
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 23

Distributed Systems

April 15, 2010
Benjamin Hindman

http://inst.eecs.berkeley.edu/~cs162

Lec 23.2 04/15/10 Hindman CS162 ©UCB Spring 2010

Distributed Systems are Everywhere!

•  We need (want?) to share physical devices (e.g.,
printers) and information (e.g., files)

•  Many applications are distributed in nature (e.g.,
ATM machines, airline reservations)

•  Many large problems can be solved by
decomposing into lots of smaller problems that
can be run in parallel (e.g., MapReduce,
SETI@home)

Lec 23.3 04/15/10 Hindman CS162 ©UCB Spring 2010

What makes building distributed systems interesting?

•  Programming models
•  Transparency
•  Fault-tolerance
•  Performance
•  Scalability
•  Consistency
•  Security

Lec 23.4 04/15/10 Hindman CS162 ©UCB Spring 2010

Distributed Applications
•  How do you actually program a distributed application?

–  Use networking building blocks to provide a basic send/
receive abstraction (message passing)

» Semantics: sender picks a specific receiver and receiver
gets all or none of the message

» Queue incoming messages on receive side

Network

Send

Receive

Page 2

Lec 23.5 04/15/10 Hindman CS162 ©UCB Spring 2010

Using Messages: Send/Receive behavior
•  When should send return?

–  Asynchronous: return immediately
–  Synchronous: return after …

» Receiver gets message? (i.e., ack received)
» When message is safely buffered on destination?
» Right away, if message is buffered on source node?

•  Main question here:
– When can the sender be sure that receiver actually
received the message?

Lec 23.6 04/15/10 Hindman CS162 ©UCB Spring 2010

•  General’s paradox:
–  Constraints of problem:

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

–  Problem: need to coordinate attack
»  If they attack at different times, they all die
»  If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

•  Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
–  Remarkably, “no”, even if all messages get through

Yeah, but what if you
Don’t get this ack?

General’s Paradox

11 am ok?

So, 11 it is?
Yes, 11 works

Lec 23.7 04/15/10 Hindman CS162 ©UCB Spring 2010

Distributed Decision Making

•  Why is distributed decision making desirable?
–  Fault Tolerance! A group of machines can come to
a decision even if one or more of them fail during
the process

Lec 23.8 04/15/10 Hindman CS162 ©UCB Spring 2010

Distributed Transactions
•  Since we can’t solve the General’s Paradox, let’s solve a

related problem, distributed transaction: N machines
agree to do something, or not do it, atomically

•  Why should we care? Banks do this every day (every
minute, every second, …)

•  Two-Phase Commit Protocol
–  Phase 1, coordinator sends out a request to commit

»  each participant responds with yes or no
–  Phase 2

»  If everyone says yes, coordinator sends out a commit
»  If someone says no, coordinator sends out an abort

Page 3

Lec 23.9 04/15/10 Hindman CS162 ©UCB Spring 2010

Two-Phase Commit Details

•  Each participant uses a local, persistent,
corrupt-free log to keep track of whether a
commit has happened

»  If a machine crashes, when it wakes up it first
checks its log to recover state of world at time of
crash

–  Log can be used to complete this process such that
all machines either commit or don’t commit

–  Timeouts can be used to retry if coordinator
doesn’t hear from all participants

Lec 23.10 04/15/10 Hindman CS162 ©UCB Spring 2010

Two-Phase Commit Example
•  Simple Example: A≡WellsFargo, B≡Chase

–  Phase 1:
» A writes “Begin transaction” to log

A→B: OK to transfer funds to me?
» Not enough funds:

B→A: transaction aborted; A writes “Abort” to log
» Enough funds:

B: Write new account balance & promise to commit to log
B→A: OK, I can commit

–  Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to log

•  What if B crashes at beginning?
– Wakes up, does nothing; A will timeout, abort and retry

•  What if A crashes at beginning of phase 2?
– Wakes up, sees that there is a transaction in progress;
sends “Abort” to B

•  What if B crashes at beginning of phase 2?
–  B comes back up, looks at log; when A sends it “Commit”
message, it will say, “oh, ok, commit”

Lec 23.11 04/15/10 Hindman CS162 ©UCB Spring 2010

Two-Phase Commit Gotchas
•  Undesirable feature of Two-Phase Commit: blocking

– One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log,

sends a “yes” vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has

voted “yes” on the update. It sends a message to site A
asking what happened. At this point, B cannot decide to
abort, because update may have committed

» B is blocked until A comes back
–  A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update

•  Alternatives such as “Three Phase Commit” don’t have
this blocking problem

•  What happens if one or more of the participants is
malicious?

Lec 23.12 04/15/10 Hindman CS162 ©UCB Spring 2010

Remote Procedure Call
•  Raw messaging is a bit too low-level for programming

•  Another option: Remote Procedure Call (RPC)
–  Looks like a local procedure call on client:
 file.read(1024);
–  Translated automatically into a procedure call on remote
machine (server)

•  Implementation:
–  Uses request/response message passing “under the
covers”

Page 4

Lec 23.13 04/15/10 Hindman CS162 ©UCB Spring 2010

RPC Details
•  Client and server use “stubs” to glue pieces together

–  Client stub is responsible for “marshalling” arguments
and “unmarshalling” the return values

–  Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values

•  Marshalling involves (depending on system) converting
values to a canonical form, serializing objects, copying
arguments passed by reference, etc.
– Needs to account for cross-language and cross-platform
issues

•  Technique: compiler generated stubs
–  Input: interface definition language (IDL)

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language

Lec 23.14 04/15/10 Hindman CS162 ©UCB Spring 2010

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etwork N

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B

Lec 23.15 04/15/10 Hindman CS162 ©UCB Spring 2010

RPC Binding
•  How does client know which machine to send RPC?

– Need to translate name of remote service into network
endpoint (e.g., host:port)

–  Binding: the process of converting a user-visible name
into a network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

•  Dynamic Binding
– Most RPC systems use dynamic binding via name service
– Why dynamic binding?

» Access control: check who is permitted to access service
»  Fail-over: If server fails, use a different one

Lec 23.16 04/15/10 Hindman CS162 ©UCB Spring 2010

RPC Transparency
•  RPC’s can be used to communicate between address

spaces on different machines OR the same machine
–  Services can be run wherever it’s most appropriate
–  Access to local and remote services looks the same

Page 5

Lec 23.17 04/15/10 Hindman CS162 ©UCB Spring 2010

Problems with RPC
•  Handling failures

–  Different failure modes in distributed system than on a
single machine

– Without RPC a failure within a procedure call usually
meant whole application would crash/die

– With RPC a failure within a procedure call means remote
machine crashed, but local one could continue working

–  Answer? Distributed transactions can help

•  Performance
–  Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware they are using RPC (so
much for transparency!)

» Caching can help, but may make failure handling even more
complex

Lec 23.18 04/15/10 Hindman CS162 ©UCB Spring 2010

Administrivia

•  Should be working on Project 4
–  Last one!

•  Do Project 3 Group Evaluations ASAP

Lec 23.19 04/15/10 Hindman CS162 ©UCB Spring 2010

Microkernel operating systems
•  Example: split kernel into application-level servers.

–  File system looks remote, even though on same machine

•  Why split the OS into separate domains?
–  Fault isolation: bugs are more isolated (build a firewall)
–  Enforces modularity: allows incremental upgrades of pieces
of software (client or server)

–  Location transparent: service can be local or remote
»  For example in the X windowing system: Each X client can

be on a separate machine from X server; Neither has to run
on the machine with the frame buffer.

App App

file system Windowing
Networking VM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 23.20 04/15/10 Hindman CS162 ©UCB Spring 2010

Distributed File Systems

•  Distributed File System:
–  Transparent access to files stored on a remote disk

•  What’s the basic abstraction?
–  Keep reads and writes look the same, even though they
operate on remote files (transparency)

•  Naming
–  How should the files be named?
–  Do those names imply a location?

Read File

Data
Client Server

Page 6

Lec 23.21 04/15/10 Hindman CS162 ©UCB Spring 2010

Virtual File System (VFS)

•  VFS: Virtual abstraction similar to local file system
–  Instead of “inodes” has “vnodes”

•  VFS allows the same system call interface to be used
for different types of file systems (local AND remote)

Lec 23.22 04/15/10 Hindman CS162 ©UCB Spring 2010

Simple Distributed File System

•  EVERY read and write gets forwarded to server

•  Advantage: Server provides completely consistent view
of file system to multiple clients

•  Problems? Performance!
–  Going over network is slower than going to local memory
–  Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client

Write
 (RP

C)

ACK

cache

Lec 23.23 04/15/10 Hindman CS162 ©UCB Spring 2010

Server cache
F1:V1 F1:V2

Client caching to reduce network load

Read (RPC)
Return (Data)

Write
 (RP

C)

ACK

Client

cache

Client

cache

•  Advantage: if open/read/write/close can be done
locally, don’t need to do any network traffic…fast!

•  Problems:
–  Failure:

» Client caches have data not committed at server
–  Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Lec 23.24 04/15/10 Hindman CS162 ©UCB Spring 2010

Network File System (NFS)
•  Three Layers for NFS system

–  Use open, read, write, close calls + file descriptors
–  VFS layer: distinguishes local from remote files

» Calls the NFS protocol procedures for remote requests
– NFS service layer: bottom layer of the architecture

»  Implements the NFS protocol

•  NFS Protocol: RPC for file operations on server

•  Write-through caching: Modified data committed to
server’s disk before results are returned to the client
–  lose some of the advantages of caching
–  time to perform write() can be long
– Need some mechanism for readers to eventually notice
changes/stay consistent!

Page 7

Lec 23.25 04/15/10 Hindman CS162 ©UCB Spring 2010

NFS Continued
•  NFS servers are stateless; each request provides all

arguments required for execution
– No need to perform network open() or close() on file –
each operation stands on its own

–  If server crashes, client can retry operation when server
comes back up!

•  Idempotent: Performing requests multiple times has
same effect as performing it exactly once
–  Can just re-read or re-write file block – no side effects
– What about “remove”? NFS does operation twice and
second time returns an advisory error

•  Failure Model:
–  Hang until server comes back up (next week?)
–  Return an error (oops, so much for transparency … most
applications don’t know they are talking over network!)

Lec 23.26 04/15/10 Hindman CS162 ©UCB Spring 2010

•  NFS protocol: weak consistency
–  Client polls server periodically to check for changes

– What if multiple clients write to same file?
»  In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Write

 (RP
C)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache Consistency

F1 still ok?
No: (F1:V2)

Lec 23.27 04/15/10 Hindman CS162 ©UCB Spring 2010

NFS Pros and Cons

•  NFS Pros:
–  Simple, Highly portable

•  NFS Cons:
–  Sometimes inconsistent!
–  Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

Lec 23.28 04/15/10 Hindman CS162 ©UCB Spring 2010

Andrew File System

•  Andrew File System (AFS, late 80’s) → DCE DFS
(commercial product)

•  Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

•  Write through on close
–  Changes not propagated to server until close()
–  Thus, updates visible to other clients only after the file
is closed

» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible

immediately to other programs who have file open
•  In AFS, everyone who has file open sees old version

–  Don’t get newer versions until reopen file

Page 8

Lec 23.29 04/15/10 Hindman CS162 ©UCB Spring 2010

Andrew File System (con’t)
•  Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch

new version from server on next open (using callbacks)

•  What if server crashes? Lose all callback state!
–  Reconstruct callback information from client: go ask
everyone “who has which files cached?”

•  For both AFS and NFS: central server is bottleneck
–  Relative to NFS, AFS has less server load:

» Disk as cache ⇒ more files can be cached locally
» Callbacks ⇒ server not involved if file is read-only

–  Regardless, all writes→server, cache misses→server
–  Server is single point of failure!

Lec 23.30 04/15/10 Hindman CS162 ©UCB Spring 2010

World Wide Web

•  Key idea: graphical front-end to RPC protocol

•  What happens when a web server fails?
–  System breaks!
–  Solution: Transport or network-layer redirection

»  Invisible to applications
» Can also help with scalability (load balancers)
» Must handle “sessions” (e.g., banking/e-commerce)

•  Initial version: no caching
–  Didn’t scale well – easy to overload servers

Lec 23.31 04/15/10 Hindman CS162 ©UCB Spring 2010

WWW Caching

•  Use client-side caching to reduce number of
interactions between clients and servers and/or
reduce the size of the interactions:
–  Time-to-Live (TTL) fields – HTTP “Expires” header
from server

–  Client polling – HTTP “If-Modified-Since” request
headers from clients

–  Server refresh – HTML “META Refresh tag”
causes periodic client poll

•  What is the polling frequency for clients and
servers?
–  Could be adaptive based upon a page’s age and its
rate of change

•  Server load is still significant!

Lec 23.32 04/15/10 Hindman CS162 ©UCB Spring 2010

WWW Proxy Caches

•  Place caches in the network to reduce server load
–  But, increases latency in lightly loaded case
–  Caches near servers called “reverse proxy caches”

» Offloads busy server machines
–  Caches at the “edges” of the network called “content
distribution networks”

» Offloads servers and reduce client latency
•  Challenges:

–  Caching static traffic easy, but only ~40% of traffic
–  Dynamic and multimedia is harder

» Multimedia is a big win: Megabytes versus Kilobytes
–  Same cache consistency problems as before

•  Caching is changing the Internet architecture
–  Places functionality at higher levels of comm. protocols

Page 9

Lec 23.33 04/15/10 Hindman CS162 ©UCB Spring 2010

Conclusion
•  Two-phase commit: distributed decision making

–  First, make sure everyone guarantees that they will commit if asked
(prepare)

–  Next, ask everyone to commit
•  Remote Procedure Call (RPC): Call procedure on remote machine

–  Provides same interface as procedure
–  Automatic packing and unpacking of arguments without user

programming (in stub)
•  VFS: Virtual File System layer

–  Provides mechanism which gives same system call interface for
different types of file systems

•  Distributed File System:
–  Transparent access to files stored on a remote disk

»  NFS: Network File System
»  AFS: Andrew File System

–  Caching for performance
•  Cache Consistency: Keeping contents of client caches consistent with one

another
–  If multiple clients, some reading and some writing, how do stale cached

copies get updated?
–  NFS: check periodically for changes
–  AFS: clients register callbacks so can be notified by server of changes

Lec 23.34 04/15/10 Hindman CS162 ©UCB Spring 2010

Messaging for Producer-Consumer Style
•  Using send/receive for producer-consumer style:
 Producer:

 int msg1[1000];
 while(1) {
 prepare message;
 send(msg1,mbox);
 }

 Consumer:
 int buffer[1000];
 while(1) {
 receive(buffer,mbox);
 process message;
 }

•  No need for producer/consumer to keep track of space
in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of
buffer on far end

–  Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 23.35 04/15/10 Hindman CS162 ©UCB Spring 2010

Messaging for Request/Response communication
•  What about two-way communication?

–  Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

–  Also called: client-server
» Client ≡ requester, Server ≡ responder
» Server provides “service” (file storage) to the client

•  Example: File service
 Client: (requesting the file)

 char response[1000];

 send(“read rutabaga”, server_mbox);
 receive(response, client_mbox);

 Server: (responding with the file)
 char command[1000], answer[1000];

 receive(command, server_mbox);
 decode command;
 read file into answer;
 send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response Lec 23.36 04/15/10 Hindman CS162 ©UCB Spring 2010

Byzantine General’s Problem

•  Byazantine General’s Problem (n players):
– One General
–  n-1 Lieutenants
–  Some number of these (f) can be insane or malicious

•  The commanding general must send an order to his n-1
lieutenants such that:
–  IC1: All loyal lieutenants obey the same order
–  IC2: If the commanding general is loyal, then all loyal
lieutenants obey the order he sends

General

Attack!

Attac
k!

Attack!
Retrea

t!

Attack!

Retreat!
Attack!

Attack! Attack!

Lieutenant

Lieutenant

Lieutenant Malicious!

Page 10

Lec 23.37 04/15/10 Hindman CS162 ©UCB Spring 2010

Byzantine General’s Problem (con’t)
•  Impossibility Results:

–  Cannot solve Byzantine General’s Problem with n=3
because one malicious player can mess up things

– With f faults, need n > 3f to solve problem
•  Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
•  Use of BFT (Byzantine Fault Tolerance) algorithm

–  Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

General

Lieutenant Lieutenant
Attack! Attack!

Retreat!

General

Lieutenant Lieutenant
Attack! Retreat!

Retreat!

Request Distributed
Decision

Lec 23.38 04/15/10 Hindman CS162 ©UCB Spring 2010

Dealing with Failures

•  What if server crashes? Can client wait until server
comes back up and continue as before?
–  Any data in server memory but not on disk can be lost
–  Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does
UNIX “rm foo”, but before acknowledgment?

» Message system will retry: send it again
» How does it know not to delete it again? (could solve with

two-phase commit protocol, but NFS takes a more ad hoc
approach)

•  Stateless protocol: A protocol in which all information
required to process a request is passed with request
–  Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)

–  Thus, if server crashes and restarted, requests can
continue where left off (in many cases)

•  What if client crashes?
– Might lose modified data in client cache

Crash!

Lec 23.39 04/15/10 Hindman CS162 ©UCB Spring 2010

Schematic View of NFS Architecture

Lec 23.40 04/15/10 Hindman CS162 ©UCB Spring 2010

•  What sort of cache coherence might we expect?
–  i.e. what if one CPU changes file, and before it’s done,
another CPU reads file?

•  Example: Start with file contents = “A”

•  What would we actually want?
–  Assume we want distributed system to behave exactly the
same as if all processes are running on single system

»  If read finishes before write starts, get old copy
»  If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

–  For NFS:
»  If read starts more than 30 seconds after write, get new

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or C Client 1:
Client 2:
Client 3: Read: parts of B or C

Time

