
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 22

Networking III

April 22, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 22.2 4/13/10 CS162 ©UCB Spring 2010

Review

•  Link (datalink) layer: Broadcast network; frames sent by
one host reaches every other host in same network
– Multi-access protocol
–  (didn’t go over) construct frames, error detection and
correction, flow control, …

•  Network layer: stitch together multiple link layer
networks
–  Deliver a packet to specified network destination
–  (didn’t go over) segmentation/reassemble, packet
scheduling, buffer management

•  Transport layer
– Multiplexing/demultiplexing (two lectures ago)
–  Flow & congestion control, in-order delivery, reliability
(today)

Lec 22.3 4/13/10 CS162 ©UCB Spring 2010

Transport Protocol

•  Flow control keeps one fast sender from
overwhelming a slow receiver

•  Congestion control keeps a set of senders from
overloading the network

•  Reliability makes sure the receiver got all
packets sent by sender

•  In-order delivery makes sure the receiver
delivers the packet to application in same order
sender sent them

•  Two protocols:
–  Stop-and-Wait
– Window based

Lec 22.4 4/13/10 CS162 ©UCB Spring 2010

Automatic Repeat reQuest (ARQ)

Time

Packet

ACK Ti
m

eo
ut

  Automatic Repeat Request
  Receiver sends

acknowledgment (ACK) when
it receives packet

  Sender waits for ACK and
times out if does not arrive
within some time period

  Simplest ARQ protocol
  Stop and Wait
  Send a packet, stop and

wait until ACK arrives

Sender Receiver

Page 2

Lec 22.5 4/13/10 CS162 ©UCB Spring 2010

Stop-and-Wait Properties

•  Flow control: yes
–  Receiver can implicitly slow down sender by acking a packet
only if it has room for at lest another packet

–  Assumption: timeout doesn’t trigger before receiving ack
•  Congestion control: yes

–  Sender sends a new packet only after previous one made it
–  If network is congested packet or ack is lost  sender
doesn’t send new data

•  Reliability: yes
–  If a packet is lost, sender timeouts and resends the packet

•  In-order delivery: yes
–  Receiver doesn’t get next packet before receiving (and
acking) previous one

•  So what’s the problem with Stop-and-Wait? Efficiency!
Lec 22.6 4/13/10 CS162 ©UCB Spring 2010

How Fast Can Stop-and-Wait Go?

•  Suppose we’re sending from UCB to New York:
–  Bandwidth = 1 Mbps (megabits/sec)
–  RTT = 100 msec
–  Maximum packet size a.k.a. Maximum Transmission Unit

(MTU) = 1500 B = 12,000 b
–  No other load on the path and no packet loss

•  What (approximately) is the fastest we can transmit
using Stop-and-Wait?

–  Answer: 12,000b/0.1s = 120 kbps
•  How about if Bandwidth = 1 Gbps?

Lec 22.7 4/13/10 CS162 ©UCB Spring 2010

Administrivia

•  Keys to access AWS will be sent today

•  Last two lectures on security

•  Final Exam
–  Friday, May 14, 7:00PM-10:00PM
–  All material from the course

» With slightly more focus on second half, but you are still
responsible for all the material

–  Two sheets of notes, both sides

Lec 22.8 4/13/10 CS162 ©UCB Spring 2010

Sliding Window

•  Idea: allow multiple packets in-flight
–  “In-flight” = un-acked packets

•  Window size (W): number of packets the sender can
send without receiving an ack
–  E.g., after receiving ack for all packet before and
including K, send packets K+1, K+2, …, K+W+1

–  Stop-and-wait: particular case of sliding window, W=1
•  Receiver tells sender W

– W cannot be larger than receiver’s buffer!

Page 3

Lec 22.9 4/13/10 CS162 ©UCB Spring 2010

Throughput

•  Up to W packets (or bytes) per RTT
•  Throughput = W/RTT

•  How large should be the window to fully utilize a
link with bandwidth B?
– W = Bandwidth x RTT (i.e., “Bandwidth-Delay” or
“Delay-Bandwidth” product)

Lec 22.10 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example
(This is NOT TCP !)

•  Sender
–  Sending rate = 1 pkt/s
–  Packet size = 1000b

•  Receiver:
–  Delivering rate = 0.5 pkt/s
–  Delivers packets in to application
–  Acknowledges (acks) each delivered pkt
–  Send negative ack. (nack) if packet lost

•  Round-trip time = 4 sec, 2sec each way
•  Receiver Window = 4 packets
•  Note: max. achievable throughput = 0.5pkt/s = 500b/s

Lec 22.11 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

Sender Receiver
1 1 1s

2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

•  Sender, at 1s
–  Send 1st pkt

Lec 22.12 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

Sender Receiver
1

1

1 1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

•  Sender, at 1s
–  Send 1st pkt

•  Receiver, at 3s
–  Get 1st pkt
–  Deliver 1st pkt
to appl.

–  Send ack=1 to
sender

ack=1

Page 4

Lec 22.13 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

•  Sender, at 2s
–  Send 2nd pkt,
which is lost

Sender Receiver
1 1

ack=1

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

2 1 2

Lec 22.14 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

Sender Receiver
1

2 1
3 2 1

3

1
2
3 ack=1

nack=
2

•  Sender, at 3s
–  Send 3nd pkt

•  Receiver, at 5s:
–  Get 3rd pkt;
doesn’t deliver
it since out of
seq.

–  Send nack=2
(request 2nd
pkt)

Lec 22.15 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

Sender Receiver
1

2 1
3 2 1

3

1
2
3 ack=1

nack=
2

•  Sender, at 4s
–  Send 4th pkt
–  Receiver
window full!

•  Receiver, at 6s
–  Get 4th packet

4 3 2 1 4

4 3

Lec 22.16 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

Sender Receiver
1

2 1
3 2 1

3

1
2
3 ack=1

nack=
2

•  Sender, at 5s
–  Get ack=1
–  Remove 1st pkt
from buffer

–  Send 5th pkt;
now 2, 3, 4, 5
are in flight
(window full!)

•  Receiver, at 7s
–  Get 5th pkt

4 3 2 1 4

4 3
5 4 3 2 5

4 3 5

Page 5

Lec 22.17 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

Sender Receiver
1

2 1
3 2 1

3

1
2
3 ack=1

nack=
2

•  Sender, at 7s
–  Get nack=2
–  Resend pkt 2

•  Receiver, at 9s
–  Get 2nd pkt
–  Deliver it to
appl.

–  Send ack=2

4 3 2 1 4

4 3
5 4 3 2 5

4 3 5

ack=2

5 4 3 2 2

4 3 5 2

Lec 22.18 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

1s
2s
3s

4s
5s
6s
7s
8s

9s
10s
11s
12s
13s
14s

Sender Receiver
1

2 1
3 2 1

3

1
2
3 ack=1

nack=
2

•  Sender, at 11s
–  Get ack=2
–  Send pkt 6;
pkts 3, 4, 5,
6 are in-flight

•  Receiver, at
11s
–  Deliver 3d pkt
to appl.
(recall,
delivery rate
is 1pkt every
2s)

–  Send ack=3

4 3 2 1 4

4 3
5 4 3 2 5

4 3 5

ack=2

5 4 3 2 2

4 3 5 2

6 5 4 3 4 3 5 ack=3
 6

Lec 22.19 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Example

16s
17s
18s
19s
20s

•  If no more
losses,
throughput =
0.5pkt/sec

•  This is max
throughput as
receiver cannot
deliver more
than 0.5pkt/sec

6 5 4 3 4 3 5 ack=3

7 6 5 4

11s
12s
13s
14s
15s

5 4 6

8 7 6 5 6 5 7

ack=4

9 8 7 6 7 6 8

8 7 9

ack=5

ack=6

6

7

8

9

Lec 22.20 4/13/10 CS162 ©UCB Spring 2010

Performance with Sliding Window

•  Given previous
–  UCB ↔ New York 1 Mbps path with 100 msec RTT, and
–  Sender (and Receiver) window = 100 Kb = 12.5 KB

•  How fast can we transmit?
•  Answer: min(100Kb/0.1s, 1Mbps) = 1 Mbps

•  What about with 12.5 KB window & 1 Gbps path?
•  Window required to fully utilize path:

•  W = Bandwidth x RTT = 1 Gbps * 100 msec = 100 Mb =
12.5 MB

•  Note: large window = many packets in flight

Page 6

Lec 22.21 4/13/10 CS162 ©UCB Spring 2010

Sliding Window Properties

•  Flow control: yes
–  Receiver tells the sender how many packets it can
send without hearing an ack (windaw size)

•  Congestion control: not really. Why?
•  Reliability: yes

–  Sender resends lost packet on receiving “nack” or on
timeout

•  In-order delivery: yes
–  Use sequence numbers for packets;
–  Receiver delivers in-sequence packets to app; if a
packet is missing, stop and wait for the packet to be
retransmitted;

Lec 22.22 4/13/10 CS162 ©UCB Spring 2010

Congestion

•  Two packets arrive at the same time
–  The node can only transmit one
–  … and either buffers or drops the other

•  If many packets arrive in a short period of time
–  The node cannot keep up with the arriving traffic
–  … and the buffer may eventually overflow

Lec 22.23 4/13/10 CS162 ©UCB Spring 2010

Congestion Collapse

•  Definition: Increase in network load results in a decrease
of useful work done

•  Due to:
–  Undelivered packets

» Packets consume resources and are dropped later in
network

–  Spurious retransmissions of packets still in flight
» Unnecessary retransmissions lead to more load!
» Pouring gasoline on a fire

•  Mid-1980s: Internet grinds to a halt
–  Until Jacobson/Karels (Berkeley!) devise TCP congestion
control

Lec 22.24 4/13/10 CS162 ©UCB Spring 2010

Two Basic Components (TCP)

•  Detect congestion = detect packet loss
–  ACK denotes next byte (n) expected to be received

» Receiver acks it has received all bytes up to n-1
–  Two signs of packet loss

» No ACK after certain time interval: time-out
» Several duplicate ACKs (receiver misses packet

starting with byte n+1, and has received several
packets after that)

•  Dealing with congestion:
–  Probe network to test level of congestion
–  Speed up when no congestion
–  Slow down when congestion
–  Suboptimal, messy dynamics, simple to implement

Page 7

Lec 22.25 4/13/10 CS162 ©UCB Spring 2010 25

TCP Congestion Control

•  TCP connection has window
–  Controls number of unacknowledged packets

•  Sending rate: ~Window/RTT

•  Vary window size to control sending rate

Lec 22.26 4/13/10 CS162 ©UCB Spring 2010 26

Sizing the Windows

•  cwnd (Congestion Windows)
–  How many bytes can be sent without
overflowing routers

–  Computed by congestion control algorithm

•  AdvertisedWindow
–  How many bytes can be sent without
overflowing the sender (flow control)

–  Determined by the receiver

•  Sender uses min between the two
– MaxWindow = min(cwnd, AdvertisedWindow)

Lec 22.27 4/13/10 CS162 ©UCB Spring 2010 27

Rate Adjustment

•  Basic structure:
–  Upon receipt of ACK (of new data): increase rate
–  Upon detection of loss: decrease rate

•  But what increase/decrease functions should we
use?
–  Increase window by 1 packet every RTT
–  Decrease window by half if packet loss
–  [Far more in the networking class] Addresses and Names

Page 8

Lec 22.29 4/13/10 CS162 ©UCB Spring 2010

IP Addresses (IPv4)

•  A unique 32-bit number
•  Identifies an interface (on a host, on a router, …)
•  Represented in dotted-quad notation. E.g,

12.34.158.5:

00001100 00100010 10011110 00000101

12 34 158 5

Lec 22.30 4/13/10 CS162 ©UCB Spring 2010

Hierarchical Addressing: IP Prefixes

•  Divided into network (left) & host portions (right)
•  12.34.158.0/24 is a 24-bit prefix with 29

addresses
–  Terminology: “Slash 24”

00001100 00100010 10011110 00000101

Network (24 bits) Host (8 bits)

12 34 158 5

Lec 22.31 4/13/10 CS162 ©UCB Spring 2010

IP Address and a 24-bit Subnet Mask

00001100 00100010 10011110 00000101

12 34 158 5

11111111 11111111 11111111 00000000

255 255 255 0

Address

Mask
Lec 22.32 4/13/10 CS162 ©UCB Spring 2010

Hierarchical Addressing Example

•  Number related hosts from a common subnet
–  1.2.3.0/24 on the left LAN (Local Area Network)
–  5.6.7.0/24 on the right LAN

host host host

LAN 1

... host host host

LAN 2

...

router router router

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

1.2.3.0/24
5.6.7.0/24

forwarding table

Page 9

Lec 22.33 4/13/10 CS162 ©UCB Spring 2010

IP addresses vs. Host Name

•  IP addresses
– Numerical address appreciated by routers
–  Fixed length, binary number
–  Hierarchical, related to host location
–  Examples: 64.236.16.20 and 212.58.224.131

•  Host names
– Mnemonic name appreciated by humans
–  Variable length, full alphabet of characters
–  Provide little (if any) information about location
–  Examples: www.cnn.com and bbc.co.uk

Lec 22.34 4/13/10 CS162 ©UCB Spring 2010

Separating Naming and Addressing

•  Names are easier to remember
–  www.cnn.com vs. 64.236.16.20

•  Addresses can change underneath
– Move www.cnn.com to 64.125.91.21
–  E.g., renumbering when changing providers

•  Name could map to multiple IP addresses
–  www.cnn.com to multiple (8) replicas of the Web site
–  Enables

»  Load-balancing
» Reducing latency by picking nearby servers
» Tailoring content based on requester’s location/identity

•  Multiple names for the same address
–  E.g., aliases like www.cnn.com and cnn.com

Lec 22.35 4/13/10 CS162 ©UCB Spring 2010

Scalable (Name ↔ Address) Mappings

•  Originally: per-host file
–  Flat namespace
– /etc/hosts (what is this on your computer
today?)

–  SRI (Menlo Park) kept master copy
–  Downloaded regularly

•  Single server doesn’t scale
–  Traffic implosion (lookups & updates)
–  Single point of failure

Need a distributed, hierarchical collection of servers

Lec 22.36 4/13/10 CS162 ©UCB Spring 2010

Domain Name System (DNS)

•  Properties of DNS
–  Hierarchical name space divided into zones
–  Zones distributed over collection of DNS servers

•  Hierarchy of DNS servers
–  Root (hardwired into other servers)
–  Top-level domain (TLD) servers
–  Authoritative DNS servers

•  Performing the translations
–  Local DNS servers
–  Resolver software

Page 10

Lec 22.37 4/13/10 CS162 ©UCB Spring 2010

Distributed Hierarchical Database

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

Top-Level Domains (TLDs)

Lec 22.38 4/13/10 CS162 ©UCB Spring 2010

Using DNS

•  Local DNS server (“default name server”)
–  Usually near the endhosts that use it
–  Local hosts configured with local server (e.g., /etc/
resolv.conf) or learn server automatically (via
DHCP)

•  Client application
–  Extract server name (e.g., from the URL)
–  Do gethostbyname() to trigger resolver code

•  Server application
–  Extract client IP address from connection
– Optional gethostbyaddr() to translate into name

Lec 22.39 4/13/10 CS162 ©UCB Spring 2010

requesting host
cs.berkeley.edu gaia.cs.umass.edu

root DNS server

local DNS server
dns.berkeley.edu

1

2
3
4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

Example

Host at cs.berkeley.edu
wants IP address for
gaia.cs.umass.edu

Lec 22.40 4/13/10 CS162 ©UCB Spring 2010

Recursive vs. Iterative Queries

•  Recursive query
–  Ask server to get
answer for you

–  E.g., request 1 and
response 8

requesting host
cs.berkeley.edu

root DNS server

local DNS server
cs.berkeley.edu

1

2
3
4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

Page 11

Lec 22.41 4/13/10 CS162 ©UCB Spring 2010

Recursive vs. Iterative Queries

•  Iterative query
–  Ask server who
to ask next

–  E.g., all other
request-response
pairs

requesting host
cs.berkeley.edu

root DNS server

local DNS server
dns.berkeley.edu

1

3 4
5

6

authoritative DNS server
dns.cs.umass.edu

7

2

TLD DNS server

8

Lec 22.42 4/13/10 CS162 ©UCB Spring 2010

Conclusion
•  Transport layer:

– Main service (TCP & UDP): port multiplexing/
demultiplexing

– Other services (TCP):
»  reliability
»  congestion control: avoid overloading the network
»  Flow control: allow overflowing the receiver
»  in-order delivery

•  IP Addressing
–  32b (IP v4), quad notation
–  Capture host location
– Network and host portions

•  DNS: System for mapping from names⇒IP addresses
–  Hierarchical mapping from authoritative domains
–  Recursive vs. iterative lookup

Lec 22.43 4/13/10 CS162 ©UCB Spring 2010

Putting Everything Together

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Internet
Proc. B
(port 7)

Transport
Network

Link
Physical

Proc. A
(port 10)

Proc. B
(port 7)

Transport
Network

Link
Physical

data

data 10 7

16.25.31.10 128.15.11.12 data 10 7 16.25.31.10 128.15.11.12

data

data

data

10 7

10 7

Internet 16.25.31.10 128.15.11.12
Lec 22.44 4/13/10 CS162 ©UCB Spring 2010

Putting Everything Together

1.2.3.7 5.6.4.3

Proc. A
(port 2)

Internet
Proc. B
(port 7)

Transport
(port=2)
Network

(addr=1.2.3.7)
Link

(addr=15)
Physical

Proc. A
data

data 7 2

1.2.3.7 data 5.6.4.3 7 2

1.2.3.7 data 5.6.4.3 15 91 7 2

Network

Link
(addr=91)
Physical

1.2.3.7 data 5.6.4.3 15 91 7 2

1.2.3.7 data 5.6.4.3 7 2

Page 12

Lec 22.45 4/13/10 CS162 ©UCB Spring 2010

host host host

LAN 1

... host host host

LAN 2

...

router router router

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

