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Review: How easy to guess a password? 
•  Ways of Compromising Passwords 

–  Password Guessing:  
» Often people use obvious information like birthday, 

favorite color, girlfriend’s name, etc… 
–  Dictionary Attack:  

» Work way through dictionary and compare encrypted 
version of dictionary words with entries in /etc/passwd 

–  Dumpster Diving: 
»  Find pieces of paper with passwords written on them 
»  (Also used to get social-security numbers, etc) 

•  Paradox:  
–  Short passwords are easy to crack 
–  Long ones, people write down! 

•  Technology means we have to use longer passwords 
–  UNIX initially required lowercase, 5-letter passwords: 
total of 265=10million passwords 

»  In 1975, 10ms to check a password→1 day to crack 
»  In 2005, .01µs to check a password→0.1 seconds to crack 

–  Takes less time to check for all words in the dictionary! 
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Review: Making password harder to crack 
•  How can we make passwords harder to crack? 

–  Can’t make it impossible, but can help 

•  Technique 1: Extend everyone’s password with a unique 
number (stored in password file) 
–  Called “salt”. UNIX uses 12-bit “salt”, making dictionary 
attacks 4096 times harder 

– Without salt, would be possible to pre-compute all the 
words in the dictionary hashed with the UNIX algorithm: 
would make comparing with /etc/passwd easy! 

•  Technique 2: Require more complex passwords 
– Make people use at least 8-character passwords with 
upper-case, lower-case, and numbers 

»  708=6x1014=6million seconds=69 days@0.01µs/check 
–  Unfortunately, people still pick common patterns 

»  e.g. Capitalize first letter of common word, add one digit 
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Review: Making password harder to crack (con’t) 
•  Technique 3: Delay checking of passwords 

–  If attacker doesn’t have access to /etc/passwd, delay 
every remote login attempt by 1 second 

– Makes it infeasible for rapid-fire dictionary attack 
•  Technique 4: Assign very long passwords 

–  Long passwords or pass-phrases can have more entropy 
(randomness→harder to crack) 

–  Give everyone a smart card (or ATM card) to carry around 
to remember password 

» Requires physical theft to steal password 
» Can require PIN from user before authenticates self 

–  Better: have smartcard generate pseudorandom number 
» Client and server share initial seed 
» Each second/login attempt advances to next random number 

•  Technique 5: “Zero-Knowledge Proof” 
–  Require a series of challenge-response questions 

» Distribute secret algorithm to user 
» Server presents a number, say “5”; user computes something 

from the number and returns answer to server 
» Server never asks same “question” twice 

– Often performed by smartcard plugged into system 
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Goals for Today 

•  Distributed Authorization/Remote Storage 
•  Buffer overflow 
•  Worms and Viruses 

Note: Some slides and/or pictures in the following are 
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.  
Also, slides adapted from Kubiatowicz and Paxson. 
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•  How do we decide who is authorized 
to do actions in the system? 

•  Access Control Matrix: contains 
all permissions in the system 
–  Resources across top  

»  Files, Devices, etc… 
–  Domains in columns 

» A domain might be a user or a  
group of permissions 

» E.g. above: User D3 can read F2 or execute F3 
–  In practice, table would be huge and sparse! 

•  Two approaches to implementation 
–  Access Control Lists: store permissions with each object 

» Still might be lots of users!  
» UNIX limits each file to: r,w,x for owner, group, world 
» More recent systems allow definition of groups of users 

and permissions for each group 
–  Capability List: each process tracks objects has 
permission to touch 

»  Popular in the past, idea out of favor today 
» Consider page table: Each process has list of pages it has 

access to, not each page has list of processes … 

Authorization: Who Can Do What? 
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How to perform Authorization for Distributed Systems? 

•  Issues: Are all user names in world unique? 
– No! They only have small number of characters 
– Need something better, more unique to identify person 

•  Suppose want to connect with any server at any time? 
– Need an account on every machine! (possibly with 
different user name for each account) 

– OR: Need to use something more universal as identity 
»  Public Keys!  (Called “Principles”) 
»  People are their public keys 

Different  
Authorization 

Domains 
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Distributed Access Control 

•  Distributed Access Control List (ACL) 
–  Contains list of attributes (Read, Write, Execute, etc) 
with attached identities (Here, we show public keys) 

» ACLs signed by owner of file, only changeable by owner 
» Group lists signed by group key 

–  ACLs can be on different servers than data 
» Signatures allow us to validate them 
» ACLs could even be stored separately from verifiers 

File X 
Owner Key:  
0x22347EF… 

Group ACL: 
Key: 0xA786EF889A… 
Key: 0x6647DBC9AC… 

Access Control List (ACL) for X: 

R:  Key: 0x546DFEFA34… 
RW: Key: 0x467D34EF83… 
RX: Group Key: 0xA2D3498672…  

     Certificate by  
X’s owner 

      Group Certificate  

E(H(ACL), Kprivate,owner) E(H(GACL), Kprivate,group) 
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Client 1 
Domain 1 

Distributed Access Control 

•  Distributed Access Control List (ACL) 
–  Contains list of attributes (Read, Write, Execute, etc) 
with attached identities (Here, we show public keys) 

» ACLs signed by owner of file, only changeable by owner 
» Group lists signed by group key 

–  ACLs can be on different servers than data 
» Signatures allow us to validate them 
» ACLs could even be stored separately from verifiers 

Server 1: Domain 2 

File X 
Owner Key:  
0x22347EF… 

Access Control List (ACL) for X: 

R:  Key: 0x546DFEFA34… 
RW: Key: 0x467D34EF83… 
RX: Group Key: 0xA2D3498672…  

ACL verifier 
Hash, Timestamp,  
Signature (owner) 

Server 2: Domain 3 

Group ACL: 
Key: 0xA786EF889A… 
Key: 0x6647DBC9AC… 

GACL verifier 
Hash, Timestamp,  
Signature (group) E(“
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Analysis of Previous Scheme 
•  Positive Points: 

–  Identities checked via signatures and public keys 
» Client can’t generate request for data unless they have 

private key to go with their public identity 
» Server won’t use ACLs not properly signed by owner of file 

– No problems with multiple domains, since identities 
designed to be cross-domain (public keys domain neutral) 

•  Revocation: 
– What if someone steals your private key? 

» Need to walk through all ACLs with your key and change…!  
» This is very expensive 

–  Have unique string identifying you that people place into 
ACLs 

» Then, ask Certificate Authority to give you a certificate 
matching unique string to your current public key 

» Client Request: E(request + unique ID, Kprivate,client); give server certificate if they ask for it. 
»  Key compromise⇒must distribute “certificate revocation”, 

since can’t wait for previous certificate to expire. 
– What if you remove someone from ACL of a given file? 

»  If server caches old ACL, then person retains access! 
» Here, cache inconsistency leads to security violations! 
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Analysis Continued 
•  Who signs the data? 

– Or: How does client know they are getting valid data? 
–  Signed by server? 

» What if server compromised?  Should client trust server? 
–  Signed by owner of file? 

» Better, but now only owner can update file! 
»  Pretty inconvenient! 

–  Signed by group of servers that accepted latest update? 
»  If must have signatures from all servers ⇒ Safe, but one 

bad server can prevent update from happening 
»  Instead: ask for a threshold number of signatures 
» Byzantine agreement can help here 

•  How do you know that data is up-to-date? 
–  Valid signature only means data is valid 
–  Freshness attack: 

» Malicious server returns old data instead of recent data 
»  Problem with both ACLs and data 
» E.g.: you just got a raise, but enemy breaks into a server 

and prevents payroll from seeing latest version of update 
–  Hard problem 

» Needs to be fixed by invalidating old copies or having a 
trusted group of servers (Byzantine Agreement?) 
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Administrivia 
•  Final Exam 

–  105 Stanley Hall 
–  Friday, May 14, 7:00PM-10:00PM 
–  All material from the course 

» With slightly more focus on second half, but you are 
still responsible for all the material 

–  Closed books, two sheets of notes, both sides 

•  Should be working on Project 4 
–  Final Project due on Friday 5/7 

•  I will have office hours next week at normal time 
–  Tuesday & Thursday: 2-3pm 
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Enforcement 
•  Enforcer checks passwords, ACLs, etc 

– Makes sure the only authorized actions take place 
–  Bugs in enforcer⇒things for malicious users to exploit 

•  In UNIX, superuser can do anything 
–  Because of coarse-grained access control, lots of stuff 
has to run as superuser in order to work 

–  If there is a bug in any one of these programs, you lose! 
•  Paradox 

–  Bullet-proof enforcer 
» Only known way is to make enforcer as small as possible 
» Easier to make correct, but simple-minded protection model 

–  Fancy protection 
» Tries to adhere to principle of least privilege 
» Really hard to get right 

•  Same argument for Java or C++: What do you make 
private vs public? 
–  Hard to make sure that code is usable but only necessary 
modules are public 

–  Pick something in middle? Get bugs and weak protection! 
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Host Compromise 

•  Tricking a host into executing on your behalf 
•  Can consider what is attacked (server or client) 

and the semantic level at which it is attacked 
•  Attacks on servers: client sends subversive 

requests 
–  Happens at attacker’s choosing 
–  Some hosts are servers unknowingly! 

•  Attacks on clients: server (attacker) waits for 
client to connect, sends it a subversive reply 
–  E.g., “drive-by” spyware 
–  E.g., 2006 study found 15% of popular P2P files 
infected by one of 52 different viruses 
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Buffer Overflow 

•  Part of the request 
sent by the attacker 
too large to fit into 
buffer server uses 
to hold it 

•  Spills over into 
memory beyond the 
buffer 

•  Allows remote 
attacker to inject 
executable code 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 
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Example: Normal Execution 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

Stack 
X + 200 
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Example: Normal Execution 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

Stack 

X 

get_cookie()’s  
stack frame 

X + 200 
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Example: Normal Execution 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

return address back 
to get_cookie() 

Stack 

X 

X - 4 

get_cookie()’s  
stack frame 

X + 200 
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Example: Normal Execution 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

return address back 
to get_cookie() 

cookie 

n 

Stack 

X 

X - 4 

X - 8 

X - 520 

get_cookie()’s  
stack frame 

X + 200 
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Example: Normal Execution 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

return address back 
to get_cookie() 

cookie 

n 

Stack 

X 

X - 4 

X - 8 

X - 520 

X - 524 
return address back 

to munch() 

strcpy()’s stack … 

get_cookie()’s  
stack frame 

X + 200 
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Example: Normal Execution 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

return address back 
to get_cookie() 

n 

Stack 

X 

X - 4 

X - 8 

X - 520 

X - 524 
return address back 

to munch() 

get_cookie()’s  
stack frame 

X + 200 

cookie value read 
from packet 
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Example: Normal Execution 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

return address back 
to get_cookie() 

cookie value read 
from packet 

n 

Stack 

X 

X - 4 

X - 8 

X - 520 

get_cookie()’s  
stack frame 

X + 200 
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Example: Normal Execution 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

return address back 
to get_cookie() 

Stack 

X 

X - 4 

get_cookie()’s  
stack frame 

X + 200 
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Example: Normal Execution 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

Stack 

X 

get_cookie()’s  
stack frame 

X + 200 
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Example: Buffer Overflow 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

return address back 
to get_cookie() 

cookie 

n 

Stack 

X 

X - 4 

X - 8 

X - 520 

X - 524 
return address back 

to munch() 

strcpy()’s stack … 

get_cookie()’s  
stack frame 

X + 200 
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Example: Buffer Overflow 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

return address back 
to get_cookie() 

n 

Stack 

X 

X - 4 

X - 8 

X - 520 

X - 524 
return address back 

to munch() 

get_cookie()’s  
stack frame 

X + 200 cookie 
value 
read 
from 

packet 
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get_cookie()’s  
stack frame 

return address back 
to get_cookie() 

Example: Buffer Overflow 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

<Doesn’t Matter> 

Stack 

X 

X - 4 

X - 8 

X - 520 

X - 524 
return address back 

to munch() 

X + 200 

<Doesn’t Matter> 

X 

Executable 
Code 
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get_cookie()’s  
stack frame 

return address back 
to get_cookie() 

Example: Buffer Overflow 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

<Doesn’t Matter> 

Stack 

X 

X - 4 

X - 8 

X - 520 

X + 200 

<Doesn’t Matter> 

X 

Executable 
Code 
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get_cookie()’s  
stack frame 

return address back 
to get_cookie() 

Example: Buffer Overflow 

void get_cookie(char *packet) { 
  . . . (200 bytes of local vars) . . . 
  munch(packet); 
  . . . 
} 
void munch(char *packet) { 
  int n; 
  char cookie[512]; 
  . . . 

  code here computes offset of cookie in 
packet, stores it in n 

  strcpy(cookie, &packet[n]); 
  . . .  
} 

Stack 

X 

X - 4 

X + 200 

X 

Executable 
Code Now branches to code read in from 

the network 

From here on, machine falls 
under the attacker’s control 
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Buffer Overflows: Potential Solutions 

•  Don’t write buggy software 
–  It’s not like people try to write buggy software 

•  Type-safe Languages 
–  Unrestricted memory access of C/C++ contributes to 
problem 

–  Use Java, Perl, Python instead 
•  OS architecture 

–  Compartmentalize programs better, so one compromise 
doesn’t compromise the entire system 

–  E.g., DNS server doesn’t need total system access 
•  Firewalls - restrict remote access to services 
•  Intrusion detection: recognize attack & block it 
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Automated Compromise: Worms 
•  When attacker compromises a host, they can 

instruct it to do whatever they want 
•  Instructing it to find more vulnerable hosts to 

repeat the process creates a worm: a program 
that self-replicates across a network 
•  Often spread by picking 32-bit Internet addresses 

at random to probe … 
•  … but this isn’t fundamental 

•  As the worm repeatedly replicates, it grows 
exponentially fast because each copy of the worm 
works in parallel to find more victims 
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Worms: Exponentially Fast …. and Big 

•  Code Red 1 (2001) 
•  369K hosts in 10 hours 

•  Blaster (2003) 
•  9M hosts in 9 days 
•  25M hosts total 

•  Slammer (2003) 
•  75K hosts … 
•  … in < 10 minutes 
•  Peak scanning rate: 

•  55M addresses/sec 
•  Limited by Internet’s capacity 

•  Theoretical worms 
•  1M hosts in 1.3 sec (2004) 
•  $50B+ damage (2004) 
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Automated Compromise: Bots 
•  Big worms are flashy but rare … 
•  … With the commercialization of malware, the tool 

of choice has shifted to the less noisy, more 
directly controlled botnets 

•  When host is (automatically) compromised, don’t 
continue propagation 
•  Instead install a command and control platform (a bot) 

•  Now can monetize malware: sell access to bots 
•  Spamming, phishing web sites, flooding attacks 
•  “Crook’s Google Desktop”: sell capability of searching 

the contents of 100,000s of hosts 
•  (Note: we still worry about worms for 

cyberwarfare) 
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Some other Attacks 
•  Trojan Horse Example: Fake Login 

–  Construct a program that looks like normal login program 
–  Gives “login:” and “password:” prompts 

» You type information, it sends password to someone, then 
either logs you in or says “Permission Denied” and exits 

–  In Windows, the “ctrl-alt-delete” sequence is supposed to 
be really hard to change, so you “know” that you are 
getting official login program 

•  Salami attack: Slicing things a little at a time 
–  Steal or corrupt something a little bit at a time 
–  E.g.: What happens to partial pennies from bank interest? 

» Bank keeps them!  Hacker re-programmed system so that 
partial pennies would go into his account. 

» Doesn’t seem like much, but if you are large bank can be 
millions of dollars 

•  Eavesdropping attack 
–  Tap into network and see everything typed 
–  Catch passwords, etc  
–  Lesson: never use unencrypted communication! 
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Conclusion 
•  Passwords 

–  Encrypt them to help hid them 
–  Force them to be longer/not amenable to dictionary attack 
–  Use zero-knowledge request-response techniques 

•  Distributed storage example 
–  Revocation: How to remove permissions from someone? 
–  Integrity: How to know whether data is valid 
–  Freshness: How to know whether data is recent 

•  Buffer-Overflow Attack: exploit bug to execute code 
–  Worms spread exponentially fast 

•  Defenses: type-safe languages, program compartmentalization, 
firewalls, intrusion detection 

•  Many crooks out there seek ways to misuse the Internet towards 
their gain 


