN

Overlapping TLB & Cache Access

Lec 14.18 3/4/10 CS162 ©UCB Spring 2010

Demand Paging
•  Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
•  But they don’t use all their memory all of the time

–  90-10 rule: programs spend 90% of their time in 10%
of their code

– Wasteful to require all of user’s code to be in memory
•  Solution: use main memory as cache for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

Tertiary
Storage
(Tape)

Caching

Lec 14.19 3/4/10 CS162 ©UCB Spring 2010

Page
Table

TLB

Illusion of Infinite Memory

•  Disk is larger than physical memory ⇒
–  In-use virtual memory can be bigger than physical memory
–  Combined memory of running processes much larger than
physical memory

» More programs fit into memory, allowing more concurrency
•  Principle: Transparent Level of Indirection (page table)

–  Supports flexible placement of physical data
» Data could be on disk or somewhere across network

–  Variable location of data transparent to user program
»  Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB

∞
Virtual
Memory
4 GB

Lec 14.20 3/4/10 CS162 ©UCB Spring 2010

Demand Paging is Caching

•  Since Demand Paging is Caching, must ask:
– What is block size?

»  1 page
– What is organization of this cache (i.e. direct-mapped,
set-associative, fully-associative)?

»  Fully associative: arbitrary virtual→physical mapping
–  How do we find a page in the cache when look for it?

»  First check TLB, then page-table traversal
– What is page replacement policy? (i.e. LRU, Random…)

» This requires more explanation… (kinda LRU)
– What happens on a miss?

» Go to lower level to fill miss (i.e. disk)
– What happens on a write? (write-through, write back)

» Definitely write-back. Need dirty bit!

Page 6

Lec 14.21 3/4/10 CS162 ©UCB Spring 2010

•  PTE helps us implement demand paging
–  Valid ⇒ Page in memory, PTE points at physical page
– Not Valid ⇒ Page not in memory; use info in PTE to find
it on disk when necessary

•  Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace
»  If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
»  Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

–  TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs
another process from ready queue

» Suspended process sits on wait queue

Demand Paging Mechanisms

Lec 14.22 3/4/10 CS162 ©UCB Spring 2010

Software-Loaded TLB
•  MIPS/Nachos TLB is loaded by software

–  High TLB hit rate⇒ok to trap to software to fill the
TLB, even if slower

–  Simpler hardware and added flexibility: software can
maintain translation tables in whatever convenient format

•  How can a process run without access to page table?
–  Fast path (TLB hit with valid=1):

» Translation to physical page done by hardware
–  Slow path (TLB hit with valid=0 or TLB miss)

» Hardware receives a “TLB Fault”
– What does OS do on a TLB Fault?

» Traverse page table to find appropriate PTE
»  If valid=1, load page table entry into TLB, continue thread
»  If valid=0, perform “Page Fault” detailed previously
» Continue thread

•  Everything is transparent to the user process:
–  It doesn’t know about paging to/from disk
–  It doesn’t even know about software TLB handling

Lec 14.23 3/4/10 CS162 ©UCB Spring 2010

Transparent Exceptions

•  How to transparently restart faulting instructions?
–  Could we just skip it?

» No: need to perform load or store after reconnecting
physical page

•  Hardware must help out by saving:
–  Faulting instruction and partial state

» Need to know which instruction caused fault
»  Is single PC sufficient to identify faulting position????

–  Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

•  What if an instruction has side-effects?

Load TLB

Fa
ul
ti
ng

In

st
 1

Fa
ul
ti
ng

In

st
 1

Fa
ul
ti
ng

In

st
 2

Fa
ul
ti
ng

In

st
 2

Fetch page/
Load TLB

User

OS

TLB Faults

Lec 14.24 3/4/10 CS162 ©UCB Spring 2010

Consider weird things that can happen
•  What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
»  Finish off side-effects (messy!)

–  Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

–  Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
»  IBM S/370 and VAX solution: execute twice – once

read-only
•  What about “RISC” processors?

–  For instance delayed branches?
» Example: bne somewhere

 ld r1,(sp)
»  Precise exception state consists of two PCs: PC and nPC

–  Delayed exceptions:
» Example: div r1, r2, r3

 ld r1, (sp)
» What if takes many cycles to discover divide by zero,

but load has already caused page fault?

Page 7

Lec 14.25 3/4/10 CS162 ©UCB Spring 2010

Precise Exceptions
•  Precise ⇒ state of the machine is preserved as if

program executed up to the offending instruction
–  All previous instructions completed
– Offending instruction and all following instructions act as
if they have not even started

–  Same system code will work on different implementations
–  Difficult in the presence of pipelining, out-of-order
execution, ...

– MIPS takes this position
•  Imprecise ⇒ system software has to figure out what is

where and put it all back together
•  Performance goals often lead designers to forsake

precise interrupts
–  system software developers, user, markets etc. usually
wish they had not done this

•  Modern techniques for out-of-order execution and
branch prediction help implement precise interrupts

Lec 14.26 3/4/10 CS162 ©UCB Spring 2010

Page Replacement Policies
•  Why do we care about Replacement Policy?

–  Replacement is an issue with any cache
–  Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

•  What about MIN?
–  Replace page that won’t be used for the longest time
–  Great, but can’t really know future…
– Makes good comparison case, however

•  What about RANDOM?
–  Pick random page for every replacement
–  Typical solution for TLB’s. Simple hardware
–  Pretty unpredictable – makes it hard to make real-time
guarantees

•  What about FIFO?
–  Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

–  Bad, because throws out heavily used pages instead of
infrequently used pages

Lec 14.27 3/4/10 CS162 ©UCB Spring 2010

Replacement Policies (Con’t)
•  What about LRU?

–  Replace page that hasn’t been used for the longest time
–  Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

–  Seems like LRU should be a good approximation to MIN.
•  How to implement LRU? Use a list!

– On each use, remove page from list and place at head
–  LRU page is at tail

•  Problems with this scheme for paging?
– Need to know immediately when each page used so that
can change position in list…

– Many instructions for each hardware access
•  In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2 Head

Tail (LRU)

Lec 14.28 3/4/10 CS162 ©UCB Spring 2010

Summary
•  TLB is cache on translations

–  Fully associative to reduce conflicts
–  Can be overlapped with cache access

•  Demand Paging:
–  Treat memory as cache on disk
–  Cache miss ⇒ get page from disk

•  Transparent Level of Indirection
–  User program is unaware of activities of OS behind scenes
–  Data can be moved without affecting application
correctness

•  Software-loaded TLB
–  Fast Path: handled in hardware (TLB hit with valid=1)
–  Slow Path: Trap to software to scan page table

•  Precise Exception specifies a single instruction for which:
–  All previous instructions have completed (committed state)
– No following instructions nor actual instruction have started

•  Replacement policies
–  FIFO: Place pages on queue, replace page at end
– MIN: replace page that will be used farthest in future
–  LRU: Replace page that hasn’t be used for the longest time

