
CS162
Operating Systems and
Systems Programming

Lecture 21

Networking

April 8, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 21.2 4/8/10 CS162 ©UCB Spring 2010

Goals for Today

•  Distributed file systems
•  Authorization
•  Networking

–  Broadcast
–  Point-to-Point Networking
–  Routing
–  Internet Protocol (IP)

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Kubiatowicz.

Lec 21.3 4/8/10 CS162 ©UCB Spring 2010

Remote File Systems: Virtual File System (VFS)

•  VFS: Virtual abstraction similar to local file system
–  Instead of “inodes” has “vnodes”
–  Compatible with a variety of local and remote file systems

»  provides object-oriented way of implementing file systems
•  VFS allows the same system call interface (the API) to

be used for different types of file systems
–  The API is to the VFS interface, rather than any specific
type of file system

Lec 21.4 4/8/10 CS162 ©UCB Spring 2010

Network File System (NFS)
•  Three Layers for NFS system

–  UNIX file-system interface: open, read, write, close
calls + file descriptors

–  VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
»  Implements the NFS protocol

•  NFS Protocol: remote procedure calls (RPC) for file
operations on server
–  Reading/searching a directory
–  manipulating links and directories
–  accessing file attributes/reading and writing files

•  NFS servers are stateless; each request provides all
arguments require for execution

•  Modified data must be committed to the server’s disk
before results are returned to the client
–  lose some of the advantages of caching
–  Can lead to weird results: write file on one client, read
on other, get old data

Lec 21.5 4/8/10 CS162 ©UCB Spring 2010

Schematic View of NFS Architecture

Lec 21.6 4/8/10 CS162 ©UCB Spring 2010

Authorization: Who Can Do What?

•  How do we decide who is
authorized to do actions in the
system?

•  Access Control Matrix: contains
all permissions in the system
–  Resources across top

»  Files, Devices, etc…
–  Domains in columns

» A domain might be a user or a
group of users

» E.g. above: User D3 can read
F2 or execute F3

–  In practice, table would be
huge and sparse!

Lec 21.7 4/8/10 CS162 ©UCB Spring 2010

Authorization: Two Implementation Choices
•  Access Control Lists: store permissions with object

–  Still might be lots of users!
–  UNIX limits each file to: r,w,x for owner, group, world
– More recent systems allow definition of groups of users
and permissions for each group

–  ACLs allow easy changing of an object’s permissions
» Example: add Users C, D, and F with rw permissions

•  Capability List: each process tracks which objects has
permission to touch
–  Popular in the past, idea out of favor today
–  Consider page table: Each process has list of pages it
has access to, not each page has list of processes …

–  Capability lists allow easy changing of a domain’s
permissions

» Example: you are promoted to system administrator and
should be given access to all system files

Lec 21.8 4/8/10 CS162 ©UCB Spring 2010

Authorization: Combination Approach

•  Users have capabilities,
called “groups” or “roles”

–  Everyone with particular
group access is “equivalent”
when accessing group
resource

–  Like passport (which gives
access to country of origin)

•  Objects have ACLs
–  ACLs can refer to users or

groups
–  Change object permissions

object by modifying ACL
–  Change broad user

permissions via changes in
group membership

–  Possessors of proper
credentials get access

Lec 21.9 4/8/10 CS162 ©UCB Spring 2010

Authorization: How to Revoke?

•  How does one revoke someone’s access rights to
a particular object?
–  Easy with ACLs: just remove entry from the list
–  Takes effect immediately since the ACL is checked
on each object access

•  Harder to do with capabilities since they aren’t
stored with the object being controlled:
– Not so bad in a single machine: could keep all
capability lists in a well-known place (e.g., the OS
capability table).

–  Very hard in distributed system, where remote
hosts may have crashed or may not cooperate
(more in a future lecture)

Lec 21.10 4/8/10 CS162 ©UCB Spring 2010

Revoking Capabilities

•  Various approaches to revoking capabilities:
–  Put expiration dates on capabilities and force
reacquisition

–  Put epoch numbers on capabilities and revoke all
capabilities by bumping the epoch number (which
gets checked on each access attempt)

– Maintain back pointers to all capabilities that have
been handed out (Tough if capabilities can be
copied)

– Maintain a revocation list that gets checked on
every access attempt

Lec 21.11 4/8/10 CS162 ©UCB Spring 2010

Centralized vs Distributed Systems

•  Centralized System: System in which major functions
are performed by a single physical computer
– Originally, everything on single computer
–  Later: client/server model

•  Distributed System: physically separate computers
working together on some task
–  Early model: multiple servers working together

»  Probably in the same room or building
» Often called a “cluster”

–  Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Lec 21.12 4/8/10 CS162 ©UCB Spring 2010

Distributed Systems: Motivation/Issues
•  Why do we want distributed systems?

–  Cheaper and easier to build lots of simple computers
–  Easier to add power incrementally
–  Users can have complete control over some components
–  Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)

•  The promise of distributed systems:
–  Higher availability: one machine goes down, use another
–  Better durability: store data in multiple locations
– More security: each piece easier to make secure

•  Reality has been disappointing
– Worse availability: depend on every machine being up

»  Lamport: “a distributed system is one where I can’t do work
because some machine I’ve never heard of isn’t working!”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

•  Coordination is more difficult
– Must coordinate multiple copies of shared state information
(using only a network)

– What would be easy in a centralized system becomes a lot
more difficult

Lec 21.13 4/8/10 CS162 ©UCB Spring 2010

Distributed Systems: Goals/Requirements
•  Transparency: the ability of the system to mask its

complexity behind a simple interface
•  Possible transparencies:

–  Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
–  Replication: Can’t tell how many copies of resource exist
–  Concurrency: Can’t tell how many users there are
–  Parallelism: System may speed up large jobs by spliting
them into smaller pieces

–  Fault Tolerance: System may hide varoius things that go
wrong in the system

•  Transparency and collaboration require some way for
different processors to communicate with one another

Lec 21.14 4/8/10 CS162 ©UCB Spring 2010

Administrivia

•  3rd project due Monday, April 12

•  I’ll be away next Wednesday-Friday (Eurosys)
–  Lecture will be taught by Ben Hindman
– No office hour on Thursday, April 15

•  Matei and Andy will be away as well next week
–  Ben will teach the discussion sections of both Matei and
Andy

– No office hours for Andy and Matei next week

•  Project 4
–  Initial design, Wednesday (4/21), will give you two
discussion sections before deadline

–  Code deadline, Wednesday (5/5), two weeks later

Lec 21.15 4/8/10 CS162 ©UCB Spring 2010

Networking Definitions

•  Network: physical connection and set of protocols that
allows two computers to communicate

•  Packet (frame): unit of transfer, sequence of bits
carried over the network
– Network carries packets from one CPU to another
–  Destination gets interrupt when packet arrives

•  Protocol: agreement between two parties as to how
information is to be transmitted

•  Layering: architecture for networking functionality

Lec 21.16 4/8/10 CS162 ©UCB Spring 2010

Why Layering? The Problem

•  Re-implement every application for every
technology?

•  No! But how does the Internet architecture avoid
this?

Telnet FTP NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Lec 21.17 4/8/10 CS162 ©UCB Spring 2010

Network Layering: Solution

•  Introduce an intermediate layer that provides a single
abstraction for various network technologies
– New application just need to be written for intermediate
layer

– New transmission media just need to provide abstraction of
intermediate layer

SMTP SSH NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate
layer

Lec 21.18 4/8/10 CS162 ©UCB Spring 2010

Layering

•  Layering is a particular form of modularization

•  System is broken into a vertical hierarchy of
logically distinct entities (layers)

•  Service provided by one layer is based solely on
the service provided by layer below

•  Rigid structure: easy reuse, performance suffers

Lec 21.19 4/8/10 CS162 ©UCB Spring 2010

Layering: Internet

Universal Internet layer:
•  Internet has only Internet Protocol (IP) at the Internet

layer
•  Many options for modules above IP
•  Many options for modules below IP

Internet

Link Layer/
Physical Layer

Transport

Application

IP

LAN Packet
radio

TCP UDP

Telnet FTP DNS

Lec 21.20 4/8/10 CS162 ©UCB Spring 2010 20

Hourglass

Lec 21.21 4/8/10 CS162 ©UCB Spring 2010

Implications of Hourglass

Single Internet layer module:
•  Allows networks to interoperate

–  Any network technology that supports IP can
exchange packets

•  Allows applications to function on all networks
–  Applications that can run on IP can use any network

•  Simultaneous developments above and below IP

Lec 21.22 4/8/10 CS162 ©UCB Spring 2010

Link Layer

•  Shared broadcast network: a packet reaches
everyone in same network

•  Frames: units of data exchanged at the link
layer

•  Main Functions
–  Create frames, adding header, trailer
–  Error correction
–  Send data between peers
–  Arbitrate access to physical media (Multiple
Access)

Lec 21.23 4/8/10 CS162 ©UCB Spring 2010

•  Broadcast Network: Shared Communication Medium

–  Shared Medium can be a set of wires
»  Inside a computer, this is called a bus
» All devices simultaneously connected to devices

– Originally, Ethernet was a broadcast network
» All computers on local subnet connected to one another

– More examples (wireless: medium is air): cellular phones,
GSM GPRS, EDGE, CDMA 1xRTT, and 1EvDO

Broadcast Networks

Memory Processor
I/O

Device
I/O

Device
I/O

Device
Internet

Lec 21.24 4/8/10 CS162 ©UCB Spring 2010

Broadcast Networks Details

•  Delivery: When you broadcast a packet farme, how does
a receiver know who it is for? (frame goes to everyone!)
–  Put header on front of frame: [Destination | Packet]
–  Everyone gets frame, discards if not the target
–  In Ethernet, this check is done in hardware

» No OS interrupt if not for particular destination
–  This is layering: we’re going to build complex network
protocols by layering on top of the packet

Header
(Dest:2)

Body
(Data)

Message
ID:1

(ignore)

ID:2
(receive)

ID:4
(ignore)

ID:3
(sender)

Lec 21.25 4/8/10 CS162 ©UCB Spring 2010

Multiple Access Algorithm

•  Single shared broadcast channel
–  Avoid having multiple nodes speaking at once
–  Otherwise, collisions lead to garbled data

•  Multiple access mechanism
–  Distributed algorithm for sharing the channel
–  Algorithm determines which node can transmit

•  Classes of techniques
–  Channel partitioning: divide channel into pieces
–  Taking turns: scheme for trading off who gets to

transmit
–  Random access: allow collisions, and then recover

» Optimizes for the common case of only one sender

Lec 21.26 4/8/10 CS162 ©UCB Spring 2010

Channel Partitioning: TDMA

TDMA: Time Division Multiple Access
•  Access to channel in "rounds"

–  Each station gets fixed length slot in each round
•  Time-slot length is packet transmission time

–  Unused slots go idle
•  Example: 6-station LAN with slots 0, 3, and 4

Rounds

0 1 2 3 4 5 0 1 2 3 4 5 Slots =

Lec 21.27 4/8/10 CS162 ©UCB Spring 2010

Channel Partitioning: FDMA

FDMA: Frequency Division Multiple Access
•  Channel spectrum divided into frequency bands
•  Each station assigned fixed frequency band
•  Unused transmission time in frequency bands go idle
•  Example: 6-station LAN, 1,3,4 have pkt, frequency

bands 2,5,6 idle

fr
eq

ue
nc

y
ba

nd
s

time

FDM cable

Lec 21.28 4/8/10 CS162 ©UCB Spring 2010

“Taking Turns” MAC protocols

Polling
•  Master node

“invites” slave
nodes to transmit in
turn

•  Concerns:
–  Polling overhead
–  Latency
–  Single point of

failure (master)

Token passing
•  Control token passed from one

node to next sequentially
•  Node must have token to send
•  Concerns:
– Token overhead
– Latency
– Single point of failure (token) master

slaves

poll

data

data

Lec 21.29 4/8/10 CS162 ©UCB Spring 2010

Random Access Protocol: AlohaNet

•  Norm Abramson left
Stanford in search of
surfing

•  Set up first radio-based
data communication system
connecting the Hawaiian
islands

–  Hub at Alohanet HQ
(Univ. Hawaii, Oahu)

–  Other sites spread among
the islands

•  Had two radio channels:
–  Random access: sites sent

data on this channel
–  Broadcast: only used by

hub to rebroadcast
incoming data

Lec 21.30 4/8/10 CS162 ©UCB Spring 2010

Aloha Transmission Strategy

•  When new data arrived at site, send to hub for
transmission

•  Site listened to broadcast channel
–  If it heard data repeated, knew transmission was
rec’d

–  If it didn’t hear data correctly, it assumed a
collision

•  If collision, site waited random delay before
retransmitting

•  Problem: Stability: what if load increases?
– More collisions ⇒ less gets through ⇒more resent
⇒ more load… ⇒ More collisions…

–  Unfortunately: some sender may have started in
clear, get scrambled without finishing

Lec 21.31 4/8/10 CS162 ©UCB Spring 2010

Ethernet

•  Bob Metcalfe, Xerox PARC,
visits Hawaii and gets an
idea!

•  Shared medium (coax cable)
•  Can “sense” carrier to see

if other nodes are
broadcasting at the same
time
–  Sensing is subject to time-
lag

– Only detect those sending a
short while before

•  Monitor channel to detect
collisions
– Once sending, can tell if
anyone else is sending too

Lec 21.32 4/8/10 CS162 ©UCB Spring 2010

Ethernet’s CSMA/CD

•  CSMA: Carrier Sense Multiple Access
•  CD: Collision detection
•  Sense channel, if idle

–  If detect another transmission
» Abort, send jam signal
» Delay, and try again

–  Else
» Send frame

•  Receiver accepts:
–  Frames addressed to its own address
–  Frames addressed to the broadcast address (broadcast)
–  Frames addressed to a multicast address, if it was
instructed to listen to that address

–  All frames (promiscuous mode)

Lec 21.33 4/8/10 CS162 ©UCB Spring 2010

Ethernet’s CSMA/CD (more)

•  Exponential back-off
–  Goal: adapt retransmission attempts to estimated
current load

–  Heavy load: random wait will be longer
–  First collision: choose K from {0,1}; delay is K x 512
bit transmission times

–  After second collision: choose K from {0,1,2,3}…
–  After ten or more collisions, choose K from
{0,1,2,3,4,…,1023}

•  Minimum packet size
–  Give a host enough time to detect collisions
–  In Ethernet, minimum packet size = 64 bytes
– What is the relationship between minimum packet
size and the length of the LAN?

Lec 21.34 4/8/10 CS162 ©UCB Spring 2010

Minimum Packet Size (more)

propagation delay (d) a) Time = t; Host 1
starts to send frame

Host 1 Host 2

propagation delay (d)
Host 1 Host 2

b) Time = t + d; Host 2
starts to send a frame,
just before it hears from
host 1’s frame

propagation delay (d)
Host 1 Host 2

c) Time = t + 2*d; Host 1
hears Host 2’s frame
detects collision

d = LAN_length/ligh_speed = min_frame_size/(2*bandwidth)
LAN_length = (min_frame_size)*(light_speed)/(2*bandwidth) =
 = (8*64b)*(2.5*108mps)/(2*107 bps) = 6400m approx

What about 100 mbps? 1 gbps? 10 gbps?

Lec 21.35 4/8/10 CS162 ©UCB Spring 2010

Conclusion

•  Authorization
–  Controlling access to resources using

» Access Control Lists
» Capabilities

•  Network: physical connection that allows two
computers to communicate
–  Packet: unit of transfer, sequence of bits carried over
the network

•  Broadcast Network: Shared Communication Medium
–  Transmitted packets sent to all receivers
–  Arbitration: act of negotiating use of shared medium

» Ethernet: Carrier Sense, Multiple Access, Collision Detect
•  Protocol: Agreement between two parties as to how

information is to be transmitted

