
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 22

Networking II

April 13, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 22.2 4/13/10 CS162 ©UCB Spring 2010

Multiple Access Algorithm

•  Single shared broadcast channel
–  Avoid having multiple nodes speaking at once
–  Otherwise, collisions lead to garbled data

•  Multiple access mechanism
–  Distributed algorithm for sharing the channel
–  Algorithm determines which node can transmit

•  Classes of techniques
–  Channel partitioning: divide channel into pieces
–  Taking turns: scheme for trading off who gets to

transmit
–  Random access: allow collisions, and then recover

» Optimizes for the common case of only one sender

Lec 22.3 4/13/10 CS162 ©UCB Spring 2010

Random Access Protocol: AlohaNet

•  Norm Abramson left
Stanford in search of
surfing

•  Set up first radio-based
data communication system
connecting the Hawaiian
islands

–  Hub at Alohanet HQ
(Univ. Hawaii, Oahu)

–  Other sites spread among
the islands

•  Had two radio channels:
–  Random access: sites sent

data on this channel
–  Broadcast: only used by

hub to rebroadcast
incoming data

Lec 22.4 4/13/10 CS162 ©UCB Spring 2010

Aloha Transmission Strategy

•  When new data arrived at site, send to hub for
transmission

•  Site listened to broadcast channel
–  If it heard data repeated, knew transmission was
rec’d

–  If it didn’t hear data correctly, it assumed a
collision

•  If collision, site waited random delay before
retransmitting

•  Problem: Stability: what if load increases?
– More collisions ⇒ less gets through ⇒more resent
⇒ more load… ⇒ More collisions…

–  Unfortunately: some sender may have started in
clear, get scrambled without finishing

Page 2

Lec 22.5 4/13/10 CS162 ©UCB Spring 2010

Ethernet

•  Bob Metcalfe, Xerox PARC,
visits Hawaii and gets an
idea!

•  Shared medium (coax cable)
•  Can “sense” carrier to see

if other nodes are
broadcasting at the same
time
–  Sensing is subject to time-
lag

– Only detect those sending a
short while before

•  Monitor channel to detect
collisions
– Once sending, can tell if
anyone else is sending too

Lec 22.6 4/13/10 CS162 ©UCB Spring 2010

Ethernet’s CSMA/CD

•  CSMA: Carrier Sense Multiple Access
•  CD: Collision detection
•  Sense channel, if idle

–  If detect another transmission
» Abort, send jam signal
» Delay, and try again

–  Else
» Send frame

•  Receiver accepts:
–  Frames addressed to its own address
–  Frames addressed to the broadcast address (broadcast)
–  Frames addressed to a multicast address, if it was
instructed to listen to that address

–  All frames (promiscuous mode)

Lec 22.7 4/13/10 CS162 ©UCB Spring 2010

Ethernet’s CSMA/CD (more)

•  Exponential back-off
–  Goal: adapt retransmission attempts to estimated
current load

–  Heavy load: random wait will be longer
–  First collision: choose K from {0,1}; delay is K x 512
bit transmission times

–  After second collision: choose K from {0,1,2,3}…
–  After ten or more collisions, choose K from
{0,1,2,3,4,…,1023}

•  Minimum packet size
–  Give a host enough time to detect collisions
–  In Ethernet, minimum packet size = 64 bytes
– What is the relationship between minimum packet
size and the length of the LAN?

Lec 22.8 4/13/10 CS162 ©UCB Spring 2010

Minimum Packet Size (more)

propagation delay (d) a) Time = t; Host 1
starts to send frame

Host 1 Host 2

propagation delay (d)
Host 1 Host 2

b) Time = t + d; Host 2
starts to send a frame,
just before it hears from
host 1’s frame

propagation delay (d)
Host 1 Host 2

c) Time = t + 2*d; Host 1
hears Host 2’s frame 
detects collision

d = LAN_length/ligh_speed = min_frame_size/(2*bandwidth) 
LAN_length = (min_frame_size)*(light_speed)/(2*bandwidth) =
 = (8*64b)*(2.5*108mps)/(2*107 bps) = 6400m approx
What about 100 mbps? 1 gbps? 10 gbps?

Page 3

Lec 22.9 4/13/10 CS162 ©UCB Spring 2010

Goals for Today

•  Networking
– Network layer
–  Transport layer (start)

•  MapReduce primer (project 4)

Lec 22.10 4/13/10 CS162 ©UCB Spring 2010

Review: Point-to-point networks

•  Point-to-point network: a network in which every
physical wire is connected to only two computers

•  Switch: a bridge that transforms a shared-bus
(broadcast) configuration into a point-to-point network.

•  Hub: a multiport device that acts like a repeater
broadcasting from each input to every output

•  Router: a device that acts as a junction between two
networks to transfer data packets among them.

Router

Internet

Switch

Lec 22.11 4/13/10 CS162 ©UCB Spring 2010

Network (IP) Layer

•  Deliver a packet to specified network destination
–  Packet forwarding & routing

•  Perform segmentation/reassemble
•  Others:

–  packet scheduling
–  buffer management

•  Packet forwarding: the process of selecting outgoing
link (next hop) to forward a packet
–  Usually done based on destination address

•  Routing: the process of computing paths between end-
points and building forwarding tables at routers

Lec 22.12 4/13/10 CS162 ©UCB Spring 2010

IP Routing

•  Each packet is routed individually (like a letter)
•  Packets of same connection may take different

paths
Host A

Host B
Host E

Host D

Host C

router 1 router 2
router 3

router 4

router 5

router 6 router 7

Page 4

Lec 22.13 4/13/10 CS162 ©UCB Spring 2010

IP Routing

•  Each packet is routed individually (like a letter)
•  Packets of same connection may take different

paths Host C

Host A

Host B
Host E

Host D

Host C

router 1 router 2
router 3

router 4

router 5

router 6 router 7

Lec 22.14 4/13/10 CS162 ©UCB Spring 2010

Packet Forwarding

Internet

… …

 2 128.15.11.xxx
 3 128.15.xxx.xxx

1

2

16.82.100.xxx 2

Router

Forwarding table

16.25.31.10 128.15.11.12 data

•  IP v4 addresses (32b)
–  Quad notation (bytes

separated by dots)
–  x: don’t care

•  At each router the packet
destination address
1.  Is matched according to longest

prefix matching rule
2.  Packet is forwarded to the

corresponding output port

interfaces

interconnection
backplane

destination
address

source
address

Lec 22.15 4/13/10 CS162 ©UCB Spring 2010

Internet Routing: Two Level Hierarchy

AS-1

AS-2

AS-3

Interior router
BGP router

•  Autonomous system (AS): network owned by one admin.
entity (e.g., ATT, Comcast)

•  Intra-domain: routing within an AS
–  e.g., link state, distance vector protocols

•  Inter-domain: use across ASes
–  Border Gateway Protocol (BGP)

Lec 22.16 4/13/10 CS162 ©UCB Spring 2010

Administrivia

•  I’ll be away Wednesday-Friday (Eurosys)
–  Thursday’s lecture will be taught by Ben
– No office hour on Thursday, April 15

•  Matei and Andy will be away as well
–  Ben will teach the discussion sections of both Matei and
Andy

– No office hours for Andy and Matei next week

•  Project 4
–  Initial design, Wednesday (4/21), will give you two
discussion sections before deadline

–  Code deadline, Wednesday (5/5), two weeks later

Page 5

Lec 22.17 4/13/10 CS162 ©UCB Spring 2010

Transport Layer
•  Demultiplex packets at the receiver: decide to which

process to deliver a packet
•  Others:

–  Flow control: protocol to avoid over-running a slow
receiver

–  Congestion control: protocol to avoid over-running
(congesting) the network

–  Reliability: recover packet losses
–  In-order delivery: deliver packets in the same order
they were sent out

•  Examples:
–  UDP (User Datagram Protocol): only demulteplexing
–  TCP (Transport Control Protocol): demultiplexing, flow
& congestion control, reliability, in-order delivery

Lec 22.18 4/13/10 CS162 ©UCB Spring 2010

Transport Layer: Demultiplexing
•  Ports: end-points at receiver to which packets

are delivered
–  16b in IPv4

•  Processes bind to ports

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Internet
Proc. B
(port 7)

Transport
Network

Link
Physical

Proc. A
(port 10)

Proc. B
(port 7)

Transport
Network

Link
Physical

data

data 10 7

16.25.31.10 128.15.11.12 data 10 7 16.25.31.10 128.15.11.12

data

data

data

10 7

10 7

Internet 16.25.31.10 128.15.11.12

Lec 22.19 4/13/10 CS162 ©UCB Spring 2010

What is Cloud Computing?

•  “Cloud” refers to large Internet services that run on
10,000’s of machines (Google, Yahoo!, etc)

•  More recently, “cloud computing” refers to services
by these companies that let external customers rent
cycles

–  Amazon EC2: virtual machines at 8.5¢/hour, billed
hourly

–  Amazon S3: storage at 15¢/GB/month
–  Windows Azure: special applications using Azure API

•  Attractive features:
–  Scale: 100’s of nodes available in minutes
–  Fine-grained billing: pay only for what you use
–  Ease of use: sign up with credit card, get root access

Lec 22.20 4/13/10 CS162 ©UCB Spring 2010

What is MapReduce?

•  Data-parallel programming model for clusters of
commodity machines

•  Pioneered by Google
–  Processes 20 PB of data per day

•  Popularized by open-source Hadoop project
–  Used by Yahoo!, Facebook, Amazon, …

•  Hadoop: open source version of MapReduce
–  http://hadoop.apache.org/

Page 6

Lec 22.21 4/13/10 CS162 ©UCB Spring 2010

What is MapReduce Used For?

•  At Google:
–  Index building for Google Search
–  Article clustering for Google News
–  Statistical machine translation

•  At Yahoo!:
–  Index building for Yahoo! Search
–  Spam detection for Yahoo! Mail

•  At Facebook:
–  Data mining
–  Ad optimization
–  Spam detection

Lec 22.22 4/13/10 CS162 ©UCB Spring 2010

MapReduce Goals

•  Scalability to large data volumes:
–  Scan 100 TB on 1 node @ 50 MB/s = 24 days
–  Scan on 1000-node cluster = 35 minutes

•  Cost-efficiency:
–  Commodity nodes (cheap, but unreliable)
–  Commodity network
–  Automatic fault-tolerance (fewer admins)
–  Easy to use (fewer programmers)

Lec 22.23 4/13/10 CS162 ©UCB Spring 2010

Typical Hadoop Cluster

Lec 22.24 4/13/10 CS162 ©UCB Spring 2010

Challenges

•  Cheap nodes fail, especially if you have many
– Mean time between failures for 1 node = 3 years
– MTBF for 1000 nodes = 1 day
–  Solution: Build fault-tolerance into system

•  Commodity network = low bandwidth
–  Solution: Push computation to the data

•  Programming distributed systems is hard
–  Solution: Users write data-parallel “map” and
“reduce” functions, system handles work
distribution and failures

Page 7

Lec 22.25 4/13/10 CS162 ©UCB Spring 2010

Hadoop Components

•  Distributed file system (HDFS)
–  Single namespace for entire cluster
–  Replicates data 3x for fault-tolerance

•  MapReduce framework
–  Runs jobs submitted by users
– Manages work distribution & fault-tolerance
–  Colocated with file system

Lec 22.26 4/13/10 CS162 ©UCB Spring 2010

Hadoop Distributed File System

•  Files split into 128MB blocks
•  Blocks replicated across

several datanodes (usually
3)

•  Namenode stores metadata
(file names, locations, etc)

•  Optimized for large files,
sequential reads

•  Files are append-only

Namenode	

Datanodes	

1	

2	

3	

4	

1	

2	

4	

2	

1	

3	

1	

4	

3	

3	

2	

4	

File1	

Lec 22.27 4/13/10 CS162 ©UCB Spring 2010

MapReduce Programming Model

•  Data type: key-value records

•  Map function:
(Kin, Vin)  list(Kinter, Vinter)

•  Reduce function:
(Kinter, list(Vinter))  list(Kout, Vout)

Lec 22.28 4/13/10 CS162 ©UCB Spring 2010

Example: Word Count

def	
 mapper(line):	

	
 	
 	
 	
 foreach	
 word	
 in	
 line.split():	

	
 	
 	
 	
 	
 	
 	
 	
 output(word,	
 1)	

def	
 reducer(key,	
 values):	

	
 	
 	
 	
 output(key,	
 sum(values))	

Page 8

Lec 22.29 4/13/10 CS162 ©UCB Spring 2010

Word Count Execution

the	
 quick	

brown	
 fox	

the	
 fox	

ate	

the	

mouse	

how	
 now	

brown	

cow	

Map

Map

Map

Reduce

Reduce

brown,	
 2	

fox,	
 2	

how,	
 1	

now,	
 1	

the,	
 3	

ate,	
 1	

cow,	
 1	

mouse,	
 1	

quick,	
 1	

the,	
 1	

brown,	
 1	

fox,	
 1	

quick,	
 1	

the,	
 1	

fox,	
 1	

the,	
 1	

how,	
 1	

now,	
 1	

brown,	
 1	

ate,	
 1	

mouse,	
 1	

cow,	
 1	

Input	
 Map	
 Shuf<le	
 &	
 Sort	
 Reduce	
 Output	

Lec 22.30 4/13/10 CS162 ©UCB Spring 2010

An Optimization: The Combiner

•  Local reduce function for repeated keys produced
by same map

•  For associative ops. like sum, count, max
•  Decreases amount of intermediate data

•  Example: local counting for Word Count:

def	
 combiner(key,	
 values):	

	
 	
 	
 	
 output(key,	
 sum(values))	

Lec 22.31 4/13/10 CS162 ©UCB Spring 2010

Word Count with Combiner

the	
 quick	

brown	
 fox	

the	
 fox	

ate	

the	

mouse	

how	
 now	

brown	

cow	

Map

Map

Map

Reduce

Reduce

brown,	
 2	

fox,	
 2	

how,	
 1	

now,	
 1	

the,	
 3	

ate,	
 1	

cow,	
 1	

mouse,	
 1	

quick,	
 1	

the,	
 1	

brown,	
 1	

fox,	
 1	

quick,	
 1	

the,	
 2	

fox,	
 1	

how,	
 1	

now,	
 1	

brown,	
 1	

ate,	
 1	

mouse,	
 1	

cow,	
 1	

Input	
 Map	
 Shuf<le	
 &	
 Sort	
 Reduce	
 Output	

Lec 22.32 4/13/10 CS162 ©UCB Spring 2010

MapReduce Execution Details

•  Mappers preferentially scheduled on same node or
same rack as their input block
–  Push computation to data, minimize network use

•  Mappers save outputs to local disk before serving to
reducers
–  Allows running more reducers than # of nodes
–  Allows recovery if a reducer crashes

Page 9

Lec 22.33 4/13/10 CS162 ©UCB Spring 2010

Conclusion

•  Network layer
–  IP packet forwarding: based on longest-prefix match

•  Transport layer
–  Multiplexing and demultiplexing via port numbers
–  UDP gives simple datagram service
–  TCP gives reliable byte-stream service

•  MapReduce (Hadoop)
–  Data-parallel programming model for clusters of
commodity machines

