4/6/11

Data and Queries in the
Relational Model

CS 162 Guest Lecture
Mike Franklin
April 6, 2011

A relationship, I think, is like a shark,
you know? It has to constantly move
forward or it dies. And I think what we
got on our hands is a dead shark.

Woody Allen (from Annie Hall, 1979)

Data Models — Describing Data

¢ A Database design encodes
some portion of the real world.

o A Data Model is a set of
concepts for thinking about
this encoding.

* Many models have been
proposed.

¢ We will look at two
related models:

i) Entity-Relationship (graphical)
ii) Relational (implementation) m

string, age: integer, gpa:real)

Student (sid: string, name: string, login:

Steps in Database Design

¢ Requirements Analysis
= user needs; what must the database capture?

Conceptual Design
= high level description (often done w/ER model)

¢ Logical Design

= translate ER into DBMS data model
« Typically: “relational” model as implemented by SQL

Schema Refinement - consistency, normalization

Physical Design - indexes, disk layout

Security Design - who accesses what, and how

Conceptual Design using ER

¢ What are the entities and relationships?
¢ What info about E’'s & R’s should be in DB?
o What integrity constraints (business rules) hold?

o ER diagram is a representation of the *schema’
e Can map an ER diagram into a relational schema.

e Conceptual design is where the SW/data engineering
begins

= Rails “models”

4/6/11

Google eruoe Py

24 Everyting

oI
ER Example

\

.

Many-to- 1.to-
Many Many

®)

An employee can
work in many
departments; a
dept can have
many employees.

In contrast, each dept
has at most one
manager, according
to the key constraint
on Manages.

1-to-1

Many
-to-1

Participation Constraints
¢ Does every employee work in a department?
e If so: a participation constraint
= participation of Employees in Works_In is total (vs. partial)
= What if every department has an employee working in it?

e Basically means “at least one”

Crame> Cepee>
Cesn >

s>
o

Csince>

Implementation: The Relational Model
¢ The E-R model is not directly implemented by most DBMSs.

« Fairly easy to map an E-R design to a Relational Schema

e The Relational Model is Ubiquitous
= MySQL, PostgreSQL, Oracle, DB2, SQLServer, ...
= Note: some “Legacy systems” use older models
e e.g., IBM's IMS

e Object-oriented concepts have been merged in
« Early work: POSTGRES research project at Berkeley
o Informix, IBM DB2, Oracle 8i

As has support for XML (semi-structured data)

4/6/11

501 Relational Database: Definitions

o Relational database: a set of relations

e Relation: made up of 2 parts:

Schema : specifies name of relation, plus name
and type of each column

Students(sid: string, name: string, login:
string, age: integer, gpa: real)

Instance : the actual data at a given time
e #rows = cardinality
o #fields = degree / arity

Some Synonyms
Formal——Novsortonval 1| Notsoformal

Relation Table

Tuple Row Record
Attribute Column Field
Domain Type

& Ex: Instance of Students Relation

sid |[name login age | gpa
53656 |Jones |jones@cs 18 | 3.4
53688 |Smith [smith@eecs | 18 | 3.2
53650 |Smith |smith@math | 19 | 3.8

* Cardinality = 3, arity = 5, all rows distinct

* Do all values in each column of a relation instance
have to be distinct?

SQL - A language for Relational DBs

e Say: “ess-cue-ell” or “sequel”
= But spelled “SQL"
¢ Data Definition Language (DDL)
= create, modify, delete relations
= specify constraints
= administer users, security, etc.
¢ Data Manipulation Language (DML)

= Specify queries to find tuples that satisfy
criteria
= add, modify, remove tuples

4/6/11

Creating Relations in SQL

¢ Create the Students relation:

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
Togin CHAR(10),
age INTEGER,
gpa FLOAT)

& Table Creation (continued)

e Another example: the Enrolled table
holds information about courses
students take.

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))

=5 1Constraints - Keys

» Keys are a way to associate tuples in
different relations

 Keys are one form of integrity constraint
(I0)

Enrolled Students
sid cid grade . -
53666| |Carnatic101 | C N N I o e
53666|| Reggac203 B 5366% Jones jones@cs 18 | 34
53650 | Topology 112 A 53688| Smith |smith@eecs| 18 | 3.2
53666 | History 105 B 53650| Smith |smith@math| 19 | 3.8

FOREIGN Key PRIMARY Key

Primary and Candidate Keys in SQL

¢ Possibly many candidate keys (specified using UNIQUE),
one of which is chosen as the primary key.

« Keys must be used carefully!
« “For a given student and course, there is a single grade.”

CREATE TABLE Enrolled ©R
(sid CHAR(20)
cid CHAR(20), VS.
grade CHAR(2),
PRIMARY KEY (sid,cid))

“Students can take only one course, and no two students
in a course receive the same grade.”

4/6/11

=\ Foreign Keys, Referential Integrity

e Foreign key: a “logical pointer”

= Set of fields in a tuple in one relation
that “refer’ to a tuple in another relation.

= Reference to primary key of the other relation.

« All foreign key constraints enforced?
= referential integrity!
= i.e., no dangling references.

=1 Foreign Keys in SQL

¢ E.g. Only students listed in the Students relation
should be allowed to enroll for courses.

= sidis a foreign key referring to Students:

CREATE TABLE Enrolled

(sid CHAR(20),cid CHAR(20),grade CHAR(2),
PRIMARY KEY (sid,cid),

FOREIGN KEY (sid) REFERENCES Students);

Enrolled

sid gt grade Sstigder?;rsne login age | gpa
33666 |Camnaticl01 | C "™~ |55666 jones [jones@os || 18 | 3.4
53666 |Reggae203 B))

53650 Topologyl12 | A §>‘<53688 Smith [smith@eecs || 18 | 3.2
53666 |History105 B 53650 Smith [smith@math| 19 | 3.8

= Enforcing Referential Integrity

¢ sidin Enrolled: foreign key referencing Students.

e Scenarios:
= Insert Enrolled tuple with non-existent student id?
= Delete a Students tuple?
¢ Also delete Enrolled tuples that refer to it? (Cascade)
« Disallow if referred to? (No Action)
 Set sid in referring Enrolled tuples to a default value? (Set Default)

 Set sid in referring Enrolled tuples to null, denoting ‘unknown’or
‘inapplicable’. (Set NULL)

« Similar issues arise if primary key of Students tuple is
updated.

1 Integrity Constraints (ICs)

e IC: condition that must be true for any
instance of the database
* e.g., domain constraints.
= ICs are specified when schema is defined.
= ICs are checked when relations are modified.
¢ A /egal instance of a relation is one that
satisfies all specified ICs.
= DBMS should not allow illegal instances.
o If the DBMS checks ICs, stored data is more
faithful to real-world meaning.
= Avoids data entry errors, too!

4/6/11

Where do ICs Come From?

¢ Semantics of the real world!
= Should be determined during Requirements
Analysis and/or Conceptual Design phases
¢ Note:
= We can check IC violation in a DB instance
= We can NEVER infer that an IC is true by looking
at an instance.
« An IC is a statement about all possible instances!
= From example, we know name is not a key, but
the assertion that sid is a key is given to us.
* Key and foreign key ICs are the most
common

¢ More general ICs supported too.

1 Adding and Deleting Tuples

¢ Can insert a single tuple using:
INSERT INTO Students (sid, name, login, age, gpa)
VALUES ('53688', 'smith', 'smith@ee',6 18, 3.2)

. Can delete all tuples satisfying some condition
(e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = 'Smith'

Powerful variants of these commands are available;

Relational Query Languages

e Feature: Simple, powerful ad hoc
querying
¢ Declarative languages
= Queries precisely specify what to return
= DBMS is responsible for efficient evaluation
(how).
= Allows the optimizer to extensively re-order
operations, and still ensure that the answer
does not change.
* Key to data independence!

The SQL Query Language

¢ The most widely used relational query
language.
= Current std is SQL:2008; SQL92 is a basic subset
¢ To find all 18 year old students, we can write:

sid .name login age|gpa

SELECT *
FROM Students S
WHERE S.age=18

53666 |Jones |jones@cs |18 |3.4
53688|Smith [smith@ee |18 |3.2
53650|Smith |smith@math| 19 3.8

« To find just names and logins, replace the first line:

SELECT S.name, S.login

4/6/11

Querying Multiple Relations

* What does the following query compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E

Cross-product of Students and Enrolled Instances

S.sid |S.name S.login S.age |S.gpa| E.sid E.cid E.grade
53666 | Jones | jones@cs 18 3.4 |53831 |Carnatic101 C

53666 | Jones | jones@cs 18 3.4 |53832 |Reggac203 B
WHERE S.sid=E.sid AND E.grade='A" 53666 |Jones | jones@cs 18 34 |53650 |Topologyl12 | A
53666 | Jones | jones@cs 18 3.4 |53666 |Historyl05 B
i i X = : 53688 | Smith | smith@ee 18 3.2 |53831 |Carnaticl01 C
Given the following instances sid cid grade 53688 | Smith |smith@ee |18 |3.2 |53831 |Reggac203 B
f : 53831 |Carnatic101 C 53688 [Smith | smith@ee 18 3.2 |53650 | Topologyl12 | A
. .name g age|gpa 53831 |Reggae203 B 53688 [Smith | smith@ee 18 3.2 |53666 |Historyl05 B
53666|Jones |jones@cs 18 (3.4 53650 | Topol 112 A 53650 | Smith | smith@math | 19 3.8 |53831 |Carnaticl101 C
53688 | Smith]smith%ee 18 3.2 53666 Hcl’stc(’)l";/gl)(,)S B 53650 Sm%th Sm%lh@mah 19 3.8 53831 |Reggac203 B
53650|Smith |smith@math 19 | 3.8 53650 | Smith | smith@matl | 19 3.8 |53650 | Topologyll2 | A
3 53650 | Smith | smith@math | 19 3.8 153666 | Historyl05 B
. S.name | E.cid
we get:
Smith | Topology112
&> Query Optimization Overview Relational Operations
¢ Query can be converted to relational algebra
* Rel. Algebra converted to tree, joins as branches * Some “logical” operators:
¢ Each operator has implementation choices = Selection (o) Selects a subset of rows from relation.
e Operators can also be applied in different order! = Projection (n) Deletes unwanted columns from relation.
= Join (><i) Allows us to combine two relations.
= Set-difference (-) Tuplesin reln. 1, but not in reln. 2.
SELECT S.sname m = Union (U) SI'u)les iﬁ reln. 1 and i,n reln. 2
FROM Reserves R, Sailors $ Tme Aggregation (sum pMIN etc.) a;nd GROUP BY o
.
. : ggreg , .
WHERE R:sid=S.sid AND o A !
R.bid=100 AND S rating>5 ""’=‘°°‘ raina>

‘ / DD sioesia
T8 sname)O(bid=100 A rating > 5) (Reserves 1>< Sailors) / \

Reserves Sailors

¢ Since each op returns a relation, ops can be
composed! After we cover the operations, we will
discuss how to optimize queries formed by composing
them.

4/6/11

01 A Really Simple Query Optimizer
e For each Select-From-Where query block

= Create a plan that:
* Forms the cartesian product .

predicates

tables

of the FROM clause
* Applies the WHERE clause
o Incredibly inefficient
— Huge intermediate results!

e Then, as needed:
= Apply the GROUP BY clause
= Apply the HAVING clause
= Apply any projections and output expressions
= Apply duplicate elimination and/or ORDER BY

The Query Optimization Game

¢ “Optimizer” is a bit of a misnomer...

* Goal is to pick a “good” (i.e., low
expected cost) plan.
= Involves choosing access methods,
physical operators, operator orders, ...

= Notion of cost is based on an abstract
“cost model”

Cost-based Query Sub-System

Select *
Queries | From Blah B
Where B.blah = blah

Query Optimizer

Usually there is a
heuristics-based

rewriting step before
the cost-based steps.

Plan Plan Cost Catalog Manager
Generator| | Estimator

|

‘ Query Plan Evaluator

51 Query Processing Overview

o The query optimizer translates SQL to a special internal
“language”
= Query Plans

e The query executor is an interpreter for query plans

e Think of query plans as “box-and-arrow”
dataflow diagrams

= Each box implements a relational operator

= Edges represent a flow of tuples (columns as
specified)

= For single-table queries, these diagrams are
straight-line graphs

name, gpa

name, gpa

SELECT DISTINCT name, gpa
FROM Students

Optimizer
name, gpa

4/6/11

Iterators

The relational operators are all subclasses of the class
iterator:

class iterator {
void initQ;
tuple next(Q);
void close();
iterator inputs[];
// additional state goes here

}

¢ Note:

Edges in the graph are specified by inputs (max 2,
usually)

Encapsulation: any iterator can be input to any other!

When subclassing, different iterators will keep different
kinds of state information

class Scan extends iterator {
void init(Q);
tuple next(Q);
void close();
iterator inputs[1];
bool_expr filter_expr;
proj_attr_list proj_list;

Example: Scan

initQ:

= Set up internal state

= call init() on child — often a file open

next():

= call next() on child until qualifying tuple found or EOF

= keep only those fields in “proj_list”

= return tuple (or EOF -- “End of File” -- if no tuples remain)
close(Q):

= call close() on child

= clean up internal state

Note: Scan also applies “selection” filters and “projections”
(without duplicate elimination)

class Sort extends iterator {
void init(Q;
tuple next(Q);
void close();
iterator inputs[1];
int numberOfRuns;
DiskBlock runs[];
RID nextRID[];

Example: Sort

}

initQ:

= generate the sorted runs on disk

= Allocate runs[] array and fill in with disk pointers.

= Initialize numberOfRuns

= Allocate nextRID array and initialize to NULLs
next():

= nextRID array tells us where we’ re “up to” in each run

= find the next tuple to return based on nextRID array

= advance the corresponding nextRID entry

= return tuple (or EOF -- “End of File” -- if no tuples remain)
close(Q):

= deallocate the runs and nextRID arrays

Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

* Reserves:
= Each tuple is 40 bytes long, 100 tuples per
page, 1000 pages.
= Let's say there are 100 boats.
e Sailors:

= Each tuple is 50 bytes long, 80 tuples per page,
500 pages.

= Let's say there are 10 different ratings.
« Assume we have 5 pages in our buffer pool.

4/6/11

&) Motivating Example

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

e Cost: 500+500*1000 I/Os pan: 1T
« By no means the worst plan!
* Misses several opportunities: selections

could have been "pushed’ earlier, no bid=100/\ rating>5 (On-the-fly)
use is made of any available indexes, ‘

<name (On-the-fly)

etc.

* Goal of optimization: To find more ><1 (Page-Oriented
efficient plans that compute the same sid=sid Nested loops)
answer.

Sailors Reserves

AIternative Plans — Push Selects

(No Indexes)

m (On-the-fly)

sname

T bid=100/\ rating>5 (On-the-fly)

><1 (Page-Oriented
sid=sid Nested loops)

PN

Sailors Reserves

500,500 10s

M, ame (On-the-fly)

o
bid=100 (On-the-fly)

> (Page-Oriented
sid=sid Nested loops)

o
rating> 5 on.the-fly) Reserves

Sailors

250,500 10s

AIternative Plans — Push Selects
(No Indexes)

Wsname (On-the-fly) _
M, e (On-the-fly)

bid=100 (On-the-fly) s e orientod
age-Oriente
sid=sid Nested loops)

><1 (Page-Oriented

sid=sid Nested loops) Graﬁng >5 bid = 100
_the- On-the-fly)
Grating >5 (On-the-fly) {
‘ (On-the-fly) Reserves Sailors Reserves
Sailors
250,500 10s 250,500 10s

01 Alternative Plans — Push Selects

(No Indexes)

Wsname (On-the-fly)

bid=100 (On-the-fly)

><1 (Page-Oriented
sid=sid Nested loops)

O'rating > 5

Sailors

(On-the-fly) Reserves

250,500 I10s

m (On-the-fly)

sname

Graling >5 (On-the-fly)

><1 (Page-Oriented
sid=sid Nested loops)

/

bid=100 (On-the-fly) Sailors

Reserves

6000 10s

10

Alternative Plans — Push Selects Alternative Plans — Push Selects
(No Indexes) (No Indexes)
Mgname (On-the-fly) Ty ame (On-the-fly) T,rame (On-the-fly)
Wsname (On-the-fly)
GYBNHQ >5 (On-the-fly) ><1 (Page-Oriented ><1 (Page-Oriented
sid=sid Nested loops) sid=sid Nested loops)
><1 (Page-Oriented \
id=sid Nested loops) Scan & Scan &
< (:agte-‘(j)rliented =S O big=100 o rating > 5 glv:::en to Orating>s 9 big=100 $N:|?: to
sid=sid Nested loops) Toisermn 0 ting > 5 ﬁzf:ti (On-the-fly) temp T2) (On-the-fly) temp T2)
[= . the-d temp T2)
bid=100 (On-the-fly) Sailors (On-the-fly) Reserves Sailors Sailors Reserves
Reserves Sailors
Reserves 4250 10s 4010 10s .
4250 10s 500 + 1000 +10 +(250 *10)
6000 10s 1000 + 500+ 250 + (10 * 250)

Scan Sailors (500) + write temp T2 (250 pages, if have 10 ratings).
= Sort T1 (2*%2*10), sort T2 (2*4*250), merge (10+250)

= Total: 4060 page I/Os. (note: T2 sort takes 4 passes with B=5)
o If use BNL join, join = 10+4*250, total cost = 2770.

Can also " push’ projections, but must be careful!
= T1 has only sid, T2 only sid, sname:

= T1 fits in 3 pgs, cost of BNL under 250 pgs, total < 2000

. T onamel O the-fly) Cost-based Query Sub-System
& Alternative Plans
=<1 (Sort-Merge Join) : select
i . s Queries ;;om Béangh blah

o Sort Merge Join {Yhere B:blah - blah)
 With 5 buffers, cost of plan: (Sean Opigetoo Crating>5 &?rclfe"flg

Scan Reserves (1000) + temp T1) temp 12)

write temp T1 (10 pages, Reserves Sailors
w/ 100 boats, uniform distribution).

Query Opti;11izer
Plan Plan Cost Catalog Manager
Generator| | Estimator

|

‘ Query Plan Evaluator

1

4/6/11

m Relational Model: Summary

ER is a high-level model that is typlcally not directly
implemented but is “user-friendly”

Relational Model: A tabular representation of data.

Simple and intuitive, currently the most widely used
= Object-relational and XML extensions in most products

Integrity constraints

= Specified by the DB designer to capture application semantics.

= DBMS prevents violations.

= Some important ICs:
« primary and foreign keys
¢ Domain constraints

Powerful query languages:

= SQL is the standard commercial one
« DDL - Data Definition Language
« DML - Data Manipulation Language

Lots of machinery to ensure “declarative”-ness

4/6/11

12

