
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 18

File Systems, Naming, and Directories

March 30, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 18.2 03/30/10 CS162 ©UCB Spring 2010

Departures Arrivals
Queuing System

Introduction to Queuing Theory

•  Model:
–  Task arrives at a certain rate, i.e., arrival rate
– Only one task is processed at a time
–  Tasks waits in FIFO queue to be processed

•  Parameters:
– Queueing (waiting) time (Tq): time a task waits in the queue
–  Service time (Tser): time it takes to process the task
–  Response (system) time (Tsys): total time a task spends in
the system

•  Queuing Theory applies to long term, steady state
behavior
–  Typical queuing theory doesn’t deal with transient behavior

Queue

Controller

Disk

Tsys = Tq + Tser

Lec 18.3 03/30/10 CS162 ©UCB Spring 2010 3

Little’s Theorem

•  Apply to virtual any system, e.g., disk, router,
network, checkout line in a supermarket

•  λ(t): arrival rate of requests (tasks)
•  Tsys (i): system (response) time of request
•  What is the average number of requests in the

system?

system λ(t) – arrival rate
Tsys (i) = response time of request i

  Note: apply to the number of requests waiting in
the queue as well

  Intuition:
  Assume arrival rate is λ = 1 request per second and the

response time of each request is Tsys = 4 seconds
  What is the average number of requests in the system?

Lec 18.4 03/30/10 CS162 ©UCB Spring 2010 4

Example

•  Arrival rate = 1; response (system) time = 4

Time = 0

Page 2

Lec 18.5 03/30/10 CS162 ©UCB Spring 2010 5

Example

•  Arrival rate = 1; response (system) time = 4

Time = 1

response = 1

Lec 18.6 03/30/10 CS162 ©UCB Spring 2010 6

Example

•  Arrival rate = 1; response (system) time = 4

Time = 2

response = 1

response = 2

Lec 18.7 03/30/10 CS162 ©UCB Spring 2010 7

Example

•  Arrival rate = 1; response (system) time = 4

Time = 3

response = 2

response = 3

response = 1

Lec 18.8 03/30/10 CS162 ©UCB Spring 2010 8

Example

•  Arrival rate = 1; response (system) time = 4

Time = 4

response = 3

response = 4

response = 2

response = 1

Page 3

Lec 18.9 03/30/10 CS162 ©UCB Spring 2010 9

Example

•  Arrival rate = 1; response (system) time = 4

Time = 4

response = 3

response = 2

response = 1

Q: What is the average number of requests in system?

A: number_of_requests_in_system = avg_arrival_rate x avg_response
Lec 18.10 03/30/10 CS162 ©UCB Spring 2010

Little Theorem (cont’d)

•  Applies to any arrival time distribution
•  Applies to any service time distribution

•  Assumptions:
– Queue large enough: requests are not dropped
–  Steady state system:

» Arrival rate and service time distribution do not
change

» Enough capacity to process all requests: queue does
not increase indefinitely

Lec 18.11 03/30/10 CS162 ©UCB Spring 2010

Goals for Today

•  Queuing Theory: Continued
•  File Systems

–  Structure, Naming, Directories

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Kubiatowicz.

Lec 18.12 03/30/10 CS162 ©UCB Spring 2010

Random distributions
•  Random variable: a variable (x) that takes some value (xi)

with a given probability (pi)
•  Random distribution: set of values and their probabilities
•  Server spends variable time with customers

–  xi: service time for request i
–  pi: probability service time of a request is xi

– Mean (expected value): µ = E(x) = Σpixi
– Variance: σ2 = Σpi(xi – µ)2

Mean

Distribution
of service times

σ

€

σ2 = pi(xi
i=1

n

∑ − µ)2

€

= pi(xi
2

i=1

n

∑ − 2µxi + µ2)

€

= pixi
2

i=1

n

∑ − 2µ pixi
i=1

n

∑ + µ2

€

= pixi
2

i=1

n

∑ − 2µ2 + µ2

€

= pixi
2

i=1

n

∑ − µ2

€

= E(x 2) − E(x)2

Page 4

Lec 18.13 03/30/10 CS162 ©UCB Spring 2010

Random Distribution (example)

•  Consider following distribution

xi 2 4 5 7
pi 0.2 0.4 0.3 0.1

•  Mean (expected value):
µ = E(x) = Σpixi = 0.2*2 + 0.4*4 + 0.3*5 + 0.1*7 = 4.2

•  Variance:
σ2 = Σpi(xi – µ)2 = 0.2*(2-4.2)2 + 0.4*(4-4.2)2 + 0.3*

(5-4.2)2 + 0.1*(7-4.2)2 = 1.96
•  Variance (2nd method): σ2 = E(x2) – E(x)2

E(x2) = 0.2*22 + 0.4*42 + 0.3*52 + 0.1*72 = 19.6
E(x2) – E(x)2 = 19.6 – 4.22 = 19.6 – 17.64 = 1.96

1 2 3 4 5 6 7 x

p

0.2
0.4

0.3
0.1

Lec 18.14 03/30/10 CS162 ©UCB Spring 2010

Administrivia

•  Group Evaluations not Optional
–  You will get a zero for project if you don’t fill them out!
– We use these for grading

•  Check glookup to make sure that we have right grades
– Make sure that we don’t have errors

Lec 18.15 03/30/10 CS162 ©UCB Spring 2010

Coefficient of Variation

•  Squared coefficient of variance: C = σ2/µ2

Aggregate description of the distribution
- Previous example: C = 1.96/17.64 = 0.111…

•  Important values of C:
– No variance or deterministic ⇒ C=0
–  “memoryless” or exponential ⇒ C=1

»  Past tells nothing about future
» Many complex systems (or aggregates)

well described as memoryless
–  Disk response times C ≈ 1.5 (majority seeks < avg)

•  Mean Residual Wait Time, m1(z):
– Mean time must wait for server to complete current task
–  Can derive m1(z) = ½µ×(1 + C)

» Not just ½µ because doesn’t capture variance
–  C = 0 ⇒ m1(z) = ½µ; C = 1 ⇒ m1(z) = µ

mean

Memoryless

Lec 18.16 03/30/10 CS162 ©UCB Spring 2010

A Little Queuing Theory: Mean Wait Time

•  Parameters that describe our system:
–  λ: mean number of arriving customers/second
–  Tser: mean time to service a customer (“µ”)
–  C: squared coefficient of variance = σ2/µ2
–  u: server utilization (0≤u≤1): u = λ/(1/Tser) = λ × Tser

•  Parameters we wish to compute:
–  Tq: Time spent in queue
–  Lq: Length of queue = λ × Tq (by Little’s law applied to
waiting queue)

•  Basic Approach:
–  Customers before us must finish; mean time = Lq × Tser
–  If something at server, takes m1(z) to complete on avg

» m1(z): mean residual wait time at server= Tser × ½(1+C)
» Chance something at server = u ⇒ mean time is u × m1(z)

•  Computation of wait time in queue (Tq):
–  Tq = Lq × Tser + u × m1(z)

Arrival Rate
 λ

Queue Server Service Rate
1/Tser

Page 5

Lec 18.17 03/30/10 CS162 ©UCB Spring 2010

A Little Queuing Theory: M/G/1 and M/M/1
•  Computation of wait time in queue (Tq):

 Tq = Lq × Tser + u × m1(z)
 Tq = λ × Tq × Tser + u × m1(z)
 Tq = u × Tq + u × m1(z)
 Tq × (1 – u) = m1(z) × u ⇒ Tq = m1(z) × u/(1-u) ⇒
 Tq = Tser × ½(1+C) × u/(1 – u)

•  Notice that as u→1, Tq→∞ !
•  Assumptions so far:

–  System in equilibrium; No limit to the queue: works
First-In-First-Out

–  Time between two successive arrivals in line are random
and memoryless: (M for C=1 exponentially random)

–  Server can start on next customer immediately after
prior finishes

•  General service distribution (no restrictions), 1 server:
–  Called M/G/1 queue: Tq = Tser × ½(1+C) × u/(1 – u))

•  Memoryless service distribution (C = 1):
–  Called M/M/1 queue: Tq = Tser × u/(1 – u)

Little’s Law
Defn of utilization (u)

Lec 18.18 03/30/10 CS162 ©UCB Spring 2010

A Little Queuing Theory: An Example
•  Example Usage Statistics:

–  User requests 10 × 8KB disk I/Os per second
–  Requests & service exponentially distributed (C=1.0)
–  Avg. service = 20 ms (controller+seek+rot+Xfertime)

•  Questions:
–  How utilized is the disk?

» Ans: server utilization, u = λTser
– What is the average time spent in the queue?

» Ans: Tq
– What is the number of requests in the queue?

» Ans: Lq = λTq
– What is the avg response time for disk request?

» Ans: Tsys = Tq + Tser (Wait in queue, then get served)
•  Computation:
 λ (avg # arriving customers/s) = 10/s
 Tser (avg time to service customer) = 20 ms (0.02s)
 u (server utilization) = λ × Tser= 10/s × .02s = 0.2
 Tq (avg time/customer in queue) = Tser × u/(1 – u)

 = 20 x 0.2/(1-0.2) = 20 × 0.25 = 5 ms (0 .005s)
 Lq (avg length of queue) = λ × Tq=10/s × .005s = 0.05
 Tsys (avg time/customer in system) =Tq + Tser= 25 ms

Lec 18.19 03/30/10 CS162 ©UCB Spring 2010

Disk Scheduling
•  Disk can do only one request at a time; What order do

you choose to do queued requests?

•  Each request: [cylinder, sector]

•  Scheduling discipline
–  FIFO Order
–  SSTF: Shortest seek time first
–  SCAN
–  C-SCAN: Circular-Scan

•  Illustrate with an example:
– Request list: 98, 183, 37, 122, 14, 124, 65, 67
– Head starts: 53
–  Ignore sectors

2,3
2,1
3,10
7,2
5,2
2,2

Head User
Requests

1

4

2
D
isk H

ead
3

Lec 18.20 03/30/10 CS162 ©UCB Spring 2010

FIFO
•  Fair among requesters, but order of arrival may be to

random spots on the disk ⇒ Very long seeks
•  Head movement of 640 cylinders

Page 6

Lec 18.21 03/30/10 CS162 ©UCB Spring 2010 21

SSTF
•  Pick the request that’s closest on the disk head
•  Con: reduce seeks, but may lead to starvation
•  Head movement: 236 cylinders
•  Note: need also to include rotational delay in

calculation, since rotation can be as long as seek

Lec 18.22 03/30/10 CS162 ©UCB Spring 2010 22

SCAN
•  Implements an Elevator Algorithm: take the closest

request in the direction of travel
•  No starvation, but retains flavor of SSTF
•  Head moves to lower cylinders
•  Head movement: 208 cylinders

Lec 18.23 03/30/10 CS162 ©UCB Spring 2010 23

C-SCAN
•  Skips any requests on the way back
•  Fairer than SCAN, not biased towards pages in

middle

Lec 18.24 03/30/10 CS162 ©UCB Spring 2010

Building a File System
•  File System: Layer of OS that transforms block

interface of disks (or other block devices) into Files,
Directories, etc.

•  File System Components
–  Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
–  Protection: Layers to keep data secure
–  Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

•  User vs. System View of a File
–  User’s view:

» Durable Data Structures
–  System’s view (system call interface):

» Collection of Bytes (UNIX)
» Doesn’t matter to system what kind of data structures you

want to store on disk!
–  System’s view (inside OS):

» Collection of blocks (a block is a logical transfer unit, while
a sector is the physical transfer unit)

» Block size ≥ sector size; in UNIX, block size is 4KB

Page 7

Lec 18.25 03/30/10 CS162 ©UCB Spring 2010

Translating from User to System View

•  What happens if user says: give me bytes 2—12?
–  Fetch block corresponding to those bytes
–  Return just the correct portion of the block

•  What about: write bytes 2—12?
–  Fetch block
– Modify portion
– Write out Block

•  Everything inside File System is in whole size blocks
–  For example, getc(), putc() ⇒ buffers something like
4096 bytes, even if interface is one byte at a time

•  From now on, file is a collection of blocks

File
System

Lec 18.26 03/30/10 CS162 ©UCB Spring 2010

Disk Management Policies
•  Basic entities on a disk:

–  File: user-visible group of blocks arranged sequentially in
logical space

–  Directory: user-visible index mapping names to files
(next lecture)

•  Access disk as linear array of sectors
–  Identify sectors as vectors [cylinder, surface, sector]
–  Logical Block Addressing (LBA). Every sector has integer
address from zero up to max number of sectors.

–  Controller translates from address ⇒ physical position
»  First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk

•  Need way to track free disk blocks
–  Link free blocks together ⇒ too slow today
–  Use bitmap to represent free space on disk

•  Need way to structure files: File Header
–  Track which blocks belong at which offsets within the
logical file structure

– Optimize placement of files’ disk blocks to match access
and usage patterns

Lec 18.27 03/30/10 CS162 ©UCB Spring 2010

Designing the File System: Access Patterns
•  How do users access files?

– Need to know type of access patterns user is likely to
throw at system

•  Sequential Access: bytes read in order (“give me the
next X bytes, then give me next, etc”)
–  Almost all file access are of this flavor

•  Random Access: read/write element out of middle of
array (“give me bytes i—j”)
–  Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file

– Want this to be fast – don’t want to have to read all
bytes to get to the middle of the file

•  Content-based Access: (“find me 100 bytes starting
with Berkeley”)
–  Example: employee records – once you find the bytes,
increase my salary by a factor of 2

– Many systems don’t provide this; instead, databases are
built on top of disk access to index content (requires
efficient random access)

Lec 18.28 03/30/10 CS162 ©UCB Spring 2010

Designing the File System: Usage Patterns

•  Most files are small (for example, .login, .c files)
–  A few files are big – nachos, core files, etc.; the nachos
executable is as big as all of your .class files combined

–  However, most files are small – .class’s, .o’s, .c’s, etc.

•  Large files use up most of the disk space and
bandwidth to/from disk
– May seem contradictory, but a few enormous files are
equivalent to an immense # of small files

•  Although we will use these observations, beware usage
patterns:
–  Good idea to look at usage patterns: beat competitors by
optimizing for frequent patterns

–  Except: changes in performance or cost can alter usage
patterns. Maybe UNIX has lots of small files because big
files are really inefficient?

Page 8

Lec 18.29 03/30/10 CS162 ©UCB Spring 2010

How to organize files on disk
•  Goals:

– Maximize sequential performance
–  Easy random access to file
–  Easy management of file (growth, truncation, etc)

•  First Technique: Continuous Allocation
–  Use continuous range of blocks in logical block space

» Analogous to segmentation in virtual memory
» User says in advance how big file will be (disadvantage)

–  Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?

–  File Header Contains:
»  First block/LBA in file
»  File size (# of blocks)

–  Pros: Fast Sequential Access, Easy Random access
–  Cons: External Fragmentation/Hard to grow files

»  Free holes get smaller and smaller
» Could compact space, but that would be really expensive

•  Continuous Allocation used by IBM 360
–  Result of allocation and management cost: People would
create a big file, put their file in the middle

Lec 18.30 03/30/10 CS162 ©UCB Spring 2010

Linked List Allocation
•  Second Technique: Linked List Approach

–  Each block, pointer to next on disk

–  Pros: Can grow files dynamically, Free list same as file
–  Cons: Bad Sequential Access (seek between each block),

 Unreliable (lose block, lose rest of file)
–  Serious Con: Bad random access!!!!
–  Technique originally from Alto (First PC, built at Xerox)

» No attempt to allocate contiguous blocks

Null

File Header

Lec 18.31 03/30/10 CS162 ©UCB Spring 2010

Linked Allocation: File-Allocation Table (FAT)

•  MSDOS links pages together to create a file
–  Links not in pages, but in the File Allocation Table (FAT)

»  FAT contains an entry for each block on the disk
»  FAT Entries corresponding to blocks of file linked together

–  Access properties:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if

FAT not cached in memory
Lec 18.32 03/30/10 CS162 ©UCB Spring 2010

Indexed Allocation

•  Third Technique: Indexed Files (Nachos, VMS)
–  System Allocates file header block to hold array of
pointers big enough to point to all blocks

» User pre-declares max file size;
–  Pros: Can easily grow up to space allocated for index

 Random access is fast
–  Cons: Clumsy to grow file bigger than table size

 Still lots of seeks: blocks may be spread over disk

Page 9

Lec 18.33 03/30/10 CS162 ©UCB Spring 2010

Summary

•  Queuing Latency:
– M/M/1 and M/G/1 queues: simplest to analyze
–  As utilization approaches 100%, latency → ∞
 Tq = Tser x ½(1+C) x u/(1 – u))

•  Disk scheduling
– Minimize seek time while preserving fairness

•  File System:
–  Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

