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Review: Memory Hierarchy of a Modern Computer System 
•  Take advantage of the principle of locality to: 

–  Present as much memory as in the cheapest technology 
–  Provide access at speed offered by the fastest technology 
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Example 

Processor 

Main 
Memory 
(DRAM) 

100ns 

Access time = 100ns 

Average Access time =  
(Hit Rate x HitTime) + (Miss Rate x MissTime) 

•  Data in memory, 10ns cache: 

•  HitRate + MissRate = 1 
•  HitRate = 90%  Average Access Time = 19ns 
•  HitRate = 99%  Average Access Time = 10.9ns 
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•  Data in memory, no cache: 
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•  Compulsory (cold start): first reference to a block 
–  “Cold” fact of life: not a whole lot you can do about it 
– Note: When running “billions” of instruction, Compulsory 
Misses are insignificant 

•  Capacity: 
–  Cache cannot contain all blocks access by the program 
–  Solution: increase cache size 

•  Conflict (collision): 
– Multiple memory locations mapped to same cache location 
–  Solutions: increase cache size, or increase associativity 

•  Two others: 
–  Coherence (Invalidation): other process (e.g., I/O) 
updates memory  

–  Policy: Due to non-optimal replacement policy 

Review: A Summary on Sources of Cache Misses 
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Cache Index 
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Review: Set Associative Cache 
•  N-way set associative: N entries per Cache Index 

– N direct mapped caches operates in parallel 
•  Example: Two-way set associative cache 

–  Cache Index selects a “set” from the cache 
–  Two tags in the set are compared to input in parallel 
–  Data is selected based on the tag result 

Compare Compare 

Cache Block 
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• Example: Block 12 placed in 8 block cache 

0 1 2 3 4 5 6 7 Block 
no. 

Direct mapped: 
block 12 (01100) 
can go only into 
block 4 (12 mod 8) 

Set associative: 
block 12 can go 
anywhere in set 0 
(12 mod 4) 

0 1 2 3 4 5 6 7 Block 
no. 

Set 
0 

Set 
1 

Set 
2 

Set 
3 

Fully associative: 
block 12 can go 
anywhere 

0 1 2 3 4 5 6 7 Block 
no. 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

32-Block Address Space: 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 Block 
no. 

Review: Where does a Block Get Placed in a Cache? 
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•  Easy for Direct Mapped: Only one possibility 
•  Set Associative or Fully Associative: 

–  Random 
–  LRU (Least Recently Used) 

             2-way         4-way           8-way 
Size  LRU  Random  LRU  Random   LRU  Random 

 16 KB  5.2%  5.7%     4.7%  5.3%  4.4% 5.0% 
 64 KB  1.9%  2.0%     1.5%  1.7%  1.4% 1.5% 
 256 KB  1.15%  1.17%    1.13%  1.13%  1.12% 1.12% 

Review: Which block should be replaced on a miss? 
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Goals for Today 

•  Finish discussion of Caching/TLBs 
•  Concept of Paging to Disk 
•  Page Faults and TLB Faults 
•  Precise Interrupts 
•  Page Replacement Policies 

Note: Some slides and/or pictures in the following are 
adapted from slides ©2005 Silberschatz, Galvin, and Gagne  
Note: Some slides and/or pictures in the following are 
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz. 
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•  Write through: The information is written to both the 
block in the cache and to the block in the lower-level 
memory 

•  Write back: The information is written only to the 
block in the cache.  
– Modified cache block is written to main memory only 
when it is replaced 

– Question is block clean or dirty? 
•  Pros and Cons of each? 

– WT:  
»  PRO: read misses cannot result in writes 
» CON: Processor held up on writes unless writes buffered 

– WB:  
»  PRO: repeated writes not sent to DRAM 

  processor not held up on writes 
» CON: More complex 

  Read miss may require writeback of dirty data 

What happens on a write? 
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Caching Applied to Address Translation 

•  Question is one of page locality: does it exist? 
–  Instruction accesses spend a lot of time on the same 
page (since accesses sequential) 

–  Stack accesses have definite locality of reference 
–  Data accesses have less page locality, but still some… 

•  Can we have a TLB hierarchy? 
–  Sure: multiple levels at different sizes/speeds 
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What Actually Happens on a TLB Miss? 
•  Hardware traversed page tables: 

– On TLB miss, hardware in MMU looks at current page 
table to fill TLB (may walk multiple levels) 

»  If PTE valid, hardware fills TLB and processor never knows 
»  If PTE marked as invalid, causes Page Fault, after which 

kernel decides what to do afterwards 
•  Software traversed Page tables (like MIPS) 

– On TLB miss, processor receives TLB fault 
–  Kernel traverses page table to find PTE 

»  If PTE valid, fills TLB and returns from fault 
»  If PTE marked as invalid, internally calls Page Fault handler 

•  Most chip sets provide hardware traversal 
– Modern operating systems tend to have more TLB faults 
since they use translation for many things 

–  Examples:  
»  shared segments 
»  user-level portions of an operating system 
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What happens on a Context Switch? 

•  Need to do something, since TLBs map virtual 
addresses to physical addresses 
–  Address Space just changed, so TLB entries no 
longer valid! 

•  Options? 
–  Invalidate TLB: simple but might be expensive 

» What if switching frequently between processes? 
–  Include ProcessID in TLB 

» This is an architectural solution: needs hardware 
•  What if translation tables change? 

–  For example, to move page from memory to disk or 
vice versa… 

– Must invalidate TLB entry! 
» Otherwise, might think that page is still in memory! 
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Administrative 
•  Midterm next week: 

–  Tuesday, 3/9, 3:30-6:30pm, 277 Cory Hall 
–  Should be 2 hour exam with extra time 
–  Closed book, one page of hand-written notes (both sides) 

•  No class on day of Midterm 
–  Extra Office Hours: Tuesday 10-11am and 1:00-3:00pm  

•  Midterm Topics 
–  Topics: Everything up to today (3/4) 
–  History, Concurrency, Multithreading, Synchronization, 
Protection/Address Spaces, TLBs 

•  Project 2  
–  Initial Design Document due today (Thursday 3/4) 
–  Look at the lecture schedule to keep up with due dates! 
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What TLB organization makes sense? 

•  Needs to be really fast 
–  Critical path of memory access  

»  In simplest view: before the cache 
» Thus, this adds to access time (reducing cache speed) 

–  Seems to argue for Direct Mapped or Low Associativity 
•  However, needs to have very few conflicts! 

– With TLB, the Miss Time extremely high! 
–  This argues that cost of Conflict (Miss Time) is much 
higher than slightly increased cost of access (Hit Time) 

•  Thrashing: continuous conflicts between accesses 
– What if use low order bits of page as index into TLB? 

»  First page of code, data, stack may map to same entry 
» Need 3-way associativity at least? 

– What if use high order bits as index? 
» TLB mostly unused for small programs 

CPU TLB Cache Memory 
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TLB organization: include protection 
• How big does TLB actually have to be? 

– Usually small: 128-512 entries 
– Not very big, can support higher associativity 

• TLB usually organized as fully-associative cache 
– Lookup is by Virtual Address 
– Returns Physical Address + other info 

• Example for MIPS R3000: 

• What happens when fully-associative is too slow? 
– Put a small (4-16 entry) direct-mapped cache in front 
– Called a “TLB Slice” 

• When does TLB lookup occur? 
– Before cache lookup? 
– In parallel with cache lookup? 

 0xFA00  0x0003  Y  N  Y  R/W  34 
 0x0040  0x0010  N  Y  Y  R  0 
 0x0041  0x0011  N  Y  Y  R  0 

Virtual Address   Physical Address   Dirty   Ref   Valid   Access ASID 

Lec 14.16 3/4/10 CS162 ©UCB Spring 2010 

•  As described, TLB lookup is in serial with cache lookup: 

•  Machines with TLBs go one step further: they overlap 
TLB lookup with cache access. 
– Works because offset available early 

Reducing translation time further 

Virtual Address 

TLB Lookup 

V Access 
Rights PA 

V page no. offset 
10 

P page no. offset 
10 

Physical Address 
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•  Here is how this might work with a 4K cache:  

•  What if cache size is increased to 8KB? 
– Overlap not complete 
– Need to do something else.  See CS152/252  

•  Another option: Virtual Caches 
–  Tags in cache are virtual addresses 
–  Translation only happens on cache misses 

TLB 4K Cache 

10 2 
00 

4 bytes 

index 1 K 

page # disp 
20 

assoc 
lookup 

32 

Hit/ 
Miss 

FN Data Hit/ 
Miss 

= FN 

Overlapping TLB & Cache Access 
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Demand Paging 
•  Modern programs require a lot of physical memory 

– Memory per system growing faster than 25%-30%/year 
•  But they don’t use all their memory all of the time 

–  90-10 rule: programs spend 90% of their time in 10% 
of their code 

– Wasteful to require all of user’s code to be in memory 
•  Solution: use main memory as cache for disk 
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Page 
Table 

TLB 

Illusion of Infinite Memory 

•  Disk is larger than physical memory ⇒ 
–  In-use virtual memory can be bigger than physical memory 
–  Combined memory of running processes much larger than 
physical memory 

» More programs fit into memory, allowing more concurrency  
•  Principle: Transparent Level of Indirection (page table)  

–  Supports flexible placement of physical data 
» Data could be on disk or somewhere across network 

–  Variable location of data transparent to user program 
»  Performance issue, not correctness issue 

Physical 
Memory 
512 MB 

Disk 
500GB 

∞ 
Virtual 
Memory 
4 GB 
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Demand Paging is Caching 

•  Since Demand Paging is Caching, must ask: 
– What is block size? 

»  1 page 
– What is organization of this cache (i.e. direct-mapped, 
set-associative, fully-associative)? 

»  Fully associative: arbitrary virtual→physical mapping 
–  How do we find a page in the cache when look for it? 

»  First check TLB, then page-table traversal 
– What is page replacement policy? (i.e. LRU, Random…) 

» This requires more explanation… (kinda LRU) 
– What happens on a miss? 

» Go to lower level to fill miss (i.e. disk) 
– What happens on a write? (write-through, write back) 

» Definitely write-back.  Need dirty bit! 
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•  PTE helps us implement demand paging 
–  Valid ⇒ Page in memory, PTE points at physical page 
– Not Valid ⇒ Page not in memory; use info in PTE to find 
it on disk when necessary 

•  Suppose user references page with invalid PTE? 
– Memory Management Unit (MMU) traps to OS 

» Resulting trap is a “Page Fault” 
– What does OS do on a Page Fault?: 

» Choose an old page to replace  
»  If old page modified (“D=1”), write contents back to disk 
» Change its PTE and any cached TLB to be invalid 
»  Load new page into memory from disk 
» Update page table entry, invalidate TLB for new entry 
» Continue thread from original faulting location 

–  TLB for new page will be loaded when thread continued! 
– While pulling pages off disk for one process, OS runs 
another process from ready queue 

» Suspended process sits on wait queue 

Demand Paging Mechanisms 
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Software-Loaded TLB 
•  MIPS/Nachos TLB is loaded by software 

–  High TLB hit rate⇒ok to trap to software to fill the 
TLB, even if slower 

–  Simpler hardware and added flexibility: software can 
maintain translation tables in whatever convenient format 

•  How can a process run without access to page table? 
–  Fast path (TLB hit with valid=1): 

» Translation to physical page done by hardware 
–  Slow path (TLB hit with valid=0 or TLB miss) 

» Hardware receives a “TLB Fault” 
– What does OS do on a TLB Fault?  

» Traverse page table to find appropriate PTE 
»  If valid=1, load page table entry into TLB, continue thread 
»  If valid=0, perform “Page Fault” detailed previously 
» Continue thread 

•  Everything is transparent to the user process: 
–  It doesn’t know about paging to/from disk 
–  It doesn’t even know about software TLB handling 

Lec 14.23 3/4/10 CS162 ©UCB Spring 2010 

Transparent Exceptions 

•  How to transparently restart faulting instructions? 
–  Could we just skip it?  

» No: need to perform load or store after reconnecting 
physical page 

•  Hardware must help out by saving: 
–  Faulting instruction and partial state  

» Need to know which instruction caused fault  
»  Is single PC sufficient to identify faulting position???? 

–  Processor State: sufficient to restart user thread 
» Save/restore registers, stack, etc 

•  What if an instruction has side-effects? 
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Consider weird things that can happen 
•  What if an instruction has side effects? 

– Options: 
» Unwind side-effects (easy to restart) 
»  Finish off side-effects (messy!) 

–  Example 1: mov (sp)+,10 
» What if page fault occurs when write to stack pointer? 
» Did sp get incremented before or after the page fault? 

–  Example 2: strcpy (r1), (r2) 
» Source and destination overlap: can’t unwind in principle! 
»  IBM S/370 and VAX solution: execute twice – once 

read-only 
•  What about “RISC” processors? 

–  For instance delayed branches? 
» Example:  bne somewhere 

      ld r1,(sp) 
»  Precise exception state consists of two PCs: PC and nPC 

–  Delayed exceptions: 
» Example:  div r1, r2, r3 

  ld r1, (sp) 
» What if takes many cycles to discover divide by zero, 

but load has already caused page fault? 
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Precise Exceptions 
•  Precise ⇒ state of the machine is preserved as if 

program executed up to the offending instruction 
–  All previous instructions completed 
– Offending instruction and all following instructions act as 
if they have not even started 

–  Same system code will work on different implementations  
–  Difficult in the presence of pipelining, out-of-order 
execution, ... 

– MIPS takes this position 
•  Imprecise ⇒ system software has to figure out what is 

where and put it all back together 
•  Performance goals often lead designers to forsake 

precise interrupts 
–  system software developers, user, markets etc. usually 
wish they had not done this 

•  Modern techniques for out-of-order execution and 
branch prediction help implement precise interrupts 
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Page Replacement Policies 
•  Why do we care about Replacement Policy?   

–  Replacement is an issue with any cache 
–  Particularly important with pages 

» The cost of being wrong is high: must go to disk 
» Must keep important pages in memory, not toss them out 

•  What about MIN? 
–  Replace page that won’t be used for the longest time  
–  Great, but can’t really know future… 
– Makes good comparison case, however 

•  What about RANDOM? 
–  Pick random page for every replacement 
–  Typical solution for TLB’s.  Simple hardware 
–  Pretty unpredictable – makes it hard to make real-time 
guarantees 

•  What about FIFO? 
–  Throw out oldest page.  Be fair – let every page live in 
memory for same amount of time. 

–  Bad, because throws out heavily used pages instead of 
infrequently used pages 
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Replacement Policies (Con’t) 
•  What about LRU? 

–  Replace page that hasn’t been used for the longest time 
–  Programs have locality, so if something not used for a 
while, unlikely to be used in the near future. 

–  Seems like LRU should be a good approximation to MIN. 
•  How to implement LRU? Use a list! 

– On each use, remove page from list and place at head 
–  LRU page is at tail 

•  Problems with this scheme for paging? 
– Need to know immediately when each page used so that 
can change position in list…  

– Many instructions for each hardware access 
•  In practice, people approximate LRU (more later) 

Page 6 Page 7 Page 1 Page 2 Head 

Tail (LRU) 
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Summary 
•  TLB is cache on translations 

–  Fully associative to reduce conflicts  
–  Can be overlapped with cache access 

•  Demand Paging: 
–  Treat memory as cache on disk 
–  Cache miss ⇒ get page from disk 

•  Transparent Level of Indirection 
–  User program is unaware of activities of OS behind scenes 
–  Data can be moved without affecting application 
correctness 

•  Software-loaded TLB 
–  Fast Path: handled in hardware (TLB hit with valid=1) 
–  Slow Path: Trap to software to scan page table 

•  Precise Exception specifies a single instruction for which: 
–  All previous instructions have completed (committed state) 
– No following instructions nor actual instruction have started  

•  Replacement policies 
–  FIFO: Place pages on queue, replace page at end 
– MIN: replace page that will be used farthest in future 
–  LRU: Replace page that hasn’t be used for the longest time 


