
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 25

Protection and Security
in Distributed Systems

April 27, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 25.2 27/4/10 CS162 ©UCB Spring 2010

Goals for Today

•  Security Properties
–  Authentication
–  Data integrity
–  Confidentiality
– Non-repudiation

•  Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
and lecture notes by Kubiatowicz

Lec 25.3 27/4/10 CS162 ©UCB Spring 2010

Protection vs Security
•  Protection: one or more mechanisms for controlling the

access of programs, processes, or users to resources
–  Page Table Mechanism
–  File Access Mechanism

•  Security: use of protection mechanisms to prevent
misuse of resources
– Misuse defined with respect to policy

» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

–  Requires consideration of the external environment
within which the system operates

» Most well-constructed system cannot protect information
if user accidentally reveals password

•  What we hope to gain today and next time
–  Conceptual understanding of how to make systems secure
–  Some examples, to illustrate why providing security is
really hard in practice

Lec 25.4 27/4/10 CS162 ©UCB Spring 2010

Preventing Misuse
•  Types of Misuse:

–  Accidental:
»  If I delete shell, can’t log in to fix it!
» Could make it more difficult by asking: “do you really want

to delete the shell?”
–  Intentional:

» Some high school brat who can’t get a date, so instead he
transfers $3 billion from B to A.

» Doesn’t help to ask if they want to do it (of course!)
•  Three Pieces to Security

–  Authentication: who the user actually is
–  Authorization: who is allowed to do what
–  Enforcement: make sure people do only what they are
supposed to do

•  Loopholes in any carefully constructed system:
–  Log in as superuser and you’ve circumvented
authentication

–  Log in as self and can do anything with your resources;
for instance: run program that erases all of your files

–  Can you trust software to correctly enforce
Authentication and Authorization?

Page 2

Lec 25.5 27/4/10 CS162 ©UCB Spring 2010

Security Requirements

•  Authentication
–  Ensures that a user is who is claiming to be

•  Data integrity
–  Ensure that data is not changed from source to destination

or after being written on a storage device

•  Confidentiality
–  Ensures that data is read only by authorized users

•  Non-repudiation
–  Sender can’t later claim didn’t send data
–  Receiver can’t claim didn’t receive data

Lec 25.6 27/4/10 CS162 ©UCB Spring 2010

Securing Communication: Cryptography

•  Cryptography: communication in the presence of
adversaries

•  Studied for thousands of years
–  See the Simon Singh’s The Code Book for an
excellent, highly readable history

•  Central goal: confidentiality
–  How to encode information so that an adversary can’t
extract it, but a friend can

•  General premise: there is a key, possession of
which allows decoding, but without which decoding
is infeasible
–  Thus, key must be kept secret and not guessable

Lec 25.7 27/4/10 CS162 ©UCB Spring 2010

Using Symmetric Keys

•  Same key for encryption and decryption

Internet
Encrypt with
secret key

Decrypt with
secret key

Plaintext (m) m

Ciphertext

Lec 25.8 27/4/10 CS162 ©UCB Spring 2010

Symmetric Keys
•  Can just XOR plaintext with the key

–  Easy to implement, but easy to break using frequency
analysis

•  More sophisticated (e.g., block cipher) algorithms
– Works with a block size (e.g., 64 bits)

» To encrypt a stream, can encrypt blocks separately, or link
them

Page 3

Lec 25.9 27/4/10 CS162 ©UCB Spring 2010

Symmetric Key Ciphers - DES & AES

•  Data Encryption Standard (DES)
–  Developed by IBM in 1970s, standardized by NBS/NIST
–  56-bit key (decreased from 64 bits at NSA’s request)
–  Still fairly strong other than brute-forcing the key space

» But custom hardware can crack a key in < 24 hours
–  Today many financial institutions use Triple DES

=  DES applied 3 times, with 3 keys totaling 168 bits
•  Advanced Encryption Standard (AES)

•  Replacement for DES standardized in 2002
•  Key size: 128, 192 or 256 bits

•  How fundamentally strong are they?
•  No one knows (no proofs exist)

Lec 25.10 27/4/10 CS162 ©UCB Spring 2010

Authentication via Symmetric Crypto

•  Authenticate entity by its secret key

•  Example:
–  You know Alice’s secret key
–  You are talking with a person claiming she is Alice
– Question: How do you verify she is indeed Alice?
–  Answer: Just verify she knows Alice’s secret key!

Lec 25.11 27/4/10 CS162 ©UCB Spring 2010

Example: Client-Server Authentication

•  Client’s secret key: CHK
•  Server’s secret key: SHK

•  Notation: E(m,k) – encrypt
message m with key k

•  x, y: nonces (random values)
–  Avoid replay attacks, e.g.,

attacker impersonating client or
server

•  K – session key used for data
communication

–  minimize # of messages containing
CHK / SHK

E(x, CHK)

E(x+1, SHK), E(y,SHK)

E(y+1, CHK)

E(K,SHK)

client server

E(message …, K)

Lec 25.12 27/4/10 CS162 ©UCB Spring 2010

Administrivia

•  Final Exam
–  Friday, May 14, 7:00PM-10:00PM
–  All material from the course

» With slightly more focus on second half, but you are still
responsible for all the material

–  Two sheets of notes, both sides

•  Should be working on Project 4
–  Final Project due on Friday, May 7

Page 4

Lec 25.13 27/4/10 CS162 ©UCB Spring 2010

Integrity: Cryptographic Hashes

•  Basic building block for integrity: hashing
–  Associate hash with byte-stream, receiver verifies
match

» Assures data hasn’t been modified, either accidentally -
or maliciously

•  Approach:
-  Sender computes a digest of message m, i.e., H(m)

» H() is a publicly known hash function
-  Send digest (d = H(m)) to receiver in a secure way,
e.g.,

» Using another physical channel
» Using encryption

-  Upon receiving m and d, receiver re-computes H(m) to
see whether result agrees with d

Lec 25.14 27/4/10 CS162 ©UCB Spring 2010

Operation of Hashing for Integrity

Internet Digest
H(m)

plaintext (m)

digest

Digest
H(m)

=

digest’

NO

corrupted msg m

Lec 25.15 27/4/10 CS162 ©UCB Spring 2010

Standard Cryptographic Hash Functions
•  MD5 (Message Digest version 5)

–  Developed in 1991 (Rivest)
–  Produces 128 bit hashes
– Widely used (RFC 1321)
–  Broken:

» Recent work quickly finds collisions
•  SHA-1 (Secure Hash Algorithm)

–  Developed by NSA in 1995 as successor to MD5
–  Produces 160 bit hashes
– Widely used (SSL/TLS, SSH, PGP, IPSEC)
–  Broken:

» Recent work finds collisions, though not really quickly …
yet

Lec 25.16 27/4/10 CS162 ©UCB Spring 2010

Asymmetric Encryption (Public Key)

•  Idea: use two different keys, one to encrypt (e) and
one to decrypt (d)
–  A key pair

•  Crucial property: knowing e does not give away d
•  Therefore e can be public: everyone knows it!
•  If Alice wants to send to Bob, she fetches Bob’s

public key (say from Bob’s home page) and encrypts
with it
–  Alice can’t decrypt what she’s sending to Bob …
–  … but then, neither can anyone else (except Bob)

Page 5

Lec 25.17 27/4/10 CS162 ©UCB Spring 2010

Public Key / Asymmetric Encryption
•  Sender uses receiver’s public key

–  Advertised to everyone
•  Receiver uses complementary private key

– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

Lec 25.18 27/4/10 CS162 ©UCB Spring 2010

Public Key Cryptography

•  Invented in the 1970s
–  Revolutionized cryptography
–  (Was actually invented earlier by British intelligence)

•  How can we construct an encryption/decryption
algorithm using a key pair with the public/private
properties?
–  Answer: Number Theory

•  Most fully developed approach: RSA
–  Rivest / Shamir / Adleman, 1977; RFC 3447
–  Based on modular multiplication of very large integers
–  Very widely used (e.g., SSL/TLS for https)

Lec 25.19 27/4/10 CS162 ©UCB Spring 2010

Properties of RSA

•  Requires generating large, random prime numbers
–  Algorithms exist for quickly finding these (probabilistic!)

•  Requires exponentiating very large numbers
–  Again, fairly fast algorithms exist

•  Overall, much slower than symmetric key crypto
–  One general strategy: use public key crypto to exchange a

(short) symmetric session key
»  Use that key then with AES or such

•  How difficult is recovering d, the private key?
–  Equivalent to finding prime factors of a large number

»  Many have tried - believed to be very hard (= brute force
only)

»  (Though quantum computers can do so in polynomial time!)

Lec 25.20 27/4/10 CS162 ©UCB Spring 2010

Simple Public Key Authentication

•  Each side need only to know
the other side’s public key
– No secret key need be shared

•  A encrypts a nonce (random
number) x

•  B proves it can recover x
•  A can authenticate itself to B

in the same way

E(x, PublicB)

x

A B

Page 6

Lec 25.21 27/4/10 CS162 ©UCB Spring 2010

Non-Repudiation: RSA Crypto & Signatures

• Suppose Alice has published public key KE

•  If she wishes to prove who she is, she
can send a message x encrypted with her
private key KD (i.e., she sends D(x,KD))
– Anyone knowing Alice’s public key KE can
recover x, verify that Alice must have sent
the message

» It provides a signature
– Alice can’t deny it ⇒ non-repudiation

Lec 25.22 27/4/10 CS162 ©UCB Spring 2010

RSA Crypto & Signatures, con’t

Lec 25.23 27/4/10 CS162 ©UCB Spring 2010

Digital Certificates

•  How do you know KE is Alice’s public key?

•  Trusted authority (e.g., Verisign) signs binding between
Alice and KE with its private key KVprivate
–  C = E({Alice, KE}, KVprivate)
–  C: digital certificate

•  Alice: distribute her digital certificate, C
•  Anyone: use trusted authority’s KVpublic, to extract Alice’s

public key from C
–  {Alice, KE} = D(C, KVpublic)

Lec 25.24 27/4/10 CS162 ©UCB Spring 2010

Summary of Our Crypto Toolkit

•  If we can securely distribute a key, then
– Symmetric ciphers (e.g., AES) offer fast,
presumably strong confidentiality

•  Public key cryptography does away with (potentially
major) problem of secure key distribution
– But: not as computationally efficient

» Often addressed by using public key crypto to
exchange a session key

•  Digital signature binds the public key to an entity

Page 7

Lec 25.25 27/4/10 CS162 ©UCB Spring 2010

Putting It All Together - HTTPS

•  What happens when you click on https://
www.amazon.com?

•  https = “Use HTTP over SSL/TLS”
•  SSL = Secure Socket Layer
•  TLS = Transport Layer Security
•  Successor to SSL, and compatible with it
•  RFC 4346

•  Provides security layer (authentication, encryption)
on top of TCP
•  Fairly transparent to the app

Lec 25.26 27/4/10 CS162 ©UCB Spring 2010

HTTPS Connection (SSL/TLS), con’t

•  Browser (client) connects
via TCP to Amazon’s
HTTPS server

•  Client sends over list of
crypto protocols it
supports

•  Server picks protocols to
use for this session

•  Server sends over its
certificate

•  (all of this is in the clear)

Browser Amazon

Hello. I support
(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~1 KB o
f data

Lec 25.27 27/4/10 CS162 ©UCB Spring 2010

Inside the Server’s Certificate

•  Name associated with cert (e.g., Amazon)
•  Amazon’s RSA public key
•  A bunch of auxiliary info (physical address, type of

cert, expiration time)
•  Name of certificate’s signatory (who signed it)
•  A public-key signature of a hash (MD5) of all this

–  Constructed using the signatory’s private RSA key, i.e.,
–  Cert = E(HMD5(KApublic, www.amazon.com, …), KSprivate))

»  KApublic: Amazon’s public key
»  KSprivate: signatory (certificate authority) public key

•  …

Lec 25.28 27/4/10 CS162 ©UCB Spring 2010

Validating Amazon’s Identity

•  How does the browser authenticate certifciate
signatory?
–  Certificates of few certificate authorities (e.g.,
Verisign) are hardwired into the browser

•  If it can’t find the cert, then warns the user that
site has not been verified
–  And may ask whether to continue
– Note, can still proceed, just without authentication

•  Browser uses public key in signatory’s cert to
decrypt signature
–  Compares with its own MD5 hash of Amazon’s cert

•  Assuming signature matches, now have high
confidence it’s indeed Amazon …
–  … assuming signatory is trustworthy

Page 8

Lec 25.29 27/4/10 CS162 ©UCB Spring 2010

Certificate Validation

E(HMD5(KApublic, www.amazon.com, …), KSprivate)),
www.amazon.com, KApublic, Kspublic, …

HMD5(KApublic, www.amazon.com, …)

E(HMD5(…), KSpublic))
(recall, KSpublic hardwired)

=

Yes

Validation successful

Validation failed
No

HMD5(KApublic, www.amazon.com, …)

HMD5(…)

Certificate

Lec 25.30 27/4/10 CS162 ©UCB Spring 2010

HTTPS Connection (SSL/TLS), con’t

•  Browser constructs a
random session key K

•  Browser encrypts K using
Amazon’s public key

•  Browser sends E(K, KApublic)
to server

•  Browser displays
•  All subsequent

communication encrypted
w/ symmetric cipher (e.g.,
AES128) using key K

–  E.g., client can authenticate
using a password

Browser Amazon

Here’s my cert

~1 KB o
f data

E(K, KApublic)

K

K

E(password …, K)

E(response …, K)

Agreed

Lec 25.31 27/4/10 CS162 ©UCB Spring 2010

Authentication: Passwords
•  Shared secret between two parties

•  Since only user knows password, someone types
correct password ⇒ must be user typing it

•  Very common technique

•  System must keep copy of secret to
check against passwords
– What if malicious user gains access to list
of passwords?

» Need to obscure information somehow
– Mechanism: utilize a transformation that is difficult
to reverse without the right key (e.g. encryption)

Lec 25.32 27/4/10 CS162 ©UCB Spring 2010

Passwords: Secrecy

•  Example: UNIX /etc/passwd file
–  passwd→one way transform(hash)→encrypted passwd
–  System stores only encrypted version, so OK even if
someone reads the file!

– When you type in your password, system compares
encrypted version

•  Problem: Can you trust encryption algorithm?
–  Example: one algorithm thought safe had back door

» Governments want back door so they can snoop
–  Also, security through obscurity doesn’t work

» GSM encryption algorithm was secret; accidentally
released; Berkeley grad students cracked in a few
hours

“eggplant
”

Page 9

Lec 25.33 27/4/10 CS162 ©UCB Spring 2010

Passwords: How easy to guess?
•  Ways of Compromising Passwords

–  Password Guessing:
» Often people use obvious information like birthday,

favorite color, girlfriend’s name, etc…
–  Dictionary Attack:

» Work way through dictionary and compare encrypted
version of dictionary words with entries in /etc/passwd

–  Dumpster Diving:
»  Find pieces of paper with passwords written on them
»  (Also used to get social-security numbers, etc)

•  Paradox:
–  Short passwords are easy to crack
–  Long ones, people write down!

•  Technology means we have to use longer passwords
–  UNIX initially required lowercase, 5-letter passwords:
total of 265=10million passwords

»  In 1975, 10ms to check a password→1 day to crack
»  In 2005, .01µs to check a password→0.1 seconds to crack

–  Takes less time to check for all words in the dictionary!
Lec 25.34 27/4/10 CS162 ©UCB Spring 2010

Passwords: Making harder to crack
•  How can we make passwords harder to crack?

–  Can’t make it impossible, but can help

•  Technique 1: Extend everyone’s password with a unique
number (stored in password file)
–  Called “salt”. UNIX uses 12-bit “salt”, making dictionary
attacks 4096 times harder

– Without salt, would be possible to pre-compute all the
words in the dictionary hashed with the UNIX algorithm:
would make comparing with /etc/passwd easy!

•  Technique 2: Require more complex passwords
– Make people use at least 8-character passwords with
upper-case, lower-case, and numbers

»  708=6x1014=6million seconds=69 days@0.01µs/check
–  Unfortunately, people still pick common patterns

»  e.g. Capitalize first letter of common word, add one digit

Lec 25.35 27/4/10 CS162 ©UCB Spring 2010

Passwords: Making harder to crack (con’t)
•  Technique 3: Delay checking of passwords

–  If attacker doesn’t have access to /etc/passwd, delay
every remote login attempt by 1 second

– Makes it infeasible for rapid-fire dictionary attack
•  Technique 4: Assign very long passwords

–  Long passwords or pass-phrases can have more entropy
(randomness→harder to crack)

–  Give everyone a smart card (or ATM card) to carry around
to remember password

» Requires physical theft to steal password
» Can require PIN from user before authenticates self

–  Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances to next random number

•  Technique 5: “Zero-Knowledge Proof”
–  Require a series of challenge-response questions

» Distribute secret algorithm to user
» Server presents a number, say “5”; user computes something

from the number and returns answer to server
» Server never asks same “question” twice

– Often performed by smartcard plugged into system
Lec 25.36 27/4/10 CS162 ©UCB Spring 2010

Authentication: Identifying Users
•  How to identify users to the system?

–  Passwords
» Shared secret between two parties
» Since only user knows password, someone types correct

password ⇒ must be user typing it
» Very common technique

–  Smart Cards
» Electronics embedded in card capable of

providing long passwords or satisfying
challenge → response queries

» May have display to allow reading of password
» Or can be plugged in directly; several

credit cards now in this category
–  Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common

Page 10

Lec 25.37 27/4/10 CS162 ©UCB Spring 2010

Conclusion
•  Security requirements

–  Authentication, Confidentiality, Integrity, Non-Repudiation
•  Symmetrical (or Private Key) Encryption

–  Single Key used to encode and decode
–  Introduces key-distribution problem

•  Public-Key Encryption
–  Two keys: a public key and a private key

•  Secure Hash Function
–  Used to summarize data
–  Hard to find another block of data with same hash

•  Passwords
–  Encrypt them to help hid them
–  Force them to be longer/not amenable to dictionary attack
–  Use zero-knowledge request-response techniques

