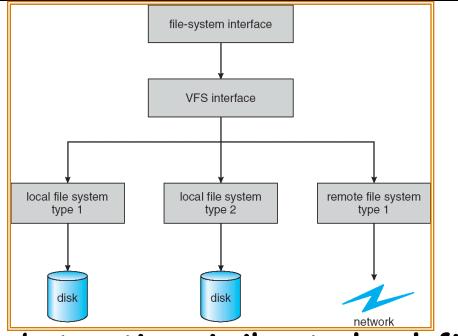
CS162 Operating Systems and Systems Programming Lecture 21

Networking

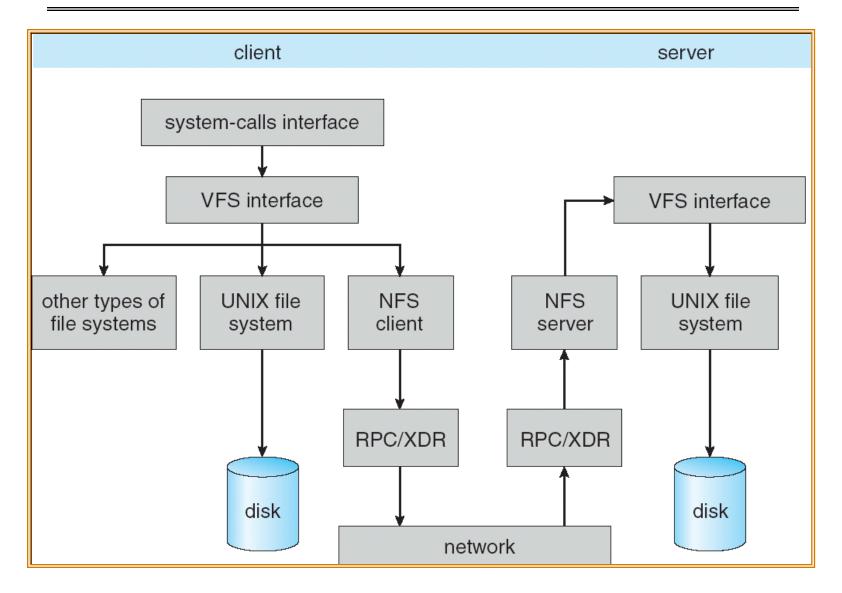

April 8, 2010 Ion Stoica http://inst.eecs.berkeley.edu/~cs162

Goals for Today

- Distributed file systems
- Authorization
- Networking
 - Broadcast
 - Point-to-Point Networking
 - Routing
 - Internet Protocol (IP)

Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides generated from lecture notes by Kubiatowicz.

Remote File Systems: Virtual File System (VFS)



- VFS: Virtual abstraction similar to local file system
 - Instead of "inodes" has "vnodes"
 - Compatible with a variety of local and remote file systems » provides object-oriented way of implementing file systems
- \cdot VFS allows the same system call interface (the API) to be used for different types of file systems
- The API is to the VFS interface, rather than any specific type of file system

Network File System (NFS)

- Three Layers for NFS system
 - UNIX file-system interface: open, read, write, close calls + file descriptors
 - VFS layer: distinguishes local from remote files
 - » Calls the NFS protocol procedures for remote requests
 - NFS service layer: bottom layer of the architecture » Implements the NFS protocol
- NFS Protocol: remote procedure calls (RPC) for file operations on server
 - Reading/searching a directory
 - manipulating links and directories
 - accessing file attributes/reading and writing files
- NFS servers are stateless; each request provides all arguments require for execution
- Modified data must be committed to the server's disk before results are returned to the client
 - lose some of the advantages of caching
 - Can lead to weird results: write file on one client, read on other, get old data

Schematic View of NFS Architecture

CS162 ©UCB Spring 2010

Authorization: Who Can Do What?

- How do we decide who is authorized to do actions in the system?
- Access Control Matrix: contains all permissions in the system
 - Resources across top
 - » Files, Devices, etc...
 - Domains in columns
 - » A domain might be a user or a group of users
 - » E.g. above: User D3 can read F2 or execute F3
 - In practice, table would be huge and sparse!

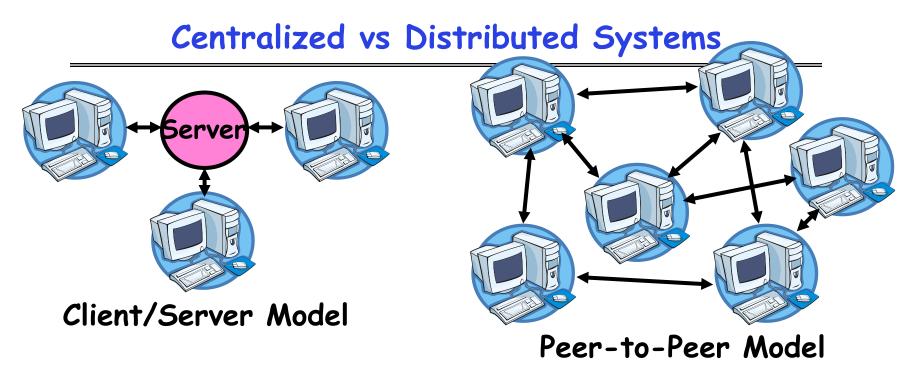
object domain	F ₁	F ₂	F ₃	printer
D ₁	read		read	
D ₂				print
D ₃		read	execute	
D ₄	read write		read write	

Authorization: Two Implementation Choices

- Access Control Lists: store permissions with object
 - Still might be lots of users!
 - UNIX limits each file to: r,w,x for owner, group, world
 - More recent systems allow definition of groups of users and permissions for each group
 - ACLs allow easy changing of an object's permissions » Example: add Users C, D, and F with rw permissions
- Capability List: each process tracks which objects has permission to touch
 - Popular in the past, idea out of favor today
 - Consider page table: Each process has list of pages it has access to, not each page has list of processes ...
 - Capability lists allow easy changing of a domain's permissions
 - » Example: you are promoted to system administrator and should be given access to all system files

Authorization: Combination Approach

- Users have capabilities, called "groups" or "roles"
 - Everyone with particular group access is "equivalent" when accessing group resource
 - Like passport (which gives access to country of origin)


- Objects have ACLs
 - ACLs can refer to users or groups
 - Change object permissions object by modifying ACL
 - Change broad user permissions via changes in group membership
 - Possessors of proper credentials get access

Authorization: How to Revoke?

- How does one revoke someone's access rights to a particular object?
 - Easy with ACLs: just remove entry from the list
 - Takes effect immediately since the ACL is checked on each object access
- Harder to do with capabilities since they aren't stored with the object being controlled:
 - Not so bad in a single machine: could keep all capability lists in a well-known place (e.g., the OS capability table).
 - Very hard in distributed system, where remote hosts may have crashed or may not cooperate (more in a future lecture)

Revoking Capabilities

- Various approaches to revoking capabilities:
 - Put expiration dates on capabilities and force reacquisition
 - Put epoch numbers on capabilities and revoke all capabilities by bumping the epoch number (which gets checked on each access attempt)
 - Maintain back pointers to all capabilities that have been handed out (Tough if capabilities can be copied)
 - Maintain a revocation list that gets checked on every access attempt

- Centralized System: System in which major functions are performed by a single physical computer Originally, everything on single computer

 - Later: client/server model
- Distributed System: physically separate computers working together on some task
 - Early model: multiple servers working together
 - » Probably in the same room or building
 » Often called a "cluster"

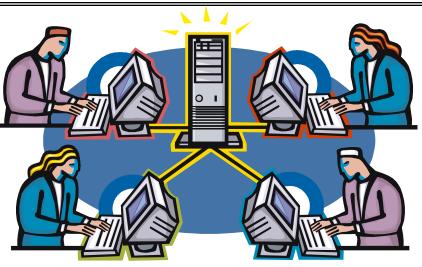
- Later models: peer-to-peer/wide-spread collaboration CS162 ©UCB Spring 2010
Lec 21.2 4/8/10 Lec 21 11

Distributed Systems: Motivation/Issues

- Why do we want distributed systems?
 - Cheaper and easier to build lots of simple computers
 - Easier to add power incrementally

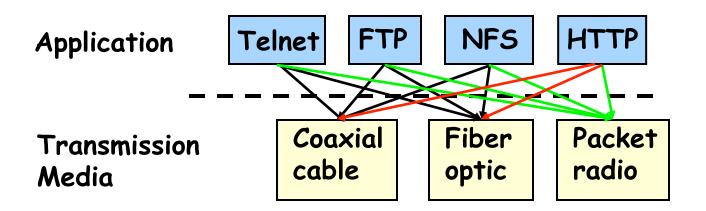
 - Users can have complete control over some components
 Collaboration: Much easier for users to collaborate through network resources (such as network file systems)
- The promise of distributed systems:
 Higher availability: one machine goes down, use another
 - Better durability: store data in multiple locations
 More security: each piece easier to make secure
- Reality has been disappointing

 Worse availability: depend on every machine being up
 Lamport: "a distributed system is one where I can't do work because some machine I've never heard of isn't working!"
- Worse reliability: can lose data if any machine crashes
 Worse security: anyone in world can break into system
 Coordination is more difficult
- - Must coordinate multiple copies of shared state information (using only a network)
 - What would be easy in a centralized system becomes a lot more difficult


Distributed Systems: Goals/Requirements

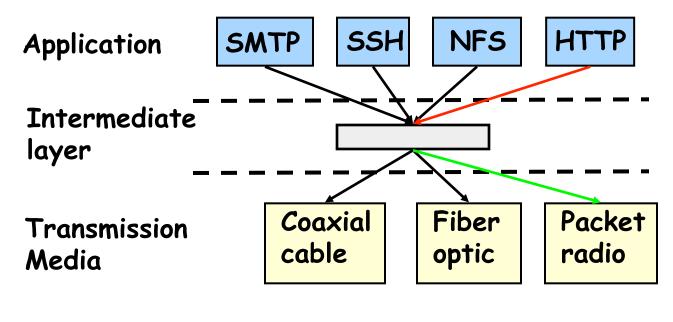
- Transparency: the ability of the system to mask its complexity behind a simple interface
- Possible transparencies:
 - Location: Can't tell where resources are located
 - Migration: Resources may move without the user knowing
 - Replication: Can't tell how many copies of resource exist
 - Concurrency: Can't tell how many users there are
 - Parallelism: System may speed up large jobs by spliting them into smaller pieces
 - Fault Tolerance: System may hide varoius things that go wrong in the system
- Transparency and collaboration require some way for different processors to communicate with one another

- 3rd project due Monday, April 12
- I'll be away next Wednesday-Friday (Eurosys)
 - Lecture will be taught by Ben Hindman
 - No office hour on Thursday, April 15
- Matei and Andy will be away as well next week
 - Ben will teach the discussion sections of both Matei and Andy
 - No office hours for Andy and Matei next week
- Project 4
 - Initial design, Wednesday (4/21), will give you two discussion sections before deadline
 - Code deadline, Wednesday (5/5), two weeks later


Networking Definitions

- Network: physical connection and set of protocols that allows two computers to communicate
- Packet (frame): unit of transfer, sequence of bits carried over the network
 - Network carries packets from one CPU to another
 - Destination gets interrupt when packet arrives
- Protocol: agreement between two parties as to how information is to be transmitted
- Layering: architecture for networking functionality

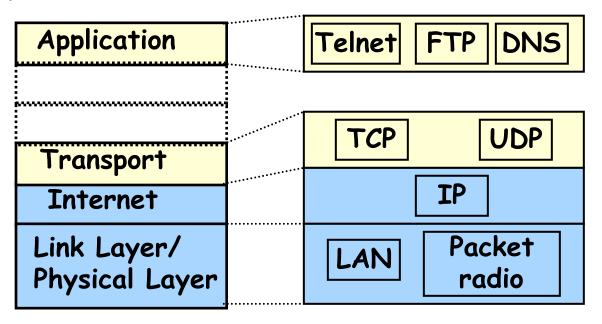
4/8/10


Why Layering? The Problem

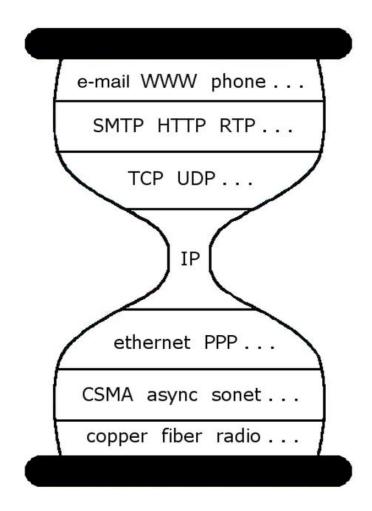
- Re-implement every application for every technology?
- No! But how does the Internet architecture avoid this?

Network Layering: Solution

- Introduce an intermediate layer that provides a single abstraction for various network technologies
 - New application just need to be written for intermediate layer
 - New transmission media just need to provide abstraction of intermediate layer



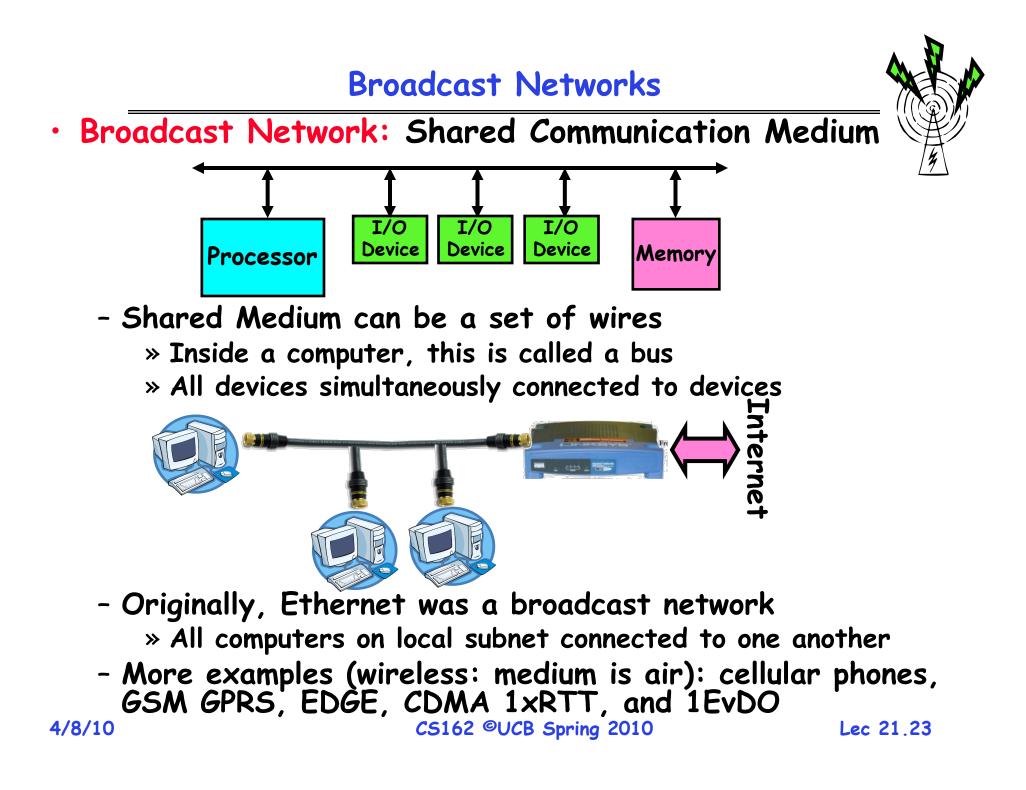
CS162 ©UCB Spring 2010

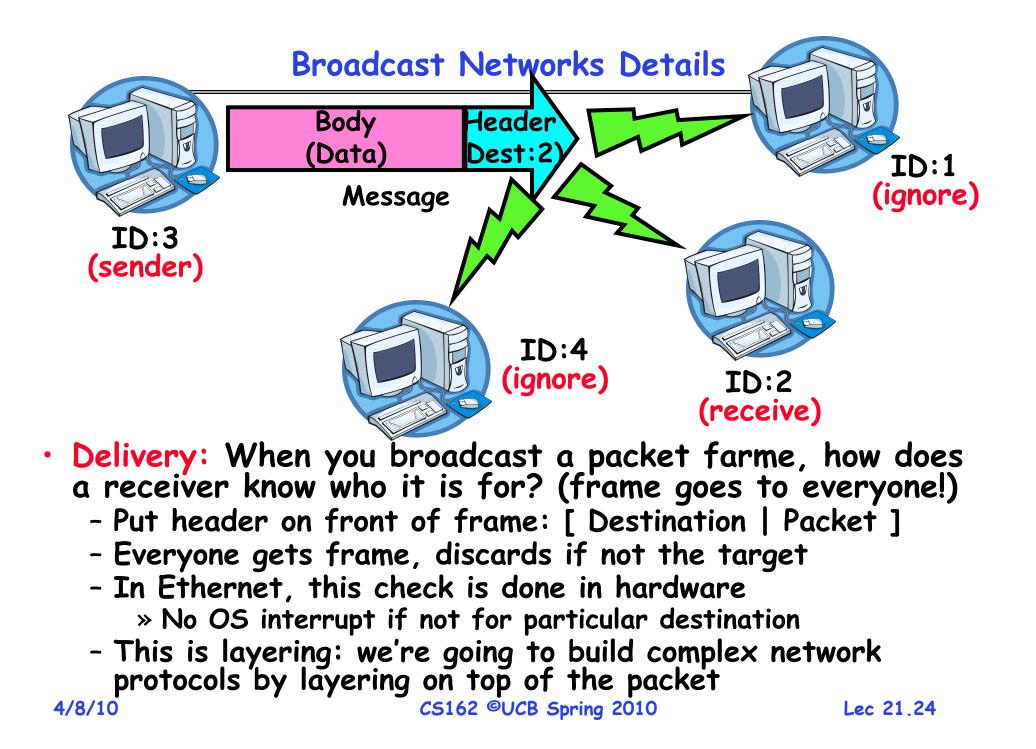

- Layering is a particular form of modularization
- System is broken into a vertical hierarchy of logically distinct entities (layers)
- Service provided by one layer is based solely on the service provided by layer below
- Rigid structure: easy reuse, performance suffers

Universal Internet layer:

- Internet has only Internet Protocol (IP) at the Internet layer
- Many options for modules above IP
- Many options for modules below IP

Hourglass

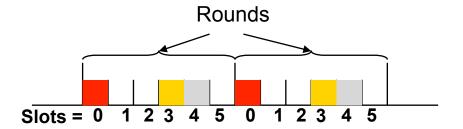

CS162 ©UCB Spring 2010


Implications of Hourglass

Single Internet layer module:

- Allows networks to interoperate
 - Any network technology that supports IP can exchange packets
- Allows applications to function on all networks
 - Applications that can run on IP can use any network
- Simultaneous developments above and below IP

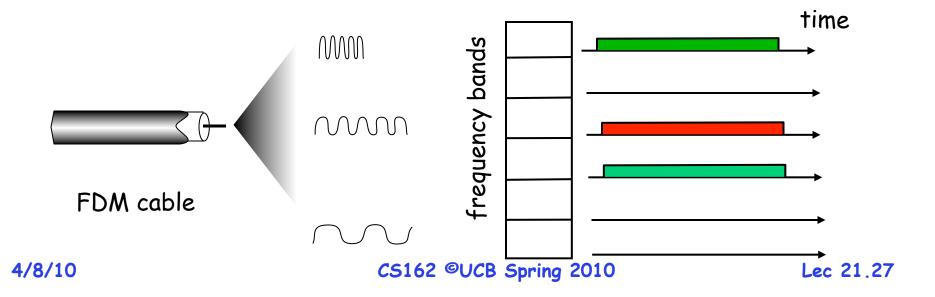
- Shared broadcast network: a packet reaches everyone in same network
- Frames: units of data exchanged at the link layer
- $\boldsymbol{\cdot}$ Main Functions
 - Create frames, adding header, trailer
 - Error correction
 - Send data between peers
 - Arbitrate access to physical media (Multiple Access)


Multiple Access Algorithm

- Single shared broadcast channel
 - Avoid having multiple nodes speaking at once
 - Otherwise, collisions lead to garbled data
- Multiple access mechanism
 - Distributed algorithm for sharing the channel
 - Algorithm determines which node can transmit
- Classes of techniques
 - Channel partitioning: divide channel into pieces
 - Taking turns: scheme for trading off who gets to transmit
 - Random access: allow collisions, and then recover
 » Optimizes for the common case of only one sender

Channel Partitioning: TDMA

TDMA: Time Division Multiple Access


- Access to channel in "rounds"
 - Each station gets fixed length slot in each round
- Time-slot length is packet transmission time
 - Unused slots go idle
- Example: 6-station LAN with slots 0, 3, and 4

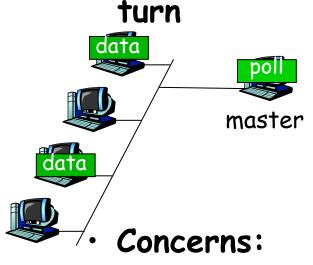
Channel Partitioning: FDMA

FDMA: Frequency Division Multiple Access

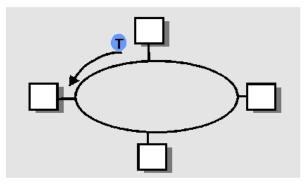
- Channel spectrum divided into frequency bands
- Each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle
- Example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

"Taking Turns" MAC protocols

Polling


Master node

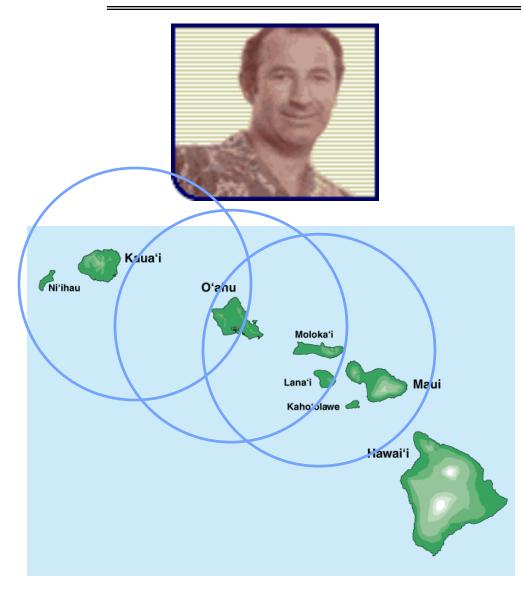
"invites" slave


Token passing

Control token passed from one node to next sequentially

nodes to transmit in. Node must have token to send

- Concerns:
 - Token overhead
 - Latency
 - Single point of failure (token)

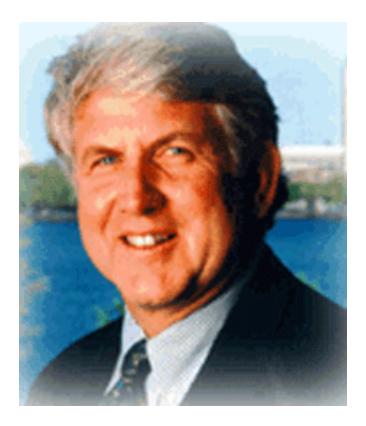

slaves

- Polling overhead
 - Latency
 - Single point of failure (master)

4/8/10

CS162 ©UCB Spring 2010

Random Access Protocol: AlohaNet



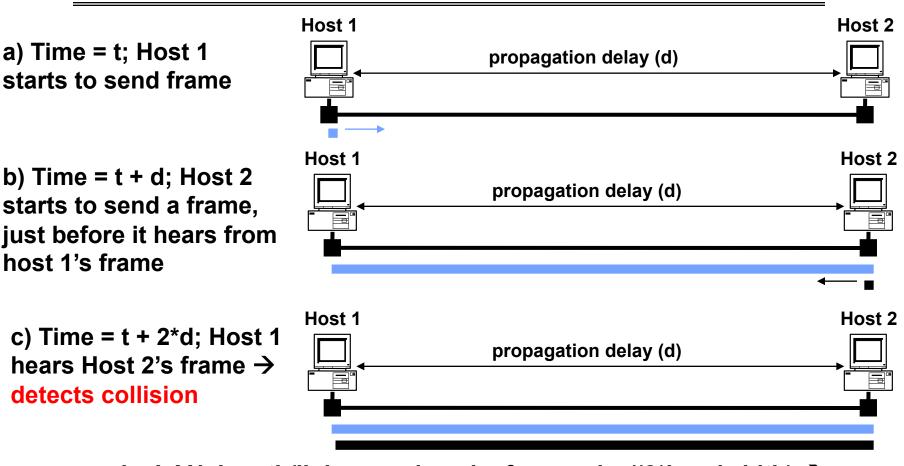
- Norm Abramson left Stanford in search of surfing
- Set up first radio-based data communication system connecting the Hawaiian islands
 - Hub at Alohanet HQ (Univ. Hawaii, Oahu)
 - Other sites spread among the islands
- Had two radio channels:
 - Random access: sites sent data on this channel
 - Broadcast: only used by hub to rebroadcast incoming data

Aloha Transmission Strategy

- When new data arrived at site, send to hub for transmission
- Site listened to broadcast channel
 - If it heard data repeated, knew transmission was rec'd
 - If it didn't hear data correctly, it assumed a collision
- If collision, site waited random delay before retransmitting
- Problem: Stability: what if load increases?
 - More collisions ⇒ less gets through ⇒more resent
 ⇒ more load... ⇒ More collisions...
 - Unfortunately: some sender may have started in clear, get scrambled without finishing

Ethernet

- Bob Metcalfe, Xerox PARC, visits Hawaii and gets an idea!
- Shared medium (coax cable)
- Can "sense" carrier to see if other nodes are broadcasting at the same time
 - Sensing is subject to timelag
 - Only detect those sending a short while before
- Monitor channel to detect collisions
 - Once sending, can tell if anyone else is sending too


Ethernet's CSMA/CD

- CSMA: Carrier Sense Multiple Access
- CD: Collision detection
- Sense channel, if idle
 - If detect another transmission
 - » Abort, send jam signal
 - » Delay, and try again
 - Else
 - » Send frame
- Receiver accepts:
 - Frames addressed to its own address
 - Frames addressed to the broadcast address (broadcast)
 - Frames addressed to a multicast address, if it was instructed to listen to that address
 - All frames (promiscuous mode)

Ethernet's CSMA/CD (more)

- Exponential back-off
 - Goal: adapt retransmission attempts to estimated current load
 - Heavy load: random wait will be longer
 - First collision: choose K from {0,1}; delay is K x 512 bit transmission times
 - After second collision: choose K from {0,1,2,3}...
 - After ten or more collisions, choose K from {0,1,2,3,4,...,1023}
- Minimum packet size
 - Give a host enough time to detect collisions
 - In Ethernet, minimum packet size = 64 bytes
 - What is the relationship between minimum packet size and the length of the LAN?

Minimum Packet Size (more)

d = LAN_length/ligh_speed = min_frame_size/(2*bandwidth) → LAN_length = (min_frame_size)*(light_speed)/(2*bandwidth) = = (8*64b)*(2.5*10⁸mps)/(2*10⁷ bps) = 6400m approx

What about 100 mbps? 1 gbps? 10 gbps? CS162 ©UCB Spring 2010

- Authorization
 - Controlling access to resources using
 - » Access Control Lists
 - » Capabilities
- Network: physical connection that allows two computers to communicate
 - Packet: unit of transfer, sequence of bits carried over the network
- Broadcast Network: Shared Communication Medium
 - Transmitted packets sent to all receivers
 - Arbitration: act of negotiating use of shared medium » Ethernet: Carrier Sense, Multiple Access, Collision Detect
- Protocol: Agreement between two parties as to how information is to be transmitted