
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 22

Networking III

April 22, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 22.2 4/13/10 CS162 ©UCB Spring 2010

Review

•  Link (datalink) layer: Broadcast network; frames sent by
one host reaches every other host in same network
– Multi-access protocol
–  (didn’t go over) construct frames, error detection and
correction, flow control, …

•  Network layer: stitch together multiple link layer
networks
–  Deliver a packet to specified network destination
–  (didn’t go over) segmentation/reassemble, packet
scheduling, buffer management

•  Transport layer
– Multiplexing/demultiplexing (two lectures ago)
–  Flow & congestion control, in-order delivery, reliability
(today)

Lec 22.3 4/13/10 CS162 ©UCB Spring 2010

Transport Protocol

•  Flow control keeps one fast sender from
overwhelming a slow receiver

•  Congestion control keeps a set of senders from
overloading the network

•  Reliability makes sure the receiver got all
packets sent by sender

•  In-order delivery makes sure the receiver
delivers the packet to application in same order
sender sent them

•  Two protocols:
–  Stop-and-Wait
– Window based

Lec 22.4 4/13/10 CS162 ©UCB Spring 2010

Automatic Repeat reQuest (ARQ)

Time

Packet

ACK Ti
m

eo
ut

  Automatic Repeat Request
  Receiver sends

acknowledgment (ACK) when
it receives packet

  Sender waits for ACK and
times out if does not arrive
within some time period

  Simplest ARQ protocol
  Stop and Wait
  Send a packet, stop and

wait until ACK arrives

Sender Receiver

Page 2

Lec 22.5 4/13/10 CS162 ©UCB Spring 2010

Stop-and-Wait Properties

•  Flow control: yes
–  Receiver can implicitly slow down sender by acking a packet
only if it has room for at lest another packet

–  Assumption: timeout doesn’t trigger before receiving ack
•  Congestion control: yes

–  Sender sends a new packet only after previous one made it
–  If network is congested packet or ack is lost sender
doesn’t send new data

•  Reliability: yes
–  If a packet is lost, sender timeouts and resends the packet

•  In-order delivery: yes
–  Receiver doesn’t get next packet before receiving (and
acking) previous one

•  So what’s the problem with Stop-and-Wait? Efficiency!
Lec 22.6 4/13/10 CS162 ©UCB Spring 2010

How Fast Can Stop-and-Wait Go?

•  Suppose we’re sending from UCB to New York:
–  Bandwidth = 1 Mbps (megabits/sec)
–  RTT = 100 msec
–  Maximum packet size a.k.a. Maximum Transmission Unit

(MTU) = 1500 B = 12,000 b
–  No other load on the path and no packet loss

•  What (approximately) is the fastest we can transmit
using Stop-and-Wait?

–  Answer: 12,000b/0.1s = 120 kbps
•  How about if Bandwidth = 1 Gbps?

Lec 22.7 4/13/10 CS162 ©UCB Spring 2010

Administrivia

•  Keys to access AWS will be sent today

•  Last two lectures on security

•  Final Exam
–  Friday, May 14, 7:00PM-10:00PM
–  All material from the course

» With slightly more focus on second half, but you are still
responsible for all the material

–  Two sheets of notes, both sides

Lec 22.8 4/13/10 CS162 ©UCB Spring 2010

Sliding Window

•  Idea: allow multiple packets in-flight
–  “In-flight” = un-acked packets

•  Window size (W): number of packets the sender can
send without receiving an ack
–  E.g., after receiving ack for all packet before and
including K, send packets K+1, K+2, …, K+W+1

–  Stop-and-wait: particular case of sliding window, W=1
•  Receiver tells sender W

– W cannot be larger than receiver’s buffer!

Page 3

Lec 22.9 4/13/10 CS162 ©UCB Spring 2010

Throughput

•  Up to W packets (or bytes) per RTT
•  Throughput = W/RTT

•  How large should be the window to fully utilize a
link with bandwidth B?
– W = Bandwidth x RTT (i.e., “Bandwidth-Delay” or
“Delay-Bandwidth” product)

Lec 22.10 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example
(This is NOT TCP !)

•  Sender
–  Sending rate = 1 pkt/s
–  Packet size = 1000b

•  Receiver:
–  Delivering rate = 0.5 pkt/s
–  Delivers packets in to application
–  Acknowledges (acks) each delivered pkt
–  Send negative ack. (nack) if packet lost

•  Round-trip time = 4 sec, 2sec each way
•  Receiver Window = 4 packets
•  Note: max. achievable throughput = 0.5pkt/s = 500b/s

Lec 22.11 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

Sender Receiver
1 1 1s

2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

•  Sender, at 1s
–  Send 1st pkt

Lec 22.12 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

Sender Receiver
1

1

1 1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

•  Sender, at 1s
–  Send 1st pkt

•  Receiver, at 3s
–  Get 1st pkt
–  Deliver 1st pkt
to appl.

–  Send ack=1 to
sender

ack=1

Page 4

Lec 22.13 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

•  Sender, at 2s
–  Send 2nd pkt,
which is lost

Sender Receiver
1 1

ack=1

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

2 1 2

Lec 22.14 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

Sender Receiver
1

2 1
3 2 1

3

1
2
3 ack=1

nack=
2

•  Sender, at 3s
–  Send 3nd pkt

•  Receiver, at 5s:
–  Get 3rd pkt;
doesn’t deliver
it since out of
seq.

–  Send nack=2
(request 2nd
pkt)

Lec 22.15 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

Sender Receiver
1

2 1
3 2 1

3

1
2
3 ack=1

nack=
2

•  Sender, at 4s
–  Send 4th pkt
–  Receiver
window full!

•  Receiver, at 6s
–  Get 4th packet

4 3 2 1 4

4 3

Lec 22.16 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

Sender Receiver
1

2 1
3 2 1

3

1
2
3 ack=1

nack=
2

•  Sender, at 5s
–  Get ack=1
–  Remove 1st pkt
from buffer

–  Send 5th pkt;
now 2, 3, 4, 5
are in flight
(window full!)

•  Receiver, at 7s
–  Get 5th pkt

4 3 2 1 4

4 3
5 4 3 2 5

4 3 5

Page 5

Lec 22.17 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

Sender Receiver
1

2 1
3 2 1

3

1
2
3 ack=1

nack=
2

•  Sender, at 7s
–  Get nack=2
–  Resend pkt 2

•  Receiver, at 9s
–  Get 2nd pkt
–  Deliver it to
appl.

–  Send ack=2

4 3 2 1 4

4 3
5 4 3 2 5

4 3 5

ack=2

5 4 3 2 2

4 3 5 2

Lec 22.18 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

Sender Receiver
1

2 1
3 2 1

3

1
2
3 ack=1

nack=
2

•  Sender, at 11s
–  Get ack=2
–  Send pkt 6;
pkts 3, 4, 5,
6 are in-flight

•  Receiver, at
11s
–  Deliver 3d pkt
to appl.
(recall,
delivery rate
is 1pkt every
2s)

–  Send ack=3

4 3 2 1 4

4 3
5 4 3 2 5

4 3 5

ack=2

5 4 3 2 2

4 3 5 2

6 5 4 3 4 3 5 ack=3
 6

Lec 22.19 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

16s
17s
18s
19s
20s

•  If no more
losses,
throughput =
0.5pkt/sec

•  This is max
throughput as
receiver cannot
deliver more
than 0.5pkt/sec

6 5 4 3 4 3 5 ack=3

7 6 5 4

11s
12s
13s
14s
15s

5 4 6

8 7 6 5 6 5 7

ack=4

9 8 7 6 7 6 8

8 7 9

ack=5

ack=6

6

7

8

9

Lec 22.20 4/13/10 CS162 ©UCB Spring 2010

Performance with Sliding Window

•  Given previous
–  UCB ↔ New York 1 Mbps path with 100 msec RTT, and
–  Sender (and Receiver) window = 100 Kb = 12.5 KB

•  How fast can we transmit?
•  Answer: min(100Kb/0.1s, 1Mbps) = 1 Mbps

•  What about with 12.5 KB window & 1 Gbps path?
•  Window required to fully utilize path:

•  W = Bandwidth x RTT = 1 Gbps * 100 msec = 100 Mb =
12.5 MB

•  Note: large window = many packets in flight

Page 6

Lec 22.21 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Properties

•  Flow control: yes
–  Receiver tells the sender how many packets it can
send without hearing an ack (windaw size)

•  Congestion control: not really. Why?
•  Reliability: yes

–  Sender resends lost packet on receiving “nack” or on
timeout

•  In-order delivery: yes
–  Use sequence numbers for packets;
–  Receiver delivers in-sequence packets to app; if a
packet is missing, stop and wait for the packet to be
retransmitted;

Lec 22.22 4/13/10 CS162 ©UCB Spring 2010

Congestion

•  Two packets arrive at the same time
–  The node can only transmit one
–  … and either buffers or drops the other

•  If many packets arrive in a short period of time
–  The node cannot keep up with the arriving traffic
–  … and the buffer may eventually overflow

Lec 22.23 4/13/10 CS162 ©UCB Spring 2010

Congestion Collapse

•  Definition: Increase in network load results in a decrease
of useful work done

•  Due to:
–  Undelivered packets

» Packets consume resources and are dropped later in
network

–  Spurious retransmissions of packets still in flight
» Unnecessary retransmissions lead to more load!
» Pouring gasoline on a fire

•  Mid-1980s: Internet grinds to a halt
–  Until Jacobson/Karels (Berkeley!) devise TCP congestion
control

Lec 22.24 4/13/10 CS162 ©UCB Spring 2010

Two Basic Components (TCP)

•  Detect congestion = detect packet loss
–  ACK denotes next byte (n) expected to be received

» Receiver acks it has received all bytes up to n-1
–  Two signs of packet loss

» No ACK after certain time interval: time-out
» Several duplicate ACKs (receiver misses packet

starting with byte n+1, and has received several
packets after that)

•  Dealing with congestion:
–  Probe network to test level of congestion
–  Speed up when no congestion
–  Slow down when congestion
–  Suboptimal, messy dynamics, simple to implement

Page 7

Lec 22.25 4/13/10 CS162 ©UCB Spring 2010 25

TCP Congestion Control

•  TCP connection has window
–  Controls number of unacknowledged packets

•  Sending rate: ~Window/RTT

•  Vary window size to control sending rate

Lec 22.26 4/13/10 CS162 ©UCB Spring 2010 26

Sizing the Windows

•  cwnd (Congestion Windows)
–  How many bytes can be sent without
overflowing routers

–  Computed by congestion control algorithm

•  AdvertisedWindow
–  How many bytes can be sent without
overflowing the sender (flow control)

–  Determined by the receiver

•  Sender uses min between the two
– MaxWindow = min(cwnd, AdvertisedWindow)

Lec 22.27 4/13/10 CS162 ©UCB Spring 2010 27

Rate Adjustment

•  Basic structure:
–  Upon receipt of ACK (of new data): increase rate
–  Upon detection of loss: decrease rate

•  But what increase/decrease functions should we
use?
–  Increase window by 1 packet every RTT
–  Decrease window by half if packet loss
–  [Far more in the networking class] Addresses and Names

Page 8

Lec 22.29 4/13/10 CS162 ©UCB Spring 2010

IP Addresses (IPv4)

•  A unique 32-bit number
•  Identifies an interface (on a host, on a router, …)
•  Represented in dotted-quad notation. E.g,

12.34.158.5:

00001100 00100010 10011110 00000101

12 34 158 5

Lec 22.30 4/13/10 CS162 ©UCB Spring 2010

Hierarchical Addressing: IP Prefixes

•  Divided into network (left) & host portions (right)
•  12.34.158.0/24 is a 24-bit prefix with 29

addresses
–  Terminology: “Slash 24”

00001100 00100010 10011110 00000101

Network (24 bits) Host (8 bits)

12 34 158 5

Lec 22.31 4/13/10 CS162 ©UCB Spring 2010

IP Address and a 24-bit Subnet Mask

00001100 00100010 10011110 00000101

12 34 158 5

11111111 11111111 11111111 00000000

255 255 255 0

Address

Mask
Lec 22.32 4/13/10 CS162 ©UCB Spring 2010

Hierarchical Addressing Example

•  Number related hosts from a common subnet
–  1.2.3.0/24 on the left LAN (Local Area Network)
–  5.6.7.0/24 on the right LAN

host host host

LAN 1

... host host host

LAN 2

...

router router router

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

1.2.3.0/24
5.6.7.0/24

forwarding table

Page 9

Lec 22.33 4/13/10 CS162 ©UCB Spring 2010

IP addresses vs. Host Name

•  IP addresses
– Numerical address appreciated by routers
–  Fixed length, binary number
–  Hierarchical, related to host location
–  Examples: 64.236.16.20 and 212.58.224.131

•  Host names
– Mnemonic name appreciated by humans
–  Variable length, full alphabet of characters
–  Provide little (if any) information about location
–  Examples: www.cnn.com and bbc.co.uk

Lec 22.34 4/13/10 CS162 ©UCB Spring 2010

Separating Naming and Addressing

•  Names are easier to remember
–  www.cnn.com vs. 64.236.16.20

•  Addresses can change underneath
– Move www.cnn.com to 64.125.91.21
–  E.g., renumbering when changing providers

•  Name could map to multiple IP addresses
–  www.cnn.com to multiple (8) replicas of the Web site
–  Enables

»  Load-balancing
» Reducing latency by picking nearby servers
» Tailoring content based on requester’s location/identity

•  Multiple names for the same address
–  E.g., aliases like www.cnn.com and cnn.com

Lec 22.35 4/13/10 CS162 ©UCB Spring 2010

Scalable (Name ↔ Address) Mappings

•  Originally: per-host file
–  Flat namespace
– /etc/hosts (what is this on your computer
today?)

–  SRI (Menlo Park) kept master copy
–  Downloaded regularly

•  Single server doesn’t scale
–  Traffic implosion (lookups & updates)
–  Single point of failure

Need a distributed, hierarchical collection of servers

Lec 22.36 4/13/10 CS162 ©UCB Spring 2010

Domain Name System (DNS)

•  Properties of DNS
–  Hierarchical name space divided into zones
–  Zones distributed over collection of DNS servers

•  Hierarchy of DNS servers
–  Root (hardwired into other servers)
–  Top-level domain (TLD) servers
–  Authoritative DNS servers

•  Performing the translations
–  Local DNS servers
–  Resolver software

Page 10

Lec 22.37 4/13/10 CS162 ©UCB Spring 2010

Distributed Hierarchical Database

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

Top-Level Domains (TLDs)

Lec 22.38 4/13/10 CS162 ©UCB Spring 2010

Using DNS

•  Local DNS server (“default name server”)
–  Usually near the endhosts that use it
–  Local hosts configured with local server (e.g., /etc/
resolv.conf) or learn server automatically (via
DHCP)

•  Client application
–  Extract server name (e.g., from the URL)
–  Do gethostbyname() to trigger resolver code

•  Server application
–  Extract client IP address from connection
– Optional gethostbyaddr() to translate into name

Lec 22.39 4/13/10 CS162 ©UCB Spring 2010

requesting host
cs.berkeley.edu gaia.cs.umass.edu

root DNS server

local DNS server
dns.berkeley.edu

1

2
3
4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

Example

Host at cs.berkeley.edu
wants IP address for
gaia.cs.umass.edu

Lec 22.40 4/13/10 CS162 ©UCB Spring 2010

Recursive vs. Iterative Queries

•  Recursive query
–  Ask server to get
answer for you

–  E.g., request 1 and
response 8

requesting host
cs.berkeley.edu

root DNS server

local DNS server
cs.berkeley.edu

1

2
3
4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

Page 11

Lec 22.41 4/13/10 CS162 ©UCB Spring 2010

Recursive vs. Iterative Queries

•  Iterative query
–  Ask server who
to ask next

–  E.g., all other
request-response
pairs

requesting host
cs.berkeley.edu

root DNS server

local DNS server
dns.berkeley.edu

1

3 4
5

6

authoritative DNS server
dns.cs.umass.edu

7

2

TLD DNS server

8

Lec 22.42 4/13/10 CS162 ©UCB Spring 2010

Conclusion
•  Transport layer:

– Main service (TCP & UDP): port multiplexing/
demultiplexing

– Other services (TCP):
»  reliability
»  congestion control: avoid overloading the network
»  Flow control: allow overflowing the receiver
»  in-order delivery

•  IP Addressing
–  32b (IP v4), quad notation
–  Capture host location
– Network and host portions

•  DNS: System for mapping from names⇒IP addresses
–  Hierarchical mapping from authoritative domains
–  Recursive vs. iterative lookup

Lec 22.43 4/13/10 CS162 ©UCB Spring 2010

Putting Everything Together

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Internet
Proc. B
(port 7)

Transport
Network

Link
Physical

Proc. A
(port 10)

Proc. B
(port 7)

Transport
Network

Link
Physical

data

data 10 7

16.25.31.10 128.15.11.12 data 10 7 16.25.31.10 128.15.11.12

data

data

data

10 7

10 7

Internet 16.25.31.10 128.15.11.12
Lec 22.44 4/13/10 CS162 ©UCB Spring 2010

Putting Everything Together

1.2.3.7 5.6.4.3

Proc. A
(port 2)

Internet
Proc. B
(port 7)

Transport
(port=2)
Network

(addr=1.2.3.7)
Link

(addr=15)
Physical

Proc. A
data

data 7 2

1.2.3.7 data 5.6.4.3 7 2

1.2.3.7 data 5.6.4.3 15 91 7 2

Network

Link
(addr=91)
Physical

1.2.3.7 data 5.6.4.3 15 91 7 2

1.2.3.7 data 5.6.4.3 7 2

Page 12

Lec 22.45 4/13/10 CS162 ©UCB Spring 2010

host host host

LAN 1

... host host host

LAN 2

...

router router router

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

