
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 19

File Systems continued
Distributed Systems

April 1, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 19.2 4/1/10 CS162 ©UCB Spring 2010

Goals for Today

•  Finish Discussion of File Systems
–  Structure, Naming, Directories

•  File Caching
•  Data Durability
•  Beginning of Distributed Systems Discussion

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Kubiatowicz.

Lec 19.3 4/1/10 CS162 ©UCB Spring 2010

Designing the File System: Access Patterns
•  How do users access files?

– Need to know type of access patterns user is likely to
throw at system

•  Sequential Access: bytes read in order (“give me the
next X bytes, then give me next, etc”)
–  Almost all file access are of this flavor

•  Random Access: read/write element out of middle of
array (“give me bytes i—j”)
–  Less frequent, but still important. For example, virtual
memory backing file: page of memory stored in file

– Want this to be fast – don’t want to have to read all
bytes to get to the middle of the file

•  Content-based Access: (“find me 100 bytes starting
with John”)
–  Example: employee records
– Many systems don’t provide this; instead, databases are
built on top of disk access to index content (requires
efficient random access)

Lec 19.4 4/1/10 CS162 ©UCB Spring 2010

Designing the File System: Usage Patterns
•  Most files are small (for example, .login, .c files)

–  A few files are big – nachos, core files, etc.; the nachos
executable is as big as all of your .class files combined

–  However, most files are small – .class’s, .o’s, .c’s, etc.
•  Large files use up most of the disk space and

bandwidth to/from disk
– May seem contradictory, but a few enormous files are
equivalent to an immense # of small files

•  Although we will use these observations, beware usage
patterns:
–  Good idea to look at usage patterns: beat competitors by
optimizing for frequent patterns

–  Except: changes in performance or cost can alter usage
patterns. Maybe UNIX has lots of small files because big
files are really inefficient?

Page 2

Lec 19.5 4/1/10 CS162 ©UCB Spring 2010

How to organize files on disk
•  Goals:

– Maximize sequential performance
–  Easy random access to file
–  Easy management of file (growth, truncation, etc)

•  First Technique: Continuous Allocation
–  Use continuous range of blocks in logical block space

» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)

–  Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?

–  File Header Contains:
»  First sector/LBA in file
»  File size (# of sectors)

–  Pros: Fast Sequential Access, Easy Random access
–  Cons: External Fragmentation/Hard to grow files

»  Free holes get smaller and smaller
» Could compact space, but that would be really expensive

•  Continuous Allocation used by IBM 360
–  Result of allocation and management cost: People would
create a big file, put their file in the middle

Lec 19.6 4/1/10 CS162 ©UCB Spring 2010

Linked List Allocation
•  Second Technique: Linked List Approach

–  Each block, pointer to next on disk

–  Pros: Can grow files dynamically, Free list same as file
–  Cons: Bad Sequential Access (seek between each block),

 Unreliable (lose block, lose rest of file)
–  Serious Con: Bad random access!!!!
–  Technique originally from Alto (First PC, built at Xerox)

» No attempt to allocate contiguous blocks

Null

File Header

Lec 19.7 4/1/10 CS162 ©UCB Spring 2010

Linked Allocation: File-Allocation Table (FAT)

•  MSDOS links pages together to create a file
–  Links not in pages, but in the File Allocation Table (FAT)

»  FAT contains an entry for each block on the disk
»  FAT Entries corresponding to blocks of file linked together

–  Access properies:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if

FAT not cached in memory
Lec 19.8 4/1/10 CS162 ©UCB Spring 2010

Indexed Allocation

•  Indexed Files (Nachos, VMS)
–  System Allocates file header block to hold array of
pointers big enough to point to all blocks

» User pre-declares max file size;
–  Pros: Can easily grow up to space allocated for index

 Random access is fast
–  Cons: Clumsy to grow file bigger than table size

 Still lots of seeks: blocks may be spread over disk

Page 3

Lec 19.9 4/1/10 CS162 ©UCB Spring 2010

Multilevel Indexed Files (UNIX BSD 4.1)
•  Multilevel Indexed Files: Like multilevel address

translation (from UNIX 4.1 BSD)
–  Key idea: efficient for small files, but still allow big
files

–  File header contains 13 pointers
»  Fixed size table, pointers not all equivalent
» This header is called an “inode” in UNIX

–  File Header format:
»  First 10 pointers are to data blocks
» Block 11 points to “indirect block” containing 256 blocks
» Block 12 points to “doubly indirect block” containing 256

indirect blocks for total of 64K blocks
» Block 13 points to a triply indirect block (16M blocks)

•  Discussion
–  Basic technique places an upper limit on file size that is
approximately 16Gbytes

» Designers thought this was bigger than anything anyone
would need. Much bigger than a disk at the time…

»  Fallacy: today, EOS producing 2TB of data per day
–  Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks.

» On small files, no indirection needed Lec 19.10 4/1/10 CS162 ©UCB Spring 2010

Example of Multilevel Indexed Files
•  Sample file in multilevel

indexed format:
–  How many accesses for
block #23? (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

–  How about block #5?
» One: One for data

–  Block #340?
» Three: double indirect block,

indirect block, and data
•  UNIX 4.1 Pros and cons

–  Pros: Simple (more or less)
 Files can easily expand (up to a point)
 Small files particularly cheap and easy

–  Cons: Lots of seeks
 Very large files must read many indirect block (four
 I/Os per block!)

Lec 19.11 4/1/10 CS162 ©UCB Spring 2010

Administrivia

•  Regrades will be available tonight; check glookup

•  Project zero-sum game:
–  In the end, we decide how to distribute points to
partners

» Normally, we are pretty even about this
» But, under extreme circumstances, may take points from

non-working members and give to working members
–  This is a zero-sum game!

Lec 19.12 4/1/10 CS162 ©UCB Spring 2010

File Allocation for Cray-1 DEMOS

•  DEMOS: File system structure similar to segmentation
–  Idea: reduce disk seeks by

»  using contiguous allocation in normal case
»  but allow flexibility to have non-contiguous allocation

–  Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)

•  Header: table of base & size (10 “block group” pointers)
–  Each block chunk is a contiguous group of disk blocks
–  Sequential reads within a block chunk can proceed at high
speed – similar to continuous allocation

•  How do you find an available block group?
–  Use freelist bitmap to find block of 0’s.

base size

file header

1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk group

Basic Segmentation Structure:
Each segment contiguous on disk

Page 4

Lec 19.13 4/1/10 CS162 ©UCB Spring 2010

Large File Version of DEMOS

•  What if need much bigger files?
–  If need more than 10 groups, set flag in header: BIGFILE

» Each table entry now points to an indirect block group
–  Suppose 1000 blocks in a block group ⇒ 80GB max file

» Assuming 8KB blocks, 8byte entries⇒
(10 ptrs×1024 groups/ptr×1000 blocks/group)*8K =80GB

•  Discussion of DEMOS scheme
–  Pros: Fast sequential access, Free areas merge simply

 Easy to find free block groups (when disk not full)
–  Cons: Disk full ⇒ No long runs of blocks (fragmentation),

 so high overhead allocation/access
–  Full disk ⇒ worst of 4.1BSD (lots of seeks) with worst of
continuous allocation (lots of recompaction needed)

file header

base size 1,3,2
1,3,3
1,3,4
1,3,5
1,3,6
1,3,7
1,3,8
1,3,9

disk group base size

indirect
block group

Lec 19.14 4/1/10 CS162 ©UCB Spring 2010

How to keep DEMOS performing well?
•  In many systems, disks are always full

–  CS department growth: 300 GB to 1TB in a year
» That’s 2GB/day! (Now at 6 TB?)

–  How to fix? Announce that disk space is getting low, so
please delete files?

» Don’t really work: people try to store their data faster
–  Sidebar: Perhaps we are getting out of this mode with
new disks… However, let’s assume disks full for now

»  (Rumor has it that the EECS department has 60TB of
spinning storage just waiting for use…)

•  Solution:
–  Don’t let disks get completely full: reserve portion

»  Free count = # blocks free in bitmap
» Scheme: Don’t allocate data if count < reserve

–  How much reserve do you need?
»  In practice, 10% seems like enough

–  Tradeoff: pay for more disk, get contiguous allocation
» Since seeks so expensive for performance, this is a very

good tradeoff

Lec 19.15 4/1/10 CS162 ©UCB Spring 2010

UNIX BSD 4.2
•  Same as BSD 4.1 (same file header and triply indirect

blocks), except incorporated ideas from DEMOS:
–  Uses bitmap allocation in place of freelist
–  Attempt to allocate files contiguously
–  10% reserved disk space
–  Skip-sector positioning (mentioned next slide)

•  Problem: When create a file, don’t know how big it
will become (in UNIX, most writes are by appending)
–  How much contiguous space do you allocate for a file?
–  In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc

–  In BSD 4.2, just find some range of free blocks
»  Put each new file at the front of different range
» To expand a file, you first try successive blocks in

bitmap, then choose new range of blocks
–  Also in BSD 4.2: store files from same directory near
each other

•  Fast File System (FFS)
–  Allocation and placement policies for BSD 4.2

Lec 19.16 4/1/10 CS162 ©UCB Spring 2010

Attack of the Rotational Delay
•  Problem 2: Missing blocks due to rotational delay

–  Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

–  Solution1: Skip sector positioning (“interleaving”)
»  Place the blocks from one file on every other block of a

track: give time for processing to overlap rotation
–  Solution2: Read ahead: read next block right after first,
even if application hasn’t asked for it yet.

» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have

internal RAM that allows them to read a complete track
•  Important Aside: Modern disks+controllers do many

complex things “under the covers”
–  Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

Page 5

Lec 19.17 4/1/10 CS162 ©UCB Spring 2010

How do we actually access files?
•  All information about a file contained in its file header

–  UNIX calls this an “inode”
»  Inodes are global resources identified by index (“inumber”)

– Once you load the header structure, all the other blocks
of the file are locatable

•  Question: how does the user ask for a particular file?
– One option: user specifies an inode by a number (index).

»  Imagine: open(“14553344”)
–  Better option: specify by textual name

» Have to map name→inumber
–  Another option: Icon

» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.

•  Naming: The process by which a system translates from
user-visible names to system resources
–  In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes

–  For global file systems, data may be spread over
globe⇒need to translate from strings or icons to some
combination of physical server location and inumber

Lec 19.18 4/1/10 CS162 ©UCB Spring 2010

Directories
•  Directory: a relation used for naming

–  Just a table of (file name, inumber) pairs

•  How are directories constructed?
–  Directories often stored in files

» Reuse of existing mechanism
» Directory named by inode/inumber like other files

– Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

•  How are directories modified?
– Originally, direct read/write of special file
–  System calls for manipulation: mkdir, rmdir
–  Ties to file creation/destruction

» On creating a file by name, new inode grabbed and
associated with new file in particular directory

Lec 19.19 4/1/10 CS162 ©UCB Spring 2010

Directory Organization

•  Directories organized into a hierarchical structure
–  Seems standard, but in early 70’s it wasn’t
–  Permits much easier organization of data structures

•  Entries in directory can be either files or
directories

•  Files named by ordered set (e.g., /programs/p/list)

Lec 19.20 4/1/10 CS162 ©UCB Spring 2010

Directory Structure

•  Not really a hierarchy!
– Many systems allow directory structure to be organized
as an acyclic graph or even a (potentially) cyclic graph

–  Hard Links: different names for the same file
» Multiple directory entries point at the same file

–  Soft Links: “shortcut” pointers to other files
»  Implemented by storing the logical name of actual file

•  Name Resolution: The process of converting a logical
name into a physical resource (like a file)
–  Traverse succession of directories until reach target file
–  Global file system: May be spread across the network

Page 6

Lec 19.21 4/1/10 CS162 ©UCB Spring 2010

Directory Structure (Con’t)
•  How many disk accesses to resolve “/my/book/count”?

–  Read in file header for root (fixed spot on disk)
–  Read in first data block for root

» Table of file name/index pairs. Search linearly – ok since
directories typically very small

–  Read in file header for “my”
–  Read in first data block for “my”; search for “book”
–  Read in file header for “book”
–  Read in first data block for “book”; search for “count”
–  Read in file header for “count”

•  Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names
–  Allows user to specify relative filename instead of
absolute path (say CWD=“/my/book” can resolve “count”)

Lec 19.22 4/1/10 CS162 ©UCB Spring 2010

Where are inodes stored?

•  In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders
–  Header not stored near the data blocks. To read a
small file, seek to get header, seek back to data.

–  Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

Lec 19.23 4/1/10 CS162 ©UCB Spring 2010

Where are inodes stored?

•  Later versions of UNIX moved the header
information to be closer to the data blocks
– Often, inode for file stored in same “cylinder
group” as parent directory of the file (makes an ls
of that directory run fast).

–  Pros:
» UNIX BSD 4.2 puts a portion of the file header

array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinder⇒no
seeks!

»  File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from
disk at same time

» Reliability: whatever happens to the disk, you can
find many of the files (even if directories
disconnected)

–  Part of the Fast File System (FFS)
» General optimization to avoid seeks

Lec 19.24 4/1/10 CS162 ©UCB Spring 2010

•  Open system call:
–  Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
–  Returns index (called “file handle”) in open-file table

•  Read/write system calls:
–  Use file handle to locate inode
–  Perform appropriate reads or writes

In-Memory File System Structures

Page 7

Lec 19.25 4/1/10 CS162 ©UCB Spring 2010

Conclusion
•  Multilevel Indexed Scheme

–  Inode contains file info, direct pointers to blocks,
–  indirect blocks, doubly indirect, etc..

•  Cray DEMOS: optimization for sequential access
–  Inode holds set of disk ranges, similar to segmentation

•  4.2 BSD Multilevel index files
–  Inode contains pointers to actual blocks, indirect blocks,
double indirect blocks, etc

– Optimizations for sequential access: start new files in
open ranges of free blocks

–  Rotational Optimization

•  Naming: act of translating from user-visible names to
actual system resources
–  Directories used for naming for local file systems

