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Distributed Systems are Everywhere! 

•  We need (want?) to share physical devices (e.g., 
printers) and information (e.g., files) 

•  Many applications are distributed in nature (e.g., 
ATM machines, airline reservations) 

•  Many large problems can be solved by 
decomposing into lots of smaller problems that 
can be run in parallel (e.g., MapReduce, 
SETI@home) 
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What makes building distributed systems interesting? 

•  Programming models 
•  Transparency 
•  Fault-tolerance 
•  Performance 
•  Scalability 
•  Consistency 
•  Security 
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Distributed Applications 
•  How do you actually program a distributed application? 

–  Use networking building blocks to provide a basic send/
receive abstraction (message passing) 

» Semantics: sender picks a specific receiver and receiver 
gets all or none of the message 

» Queue incoming messages on receive side 

Network 

Send 

Receive 
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Using Messages: Send/Receive behavior 
•  When should send return? 

–  Asynchronous: return immediately 
–  Synchronous: return after … 

» Receiver gets message? (i.e., ack received) 
» When message is safely buffered on destination? 
» Right away, if message is buffered on source node? 

•  Main question here: 
– When can the sender be sure that receiver actually 
received the message? 
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•  General’s paradox:  
–  Constraints of problem:  

» Two generals, on separate mountains 
» Can only communicate via messengers 
» Messengers can be captured 

–  Problem: need to coordinate attack 
»  If they attack at different times, they all die 
»  If they attack at same time, they win 

– Named after Custer, who died at Little Big Horn because 
he arrived a couple of days too early 

•  Can messages over an unreliable network be used to 
guarantee two entities do something simultaneously? 
–  Remarkably, “no”, even if all messages get through 

Yeah, but what if you 
Don’t get this ack? 

General’s Paradox 

11 am ok? 

So, 11 it is? 
Yes, 11 works 
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Distributed Decision Making 

•  Why is distributed decision making desirable? 
–  Fault Tolerance! A group of machines can come to 
a decision even if one or more of them fail during 
the process 
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Distributed Transactions 
•  Since we can’t solve the General’s Paradox, let’s solve a 

related problem, distributed transaction: N machines 
agree to do something, or not do it, atomically 

•  Why should we care? Banks do this every day (every 
minute, every second, …) 

•  Two-Phase Commit Protocol 
–  Phase 1, coordinator sends out a request to commit 

»  each participant responds with yes or no 
–  Phase 2 

»  If everyone says yes, coordinator sends out a commit 
»  If someone says no, coordinator sends out an abort 
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Two-Phase Commit Details 

•  Each participant uses a local, persistent, 
corrupt-free log to keep track of whether a 
commit has happened 

»  If a machine crashes, when it wakes up it first 
checks its log to recover state of world at time of 
crash 

–  Log can be used to complete this process such that 
all machines either commit or don’t commit 

–  Timeouts can be used to retry if coordinator 
doesn’t hear from all participants 

Lec 23.10 04/15/10 Hindman CS162 ©UCB Spring 2010 

Two-Phase Commit Example 
•  Simple Example: A≡WellsFargo, B≡Chase 

–  Phase 1: 
» A writes “Begin transaction” to log 

A→B: OK to transfer funds to me? 
» Not enough funds: 

B→A: transaction aborted; A writes “Abort” to log 
» Enough funds: 

B: Write new account balance & promise to commit to log 
B→A: OK, I can commit 

–  Phase 2: A can decide for both whether they will commit 
» A: write new account balance to log 
» Write “Commit” to log 
» Send message to B that commit occurred; wait for ack 
» Write “Got Commit” to log 

•  What if B crashes at beginning?  
– Wakes up, does nothing; A will timeout, abort and retry 

•  What if A crashes at beginning of phase 2? 
– Wakes up, sees that there is a transaction in progress; 
sends “Abort” to B 

•  What if B crashes at beginning of phase 2? 
–  B comes back up, looks at log; when A sends it “Commit” 
message, it will say, “oh, ok, commit” 
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Two-Phase Commit Gotchas 
•  Undesirable feature of Two-Phase Commit: blocking 

– One machine can be stalled until another site recovers: 
» Site B writes “prepared to commit” record to its log, 

sends a “yes” vote to the coordinator (site A) and crashes 
» Site A crashes 
» Site B wakes up, check its log, and realizes that it has 

voted “yes” on the update. It sends a message to site A 
asking what happened. At this point, B cannot decide to 
abort, because update may have committed 

» B is blocked until A comes back 
–  A blocked site holds resources (locks on updated items, 
pages pinned in memory, etc) until learns fate of update 

•  Alternatives such as “Three Phase Commit” don’t have 
this blocking problem 

•  What happens if one or more of the participants is 
malicious? 
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Remote Procedure Call 
•  Raw messaging is a bit too low-level for programming 

•  Another option: Remote Procedure Call (RPC) 
–  Looks like a local procedure call on client: 
  file.read(1024); 
–  Translated automatically into a procedure call on remote 
machine (server) 

•  Implementation: 
–  Uses request/response message passing “under the 
covers” 
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RPC Details 
•  Client and server use “stubs” to glue pieces together 

–  Client stub is responsible for “marshalling” arguments 
and “unmarshalling” the return values 

–  Server-side stub is responsible for “unmarshalling” 
arguments and “marshalling” the return values 

•  Marshalling involves (depending on system) converting 
values to a canonical form, serializing objects, copying 
arguments passed by reference, etc. 
– Needs to account for cross-language and cross-platform 
issues  

•  Technique: compiler generated stubs 
–  Input: interface definition language (IDL) 

» Contains, among other things, types of arguments/return 
– Output: stub code in the appropriate source language 
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RPC Information Flow 
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RPC Binding 
•  How does client know which machine to send RPC? 

– Need to translate name of remote service into network 
endpoint (e.g., host:port) 

–  Binding: the process of converting a user-visible name 
into a network endpoint 

» This is another word for “naming” at network level 
» Static: fixed at compile time 
» Dynamic: performed at runtime 

•  Dynamic Binding 
– Most RPC systems use dynamic binding via name service 
– Why dynamic binding? 

» Access control: check who is permitted to access service 
»  Fail-over: If server fails, use a different one 
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RPC Transparency  
•  RPC’s can be used to communicate between address 

spaces on different machines OR the same machine 
–  Services can be run wherever it’s most appropriate 
–  Access to local and remote services looks the same 
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Problems with RPC 
•  Handling failures 

–  Different failure modes in distributed system than on a 
single machine 

– Without RPC a failure within a procedure call usually 
meant whole application would crash/die 

– With RPC a failure within a procedure call means remote 
machine crashed, but local one could continue working 

–  Answer? Distributed transactions can help 

•  Performance 
–  Cost of Procedure call « same-machine RPC « network RPC 
– Means programmers must be aware they are using RPC (so 
much for transparency!)  

» Caching can help, but may make failure handling even more 
complex 
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Administrivia 

•  Should be working on Project 4 
–  Last one! 

•  Do Project 3 Group Evaluations ASAP 
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Microkernel operating systems 
•  Example: split kernel into application-level servers. 

–  File system looks remote, even though on same machine 

•  Why split the OS into separate domains? 
–  Fault isolation: bugs are more isolated (build a firewall) 
–  Enforces modularity: allows incremental upgrades of pieces 
of software (client or server) 

–  Location transparent: service can be local or remote 
»  For example in the X windowing system: Each X client can 

be on a separate machine from X server; Neither has to run 
on the machine with the frame buffer. 

App App 

file system Windowing 
Networking VM 

Threads 

App 

Monolithic Structure 

App File 
sys windows 

RPC address 
spaces 

threads 

Microkernel Structure 
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Distributed File Systems 

•  Distributed File System:  
–  Transparent access to files stored on a remote disk 

•  What’s the basic abstraction? 
–  Keep reads and writes look the same, even though they 
operate on remote files (transparency) 

•  Naming 
–  How should the files be named? 
–  Do those names imply a location? 

Read File 

Data 
Client Server 
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Virtual File System (VFS) 

•  VFS: Virtual abstraction similar to local file system 
–  Instead of “inodes” has “vnodes” 

•  VFS allows the same system call interface to be used 
for different types of file systems (local AND remote) 
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Simple Distributed File System 

•  EVERY read and write gets forwarded to server 

•  Advantage: Server provides completely consistent view 
of file system to multiple clients 

•  Problems?  Performance! 
–  Going over network is slower than going to local memory 
–  Server can be a bottleneck 

Client 

Server 

Read (RPC) 
Return (Data) 

Client 

Write
 (RP

C) 

ACK 

cache 

Lec 23.23 04/15/10 Hindman CS162 ©UCB Spring 2010 

Server cache 
F1:V1 F1:V2 

Client caching to reduce network load 

Read (RPC) 
Return (Data) 

Write
 (RP

C) 

ACK 

Client 

cache 

Client 

cache 

•  Advantage: if open/read/write/close can be done 
locally, don’t need to do any network traffic…fast! 

•  Problems:  
–  Failure: 

» Client caches have data not committed at server 
–  Cache consistency! 

» Client caches not consistent with server/each other 

F1:V1 

F1:V2 

read(f1) 

write(f1) 

→V1 
read(f1)→V1 
read(f1)→V1 

→OK 

read(f1)→V1 

read(f1)→V2 
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Network File System (NFS) 
•  Three Layers for NFS system 

–  Use open, read, write, close calls + file descriptors 
–  VFS layer: distinguishes local from remote files 

» Calls the NFS protocol procedures for remote requests 
– NFS service layer: bottom layer of the architecture 

»  Implements the NFS protocol 

•  NFS Protocol: RPC for file operations on server 

•  Write-through caching: Modified data committed to 
server’s disk before results are returned to the client  
–  lose some of the advantages of caching 
–  time to perform write() can be long 
– Need some mechanism for readers to eventually notice 
changes/stay consistent! 
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NFS Continued 
•  NFS servers are stateless; each request provides all 

arguments required for execution 
– No need to perform network open() or close() on file – 
each operation stands on its own 

–  If server crashes, client can retry operation when server 
comes back up! 

•  Idempotent: Performing requests multiple times has 
same effect as performing it exactly once 
–  Can just re-read or re-write file block – no side effects 
– What about “remove”?  NFS does operation twice and 
second time returns an advisory error 

•  Failure Model:  
–  Hang until server comes back up (next week?) 
–  Return an error (oops, so much for transparency … most 
applications don’t know they are talking over network!) 
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•  NFS protocol: weak consistency 
–  Client polls server periodically to check for changes 

– What if multiple clients write to same file?  
»  In NFS, can get either version (or parts of both) 
» Completely arbitrary! 

cache 
F1:V2 

Server 
Write

 (RP
C) 

ACK 

Client 

cache 

Client 

cache 

F1:V1 

F1:V2 

F1:V2 

NFS Cache Consistency 

F1 still ok? 
No: (F1:V2) 
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NFS Pros and Cons 

•  NFS Pros: 
–  Simple, Highly portable 

•  NFS Cons: 
–  Sometimes inconsistent! 
–  Doesn’t scale to large # clients 

» Must keep checking to see if caches out of date 
» Server becomes bottleneck due to polling traffic 
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Andrew File System 

•  Andrew File System (AFS, late 80’s) → DCE DFS 
(commercial product) 

•  Callbacks: Server records who has copy of file 
– On changes, server immediately tells all with old copy 
– No polling bandwidth (continuous checking) needed 

•  Write through on close 
–  Changes not propagated to server until close() 
–  Thus, updates visible to other clients only after the file 
is closed 

» As a result, do not get partial writes: all or nothing! 
» Although, for processes on local machine, updates visible 

immediately to other programs who have file open 
•  In AFS, everyone who has file open sees old version 

–  Don’t get newer versions until reopen file 
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Andrew File System (con’t) 
•  Data cached on local disk of client as well as memory 

– On open with a cache miss (file not on local disk): 
» Get file from server, set up callback with server  

– On write followed by close: 
» Send copy to server; tells all clients with copies to fetch 

new version from server on next open (using callbacks) 

•  What if server crashes? Lose all callback state! 
–  Reconstruct callback information from client: go ask 
everyone “who has which files cached?” 

•  For both AFS and NFS: central server is bottleneck 
–  Relative to NFS, AFS has less server load: 

» Disk as cache ⇒ more files can be cached locally 
» Callbacks ⇒ server not involved if file is read-only 

–  Regardless, all writes→server, cache misses→server 
–  Server is single point of failure! 
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World Wide Web 

•  Key idea: graphical front-end to RPC protocol 

•  What happens when a web server fails? 
–  System breaks! 
–  Solution: Transport or network-layer redirection  

»  Invisible to applications 
» Can also help with scalability (load balancers) 
» Must handle “sessions” (e.g., banking/e-commerce) 

•  Initial version: no caching 
–  Didn’t scale well – easy to overload servers 
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WWW Caching 

•  Use client-side caching to reduce number of 
interactions between clients and servers and/or 
reduce the size of the interactions: 
–  Time-to-Live (TTL) fields – HTTP “Expires” header 
from server 

–  Client polling – HTTP “If-Modified-Since” request 
headers from clients 

–  Server refresh – HTML “META Refresh tag” 
causes periodic client poll 

•  What is the polling frequency for clients and 
servers?  
–  Could be adaptive based upon a page’s age and its 
rate of change 

•  Server load is still significant! 

Lec 23.32 04/15/10 Hindman CS162 ©UCB Spring 2010 

WWW Proxy Caches 

•  Place caches in the network to reduce server load 
–  But, increases latency in lightly loaded case 
–  Caches near servers called “reverse proxy caches”  

» Offloads busy server machines 
–  Caches at the “edges” of the network called “content 
distribution networks” 

» Offloads servers and reduce client latency 
•  Challenges: 

–  Caching static traffic easy, but only ~40% of traffic 
–  Dynamic and multimedia is harder 

» Multimedia is a big win: Megabytes versus Kilobytes 
–  Same cache consistency problems as before 

•  Caching is changing the Internet architecture 
–  Places functionality at higher levels of comm. protocols 
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Conclusion 
•  Two-phase commit: distributed decision making 

–  First, make sure everyone guarantees that they will commit if asked 
(prepare) 

–  Next, ask everyone to commit 
•  Remote Procedure Call (RPC): Call procedure on remote machine 

–  Provides same interface as procedure 
–  Automatic packing and unpacking of arguments without user 

programming (in stub) 
•  VFS: Virtual File System layer 

–  Provides mechanism which gives same system call interface for 
different types of file systems 

•  Distributed File System:  
–  Transparent access to files stored on a remote disk 

»  NFS: Network File System 
»  AFS: Andrew File System  

–  Caching for performance 
•  Cache Consistency: Keeping contents of client caches consistent with one 

another 
–  If multiple clients, some reading and some writing, how do stale cached 

copies get updated? 
–  NFS: check periodically for changes 
–  AFS: clients register callbacks so can be notified by server of changes 
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Messaging for Producer-Consumer Style 
•  Using send/receive for producer-consumer style: 
  Producer: 

  int msg1[1000]; 
  while(1) { 
   prepare message;  
   send(msg1,mbox); 
  } 

  Consumer: 
  int buffer[1000]; 
  while(1) { 
   receive(buffer,mbox); 
   process message; 
  } 

•  No need for producer/consumer to keep track of space 
in mailbox: handled by send/receive 
– One of the roles of the window in TCP: window is size of 
buffer on far end 

–  Restricts sender to forward only what will fit in buffer 

Send 
Message 

Receive 
Message 
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Messaging for Request/Response communication 
•  What about two-way communication? 

–  Request/Response 
» Read a file stored on a remote machine 
» Request a web page from a remote web server 

–  Also called: client-server 
» Client ≡ requester, Server ≡ responder 
» Server provides “service” (file storage) to the client 

•  Example: File service 
  Client: (requesting the file) 

  char response[1000]; 

  send(“read rutabaga”, server_mbox); 
  receive(response, client_mbox); 

  Server: (responding with the file) 
  char command[1000], answer[1000]; 

  receive(command, server_mbox); 
  decode command; 
  read file into answer; 
  send(answer, client_mbox); 

Request 
File 

Get 
Response 

Receive 
Request 

Send 
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Byzantine General’s Problem 

•  Byazantine General’s Problem (n players): 
– One General 
–  n-1 Lieutenants 
–  Some number of these (f) can be insane or malicious 

•  The commanding general must send an order to his n-1 
lieutenants such that: 
–  IC1: All loyal lieutenants obey the same order 
–  IC2: If the commanding general is loyal, then all loyal 
lieutenants obey the order he sends 

General 

Attack! 

Attac
k! 

Attack! 
Retrea

t! 

Attack! 

Retreat! 
Attack! 

Attack! Attack! 

Lieutenant 

Lieutenant 

Lieutenant Malicious! 
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Byzantine General’s Problem (con’t) 
•  Impossibility Results: 

–  Cannot solve Byzantine General’s Problem with n=3 
because one malicious player can mess up things 

– With f faults, need n > 3f to solve problem 
•  Various algorithms exist to solve problem 

– Original algorithm has #messages exponential in n 
– Newer algorithms have message complexity O(n2) 

» One from MIT, for instance (Castro and Liskov, 1999) 
•  Use of BFT (Byzantine Fault Tolerance) algorithm 

–  Allow multiple machines to make a coordinated decision 
even if some subset of them (< n/3 ) are malicious 

General 

Lieutenant Lieutenant 
Attack! Attack! 

Retreat! 

General 

Lieutenant Lieutenant 
Attack! Retreat! 

Retreat! 

Request Distributed 
Decision 
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Dealing with Failures 

•  What if server crashes? Can client wait until server 
comes back up and continue as before? 
–  Any data in server memory but not on disk can be lost 
–  Shared state across RPC: What if server crashes after 
seek? Then, when client does “read”, it will fail 

– Message retries: suppose server crashes after it does 
UNIX “rm foo”, but before acknowledgment? 

» Message system will retry: send it again 
» How does it know not to delete it again? (could solve with 

two-phase commit protocol, but NFS takes a more ad hoc 
approach) 

•  Stateless protocol: A protocol in which all information 
required to process a request is passed with request 
–  Server keeps no state about client, except as hints to 
help improve performance (e.g. a cache) 

–  Thus, if server crashes and restarted, requests can 
continue where left off (in many cases) 

•  What if client crashes? 
– Might lose modified data in client cache 


Crash! 
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Schematic View of NFS Architecture  
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•  What sort of cache coherence might we expect? 
–  i.e. what if one CPU changes file, and before it’s done, 
another CPU reads file? 

•  Example: Start with file contents = “A” 

•  What would we actually want? 
–  Assume we want distributed system to behave exactly the 
same as if all processes are running on single system 

»  If read finishes before write starts, get old copy 
»  If read starts after write finishes, get new copy 
» Otherwise, get either new or old copy 

–  For NFS: 
»  If read starts more than 30 seconds after write, get new 

copy; otherwise, could get partial update 

Sequential Ordering Constraints 

Read: gets A 

Read: gets A or B 

Write B 

Write C 

Read: parts of B or C Client 1: 
Client 2: 
Client 3: Read: parts of B or C 

Time 


