
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 26

Protection and Security II,

April 29, 2010
Ion Stoica

http://inst.eecs.berkeley.edu/~cs162

Lec 26.2 4/29/10 CS162 ©UCB Spring 2010

Review: How easy to guess a password?
•  Ways of Compromising Passwords

–  Password Guessing:
» Often people use obvious information like birthday,

favorite color, girlfriend’s name, etc…
–  Dictionary Attack:

» Work way through dictionary and compare encrypted
version of dictionary words with entries in /etc/passwd

–  Dumpster Diving:
»  Find pieces of paper with passwords written on them
»  (Also used to get social-security numbers, etc)

•  Paradox:
–  Short passwords are easy to crack
–  Long ones, people write down!

•  Technology means we have to use longer passwords
–  UNIX initially required lowercase, 5-letter passwords:
total of 265=10million passwords

»  In 1975, 10ms to check a password→1 day to crack
»  In 2005, .01µs to check a password→0.1 seconds to crack

–  Takes less time to check for all words in the dictionary!

Lec 26.3 4/29/10 CS162 ©UCB Spring 2010

Review: Making password harder to crack
•  How can we make passwords harder to crack?

–  Can’t make it impossible, but can help

•  Technique 1: Extend everyone’s password with a unique
number (stored in password file)
–  Called “salt”. UNIX uses 12-bit “salt”, making dictionary
attacks 4096 times harder

– Without salt, would be possible to pre-compute all the
words in the dictionary hashed with the UNIX algorithm:
would make comparing with /etc/passwd easy!

•  Technique 2: Require more complex passwords
– Make people use at least 8-character passwords with
upper-case, lower-case, and numbers

»  708=6x1014=6million seconds=69 days@0.01µs/check
–  Unfortunately, people still pick common patterns

»  e.g. Capitalize first letter of common word, add one digit
Lec 26.4 4/29/10 CS162 ©UCB Spring 2010

Review: Making password harder to crack (con’t)
•  Technique 3: Delay checking of passwords

–  If attacker doesn’t have access to /etc/passwd, delay
every remote login attempt by 1 second

– Makes it infeasible for rapid-fire dictionary attack
•  Technique 4: Assign very long passwords

–  Long passwords or pass-phrases can have more entropy
(randomness→harder to crack)

–  Give everyone a smart card (or ATM card) to carry around
to remember password

» Requires physical theft to steal password
» Can require PIN from user before authenticates self

–  Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances to next random number

•  Technique 5: “Zero-Knowledge Proof”
–  Require a series of challenge-response questions

» Distribute secret algorithm to user
» Server presents a number, say “5”; user computes something

from the number and returns answer to server
» Server never asks same “question” twice

– Often performed by smartcard plugged into system

Page 2

Lec 26.5 4/29/10 CS162 ©UCB Spring 2010

Goals for Today

•  Distributed Authorization/Remote Storage
•  Buffer overflow
•  Worms and Viruses

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Also, slides adapted from Kubiatowicz and Paxson.

Lec 26.6 4/29/10 CS162 ©UCB Spring 2010

•  How do we decide who is authorized
to do actions in the system?

•  Access Control Matrix: contains
all permissions in the system
–  Resources across top

»  Files, Devices, etc…
–  Domains in columns

» A domain might be a user or a
group of permissions

» E.g. above: User D3 can read F2 or execute F3
–  In practice, table would be huge and sparse!

•  Two approaches to implementation
–  Access Control Lists: store permissions with each object

» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users

and permissions for each group
–  Capability List: each process tracks objects has
permission to touch

»  Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has

access to, not each page has list of processes …

Authorization: Who Can Do What?

Lec 26.7 4/29/10 CS162 ©UCB Spring 2010

How to perform Authorization for Distributed Systems?

•  Issues: Are all user names in world unique?
– No! They only have small number of characters
– Need something better, more unique to identify person

•  Suppose want to connect with any server at any time?
– Need an account on every machine! (possibly with
different user name for each account)

– OR: Need to use something more universal as identity
»  Public Keys! (Called “Principles”)
»  People are their public keys

Different
Authorization

Domains

Lec 26.8 4/29/10 CS162 ©UCB Spring 2010

Distributed Access Control

•  Distributed Access Control List (ACL)
–  Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)

» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

–  ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

File X
Owner Key:
0x22347EF…

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW: Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

 Certificate by
X’s owner

 Group Certificate

E(H(ACL), Kprivate,owner) E(H(GACL), Kprivate,group)

Page 3

Lec 26.9 4/29/10 CS162 ©UCB Spring 2010

Client 1
Domain 1

Distributed Access Control

•  Distributed Access Control List (ACL)
–  Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)

» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

–  ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key:
0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW: Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp,
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp,
Signature (group) E(“

Re
ad

X”
, K

pri
vat

e,c
lien

t)

 Ke
y:

0x
66

47
DB

C9
AC

…

Re
ad

Gr

ou
p

GA
CL

E(d
ata

, K pri
vat

e,s
ere

ver
)

Lec 26.10 4/29/10 CS162 ©UCB Spring 2010

Analysis of Previous Scheme
•  Positive Points:

–  Identities checked via signatures and public keys
» Client can’t generate request for data unless they have

private key to go with their public identity
» Server won’t use ACLs not properly signed by owner of file

– No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)

•  Revocation:
– What if someone steals your private key?

» Need to walk through all ACLs with your key and change…!
» This is very expensive

–  Have unique string identifying you that people place into
ACLs

» Then, ask Certificate Authority to give you a certificate
matching unique string to your current public key

» Client Request: E(request + unique ID, Kprivate,client); give server certificate if they ask for it.
»  Key compromise⇒must distribute “certificate revocation”,

since can’t wait for previous certificate to expire.
– What if you remove someone from ACL of a given file?

»  If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

Lec 26.11 4/29/10 CS162 ©UCB Spring 2010

Analysis Continued
•  Who signs the data?

– Or: How does client know they are getting valid data?
–  Signed by server?

» What if server compromised? Should client trust server?
–  Signed by owner of file?

» Better, but now only owner can update file!
»  Pretty inconvenient!

–  Signed by group of servers that accepted latest update?
»  If must have signatures from all servers ⇒ Safe, but one

bad server can prevent update from happening
»  Instead: ask for a threshold number of signatures
» Byzantine agreement can help here

•  How do you know that data is up-to-date?
–  Valid signature only means data is valid
–  Freshness attack:

» Malicious server returns old data instead of recent data
»  Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server

and prevents payroll from seeing latest version of update
–  Hard problem

» Needs to be fixed by invalidating old copies or having a
trusted group of servers (Byzantine Agreement?)

Lec 26.12 4/29/10 CS162 ©UCB Spring 2010

Administrivia
•  Final Exam

–  105 Stanley Hall
–  Friday, May 14, 7:00PM-10:00PM
–  All material from the course

» With slightly more focus on second half, but you are
still responsible for all the material

–  Closed books, two sheets of notes, both sides

•  Should be working on Project 4
–  Final Project due on Friday 5/7

•  I will have office hours next week at normal time
–  Tuesday & Thursday: 2-3pm

Page 4

Lec 26.13 4/29/10 CS162 ©UCB Spring 2010

Enforcement
•  Enforcer checks passwords, ACLs, etc

– Makes sure the only authorized actions take place
–  Bugs in enforcer⇒things for malicious users to exploit

•  In UNIX, superuser can do anything
–  Because of coarse-grained access control, lots of stuff
has to run as superuser in order to work

–  If there is a bug in any one of these programs, you lose!
•  Paradox

–  Bullet-proof enforcer
» Only known way is to make enforcer as small as possible
» Easier to make correct, but simple-minded protection model

–  Fancy protection
» Tries to adhere to principle of least privilege
» Really hard to get right

•  Same argument for Java or C++: What do you make
private vs public?
–  Hard to make sure that code is usable but only necessary
modules are public

–  Pick something in middle? Get bugs and weak protection!
Lec 26.14 4/29/10 CS162 ©UCB Spring 2010

Host Compromise

•  Tricking a host into executing on your behalf
•  Can consider what is attacked (server or client)

and the semantic level at which it is attacked
•  Attacks on servers: client sends subversive

requests
–  Happens at attacker’s choosing
–  Some hosts are servers unknowingly!

•  Attacks on clients: server (attacker) waits for
client to connect, sends it a subversive reply
–  E.g., “drive-by” spyware
–  E.g., 2006 study found 15% of popular P2P files
infected by one of 52 different viruses

Lec 26.15 4/29/10 CS162 ©UCB Spring 2010

Buffer Overflow

•  Part of the request
sent by the attacker
too large to fit into
buffer server uses
to hold it

•  Spills over into
memory beyond the
buffer

•  Allows remote
attacker to inject
executable code

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

Lec 26.16 4/29/10 CS162 ©UCB Spring 2010

Example: Normal Execution

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

Stack
X + 200

Page 5

Lec 26.17 4/29/10 CS162 ©UCB Spring 2010

Example: Normal Execution

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

Stack

X

get_cookie()’s
stack frame

X + 200

Lec 26.18 4/29/10 CS162 ©UCB Spring 2010

Example: Normal Execution

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

return address back
to get_cookie()

Stack

X

X - 4

get_cookie()’s
stack frame

X + 200

Lec 26.19 4/29/10 CS162 ©UCB Spring 2010

Example: Normal Execution

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

return address back
to get_cookie()

cookie

n

Stack

X

X - 4

X - 8

X - 520

get_cookie()’s
stack frame

X + 200

Lec 26.20 4/29/10 CS162 ©UCB Spring 2010

Example: Normal Execution

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

return address back
to get_cookie()

cookie

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back

to munch()

strcpy()’s stack …

get_cookie()’s
stack frame

X + 200

Page 6

Lec 26.21 4/29/10 CS162 ©UCB Spring 2010

Example: Normal Execution

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

return address back
to get_cookie()

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back

to munch()

get_cookie()’s
stack frame

X + 200

cookie value read
from packet

Lec 26.22 4/29/10 CS162 ©UCB Spring 2010

Example: Normal Execution

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

return address back
to get_cookie()

cookie value read
from packet

n

Stack

X

X - 4

X - 8

X - 520

get_cookie()’s
stack frame

X + 200

Lec 26.23 4/29/10 CS162 ©UCB Spring 2010

Example: Normal Execution

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

return address back
to get_cookie()

Stack

X

X - 4

get_cookie()’s
stack frame

X + 200

Lec 26.24 4/29/10 CS162 ©UCB Spring 2010

Example: Normal Execution

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

Stack

X

get_cookie()’s
stack frame

X + 200

Page 7

Lec 26.25 4/29/10 CS162 ©UCB Spring 2010

Example: Buffer Overflow

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

return address back
to get_cookie()

cookie

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back

to munch()

strcpy()’s stack …

get_cookie()’s
stack frame

X + 200

Lec 26.26 4/29/10 CS162 ©UCB Spring 2010

Example: Buffer Overflow

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

return address back
to get_cookie()

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back

to munch()

get_cookie()’s
stack frame

X + 200 cookie
value
read
from

packet

Lec 26.27 4/29/10 CS162 ©UCB Spring 2010

get_cookie()’s
stack frame

return address back
to get_cookie()

Example: Buffer Overflow

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

<Doesn’t Matter>

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back

to munch()

X + 200

<Doesn’t Matter>

X

Executable
Code

Lec 26.28 4/29/10 CS162 ©UCB Spring 2010

get_cookie()’s
stack frame

return address back
to get_cookie()

Example: Buffer Overflow

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

<Doesn’t Matter>

Stack

X

X - 4

X - 8

X - 520

X + 200

<Doesn’t Matter>

X

Executable
Code

Page 8

Lec 26.29 4/29/10 CS162 ©UCB Spring 2010

get_cookie()’s
stack frame

return address back
to get_cookie()

Example: Buffer Overflow

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

Stack

X

X - 4

X + 200

X

Executable
Code Now branches to code read in from

the network

From here on, machine falls
under the attacker’s control

Lec 26.30 4/29/10 CS162 ©UCB Spring 2010

Buffer Overflows: Potential Solutions

•  Don’t write buggy software
–  It’s not like people try to write buggy software

•  Type-safe Languages
–  Unrestricted memory access of C/C++ contributes to
problem

–  Use Java, Perl, Python instead
•  OS architecture

–  Compartmentalize programs better, so one compromise
doesn’t compromise the entire system

–  E.g., DNS server doesn’t need total system access
•  Firewalls - restrict remote access to services
•  Intrusion detection: recognize attack & block it

Lec 26.31 4/29/10 CS162 ©UCB Spring 2010 31

Automated Compromise: Worms
•  When attacker compromises a host, they can

instruct it to do whatever they want
•  Instructing it to find more vulnerable hosts to

repeat the process creates a worm: a program
that self-replicates across a network
•  Often spread by picking 32-bit Internet addresses

at random to probe …
•  … but this isn’t fundamental

•  As the worm repeatedly replicates, it grows
exponentially fast because each copy of the worm
works in parallel to find more victims

Lec 26.32 4/29/10 CS162 ©UCB Spring 2010

Worms: Exponentially Fast …. and Big

•  Code Red 1 (2001)
•  369K hosts in 10 hours

•  Blaster (2003)
•  9M hosts in 9 days
•  25M hosts total

•  Slammer (2003)
•  75K hosts …
•  … in < 10 minutes
•  Peak scanning rate:

•  55M addresses/sec
•  Limited by Internet’s capacity

•  Theoretical worms
•  1M hosts in 1.3 sec (2004)
•  $50B+ damage (2004)

Page 9

Lec 26.33 4/29/10 CS162 ©UCB Spring 2010

Automated Compromise: Bots
•  Big worms are flashy but rare …
•  … With the commercialization of malware, the tool

of choice has shifted to the less noisy, more
directly controlled botnets

•  When host is (automatically) compromised, don’t
continue propagation
•  Instead install a command and control platform (a bot)

•  Now can monetize malware: sell access to bots
•  Spamming, phishing web sites, flooding attacks
•  “Crook’s Google Desktop”: sell capability of searching

the contents of 100,000s of hosts
•  (Note: we still worry about worms for

cyberwarfare)

Lec 26.34 4/29/10 CS162 ©UCB Spring 2010

Lec 26.35 4/29/10 CS162 ©UCB Spring 2010 Lec 26.36 4/29/10 CS162 ©UCB Spring 2010

Some other Attacks
•  Trojan Horse Example: Fake Login

–  Construct a program that looks like normal login program
–  Gives “login:” and “password:” prompts

» You type information, it sends password to someone, then
either logs you in or says “Permission Denied” and exits

–  In Windows, the “ctrl-alt-delete” sequence is supposed to
be really hard to change, so you “know” that you are
getting official login program

•  Salami attack: Slicing things a little at a time
–  Steal or corrupt something a little bit at a time
–  E.g.: What happens to partial pennies from bank interest?

» Bank keeps them! Hacker re-programmed system so that
partial pennies would go into his account.

» Doesn’t seem like much, but if you are large bank can be
millions of dollars

•  Eavesdropping attack
–  Tap into network and see everything typed
–  Catch passwords, etc
–  Lesson: never use unencrypted communication!

Page 10

Lec 26.37 4/29/10 CS162 ©UCB Spring 2010 Lec 26.38 4/29/10 CS162 ©UCB Spring 2010

Conclusion
•  Passwords

–  Encrypt them to help hid them
–  Force them to be longer/not amenable to dictionary attack
–  Use zero-knowledge request-response techniques

•  Distributed storage example
–  Revocation: How to remove permissions from someone?
–  Integrity: How to know whether data is valid
–  Freshness: How to know whether data is recent

•  Buffer-Overflow Attack: exploit bug to execute code
–  Worms spread exponentially fast

•  Defenses: type-safe languages, program compartmentalization,
firewalls, intrusion detection

•  Many crooks out there seek ways to misuse the Internet towards
their gain

