
4/6/11

1

Data and Queries in the
 Relational Model

CS 162 Guest Lecture
Mike Franklin
April 6, 2011

A relationship, I think, is like a shark,
you know? It has to constantly move
forward or it dies. And I think what we
got on our hands is a dead shark.

Woody Allen (from Annie Hall, 1979)

Data Models – Describing Data
•  A Database design encodes

some portion of the real world.

•  A Data Model is a set of
concepts for thinking about
this encoding.

•  Many models have been
proposed.

10101
11101

Student (sid: string, name: string, login:
string, age: integer, gpa:real)

•  We will look at two
related models:
i) Entity-Relationship (graphical)
ii) Relational (implementation)

Steps in Database Design
•  Requirements Analysis

  user needs; what must the database capture?

•  Conceptual Design
  high level description (often done w/ER model)

•  Logical Design
  translate ER into DBMS data model

• Typically: “relational” model as implemented by SQL

•  Schema Refinement - consistency, normalization

•  Physical Design - indexes, disk layout

•  Security Design - who accesses what, and how

Conceptual Design using ER

•  What are the entities and relationships?

•  What info about E’s & R’s should be in DB?

•  What integrity constraints (business rules) hold?

•  ER diagram is a representation of the `schema’

•  Can map an ER diagram into a relational schema.

•  Conceptual design is where the SW/data engineering
begins
  Rails “models”

4/6/11

2

ER Example

 An employee can
work in many
departments; a
dept can have
many employees.

1-to-1 Many-to-
Many

since

Manages

dname

budget did

Departments

since

Works_In

lot

name

ssn

Employees

In contrast, each dept
has at most one
manager, according
to the key constraint
on Manages.

1-to-
Many

Many
-to-1

Participation Constraints
•  Does every employee work in a department?
•  If so: a participation constraint

  participation of Employees in Works_In is total (vs. partial)
  What if every department has an employee working in it?

•  Basically means “at least one”

lot
name dname

budget did

since
name dname

budget did

since

Manages

since

Departments Employees

ssn

Works_In

Implementation: The Relational Model
•  The E-R model is not directly implemented by most DBMSs.

•  Fairly easy to map an E-R design to a Relational Schema

•  The Relational Model is Ubiquitous
  MySQL, PostgreSQL, Oracle, DB2, SQLServer, …
  Note: some “Legacy systems” use older models

• e.g., IBM’s IMS

•  Object-oriented concepts have been merged in
• Early work: POSTGRES research project at Berkeley
•  Informix, IBM DB2, Oracle 8i

•  As has support for XML (semi-structured data)

4/6/11

3

Relational Database: Definitions

•  Relational database: a set of relations
•  Relation: made up of 2 parts:

Schema : specifies name of relation, plus name
and type of each column

 Students(sid: string, name: string, login:
string, age: integer, gpa: real)

Instance : the actual data at a given time
• #rows = cardinality
• #fields = degree / arity

Some Synonyms

Formal Not-so-formal 1 Not-so-formal 2

Relation Table

Tuple Row Record

Attribute Column Field

Domain Type

Ex: Instance of Students Relation

sid name login age gpa

536 6 6 Jones jones @c s 18 3.4

536 8 8 Smith smith@e e cs 18 3.2

536 5 0 Smith smith @m ath 19 3.8

•  Cardinality = 3, arity = 5 , all rows distinct

•  Do all values in each column of a relation instance
 have to be distinct?

SQL - A language for Relational DBs

•  Say: “ess-cue-ell” or “sequel”
  But spelled “SQL”

•  Data Definition Language (DDL)
  create, modify, delete relations
  specify constraints
  administer users, security, etc.

•  Data Manipulation Language (DML)
  Specify queries to find tuples that satisfy

criteria
  add, modify, remove tuples

4/6/11

4

Creating Relations in SQL

•  Create the Students relation:

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa FLOAT)

Table Creation (continued)

•  Another example: the Enrolled table
holds information about courses
students take.

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2))

Constraints - Keys

•  Keys are a way to associate tuples in
different relations

•  Keys are one form of integrity constraint
(IC)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

sid cid grade

53666 Carnatic101 C

53666 Reggae203 B

53650 Topology112 A

53666 History105 B

Enrolled Students

PRIMARY Key FOREIGN Key

Primary and Candidate Keys in SQL
•  Possibly many candidate keys (specified using UNIQUE),

one of which is chosen as the primary key.

•  Keys must be used carefully!
•  “For a given student and course, there is a single grade.”

“Students can take only one course, and no two students
in a course receive the same grade.”

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

 vs.

4/6/11

5

Foreign Keys, Referential Integrity

•  Foreign key: a “logical pointer”
  Set of fields in a tuple in one relation

that `refer’ to a tuple in another relation.
  Reference to primary key of the other relation.

•  All foreign key constraints enforced?
  referential integrity!
  i.e., no dangling references.

Foreign Keys in SQL

•  E.g. Only students listed in the Students relation
should be allowed to enroll for courses.
  sid is a foreign key referring to Students:

 CREATE TABLE Enrolled
 (sid CHAR(20),cid CHAR(20),grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students);

sid cid grade

53666 Carnatic101 C

53666 Reggae203 B

53650 Topology112 A

53666 History105 B

Enrolled
sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@eecs 18 3.2

53650 Smith smith@math 19 3.8

Students

11111 English102 A

Enforcing Referential Integrity

•  sid in Enrolled: foreign key referencing Students.
•  Scenarios:

  Insert Enrolled tuple with non-existent student id?
  Delete a Students tuple?

•  Also delete Enrolled tuples that refer to it? (Cascade)
•  Disallow if referred to? (No Action)
•  Set sid in referring Enrolled tuples to a default value? (Set Default)
•  Set sid in referring Enrolled tuples to null, denoting `unknown’ or

`inapplicable’. (Set NULL)

•  Similar issues arise if primary key of Students tuple is
updated.

Integrity Constraints (ICs)

•  IC: condition that must be true for any
instance of the database
  e.g., domain constraints.
  ICs are specified when schema is defined.
  ICs are checked when relations are modified.

•  A legal instance of a relation is one that
satisfies all specified ICs.
  DBMS should not allow illegal instances.

•  If the DBMS checks ICs, stored data is more
faithful to real-world meaning.
  Avoids data entry errors, too!

4/6/11

6

Where do ICs Come From?
•  Semantics of the real world!

  Should be determined during Requirements
Analysis and/or Conceptual Design phases

•  Note:
  We can check IC violation in a DB instance
  We can NEVER infer that an IC is true by looking

at an instance.
•  An IC is a statement about all possible instances!

  From example, we know name is not a key, but
the assertion that sid is a key is given to us.

•  Key and foreign key ICs are the most
common

•  More general ICs supported too.

Adding and Deleting Tuples

•  Can insert a single tuple using:
INSERT INTO Students (sid, name, login, age, gpa)
 VALUES ('53688', 'Smith', 'smith@ee', 18, 3.2)

•  Can delete all tuples satisfying some condition
(e.g., name = Smith):

DELETE
 FROM Students S
 WHERE S.name = 'Smith'

Powerful variants of these commands are available;

Relational Query Languages

•  Feature: Simple, powerful ad hoc
querying

•  Declarative languages
 Queries precisely specify what to return
  DBMS is responsible for efficient evaluation

(how).
  Allows the optimizer to extensively re-order

operations, and still ensure that the answer
does not change.
• Key to data independence!

The SQL Query Language

•  The most widely used relational query
language.
  Current std is SQL:2008; SQL92 is a basic subset

•  To find all 18 year old students, we can write:

SELECT *
 FROM Students S
 WHERE S.age=18

•  To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name age gpa

53666 Jones 18 3.4

53688 Smith 18 3.2

53650 Smith

login

jones@cs

smith@ee

smith@math 19 3.8

4/6/11

7

 Querying Multiple Relations
•  What does the following query compute?

SELECT S.name, E.cid
 FROM Students S, Enrolled E
 WHERE S.sid=E.sid AND E.grade='A'

sid cid grade

53831 Carnatic101 C

53831 Reggae203 B

53650 Topology112 A

53666 History105 B

Given the following instances

S.name E.cid

Smith Topology112

we get:

sid name age gpa

53666 Jones 18 3.4

53688 Smith 18 3.2

53650 Smith

login

jones@cs

smith@ee

smith@math 19 3.8

Cross-product of Students and Enrolled Instances

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade
53666 Jones jones@cs 18 3.4 53831 Carnatic101 C

53666 Jones jones@cs 18 3.4 53832 Reggae203 B

53666 Jones jones@cs 18 3.4 53650 Topology112 A

53666 Jones jones@cs 18 3.4 53666 History105 B

53688 Sm ith smith@ee 18 3.2 53831 Carnatic101 C

53688 Smith smith@ee 18 3.2 53831 Reggae203 B

53688 Smith smith@ee 18 3.2 53650 Topology112 A

53688 Smith smith@ee 18 3.2 53666 History105 B

53650 Smith smith@math 19 3.8 53831 Carnatic101 C

53650 Smith smith@ma th 19 3.8 53831 Reggae203 B

53650 Smith smith@math 19 3.8 53650 Topology112 A

53650 Smith smith@math 19 3.8 53666 History105 B

Query Optimization Overview

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND

 R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

•  Query can be converted to relational algebra
•  Rel. Algebra converted to tree, joins as branches
•  Each operator has implementation choices
•  Operators can also be applied in different order!

π(sname)σ(bid=100 ∧ rating > 5) (Reserves  Sailors)

Relational Operations

•  Some “logical” operators:
  Selection (σ) Selects a subset of rows from relation.
  Projection (π) Deletes unwanted columns from relation.
  Join () Allows us to combine two relations.
  Set-difference (-) Tuples in reln. 1, but not in reln. 2.
  Union (∪) Tuples in reln. 1 and in reln. 2.
  Aggregation (SUM, MIN, etc.) and GROUP BY

•  Since each op returns a relation, ops can be
composed! After we cover the operations, we will
discuss how to optimize queries formed by composing
them.

4/6/11

8

A Really Simple Query Optimizer
•  For each Select-From-Where query block

  Create a plan that:
•  Forms the cartesian product

of the FROM clause
• Applies the WHERE clause
•  Incredibly inefficient

–  Huge intermediate results!

•  Then, as needed:
  Apply the GROUP BY clause
  Apply the HAVING clause
  Apply any projections and output expressions
  Apply duplicate elimination and/or ORDER BY

×
σpredicates

tables
…	

The Query Optimization Game

•  “Optimizer” is a bit of a misnomer…

•  Goal is to pick a “good” (i.e., low
expected cost) plan.
  Involves choosing access methods,

physical operators, operator orders, …
  Notion of cost is based on an abstract
“cost model”

Cost-based Query Sub-System

Query Plan Evaluator

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Statistics

Catalog Manager

Schema

Select *
From Blah B
Where B.blah = blah

Queries

Query Parser

Query Processing Overview
•  The query optimizer translates SQL to a special internal
“language”
  Query Plans

•  The query executor is an interpreter for query plans
•  Think of query plans as “box-and-arrow”

dataflow diagrams
  Each box implements a relational operator
  Edges represent a flow of tuples (columns as

specified)
  For single-table queries, these diagrams are

straight-line graphs

HeapScan

Sort

Distinct

name, gpa

name, gpa

name, gpa

Optimizer SELECT DISTINCT name, gpa
 FROM Students

4/6/11

9

Iterators
•  The relational operators are all subclasses of the class

iterator:

class iterator {
 void init();
 tuple next();
 void close();
 iterator inputs[];

 // additional state goes here
}

•  Note:
  Edges in the graph are specified by inputs (max 2,

usually)
  Encapsulation: any iterator can be input to any other!
  When subclassing, different iterators will keep different

kinds of state information

Distinct

HeapScan

Filter

HashAgg

Filter

Sort

Example: Scan

•  init():
  Set up internal state
  call init() on child – often a file open

•  next():
  call next() on child until qualifying tuple found or EOF
  keep only those fields in “proj_list”

  return tuple (or EOF -- “End of File” -- if no tuples remain)
•  close():

  call close() on child
  clean up internal state

Note: Scan also applies “selection” filters and “projections”
 (without duplicate elimination)

class Scan extends iterator {
 void init();
 tuple next();
 void close();
 iterator inputs[1];
 bool_expr filter_expr;
 proj_attr_list proj_list;
}

Example: Sort

•  init():
  generate the sorted runs on disk
  Allocate runs[] array and fill in with disk pointers.
  Initialize numberOfRuns
  Allocate nextRID array and initialize to NULLs

•  next():
  nextRID array tells us where we’re “up to” in each run
  find the next tuple to return based on nextRID array
  advance the corresponding nextRID entry
  return tuple (or EOF -- “End of File” -- if no tuples remain)

•  close():
  deallocate the runs and nextRID arrays

class Sort extends iterator {
 void init();
 tuple next();
 void close();
 iterator inputs[1];
 int numberOfRuns;
 DiskBlock runs[];
 RID nextRID[];
}

Schema for Examples

•  Reserves:
  Each tuple is 40 bytes long, 100 tuples per

page, 1000 pages.
  Let’s say there are 100 boats.

•  Sailors:
  Each tuple is 50 bytes long, 80 tuples per page,

500 pages.
  Let’s say there are 10 different ratings.

•  Assume we have 5 pages in our buffer pool.

Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

4/6/11

10

Motivating Example

•  Cost: 500+500*1000 I/Os
•  By no means the worst plan!
•  Misses several opportunities: selections

could have been `pushed’ earlier, no
use is made of any available indexes,
etc.

•  Goal of optimization: To find more
efficient plans that compute the same
answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

 R.bid=100 AND S.rating>5

Sailors Reserves

sid=sid

bid=100 rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly) Plan:

500,500 IOs

Alternative Plans – Push Selects
(No Indexes)

Sailors Reserves

sid=sid

bid=100 rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

250,500 IOs

Alternative Plans – Push Selects
(No Indexes)

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

Sailors Reserves

sid=sid

bid = 100

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

rating > 5

(On-the-fly) (On-the-fly)

250,500 IOs 250,500 IOs

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

6000 IOs

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100

(On-the-fly)

250,500 IOs

Alternative Plans – Push Selects
(No Indexes)

4/6/11

11

Sailors Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

bid=100
(Scan &
Write to
temp T2) (On-the-fly)

6000 IOs

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100

(On-the-fly)

Alternative Plans – Push Selects
(No Indexes)

4250 IOs
1000 + 500+ 250 + (10 * 250)

Reserves Sailors

sid=sid

bid=100

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

rating>5
(Scan &
Write to
temp T2) (On-the-fly)

Alternative Plans – Push Selects
(No Indexes)

4010 IOs
500 + 1000 +10 +(250 *10)

Sailors Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

bid=100
(Scan &
Write to
temp T2) (On-the-fly)

4250 IOs

Alternative Plans

•  Sort Merge Join
•  With 5 buffers, cost of plan:

  Scan Reserves (1000) +
 write temp T1 (10 pages,
 w/ 100 boats, uniform distribution).

  Scan Sailors (500) + write temp T2 (250 pages, if have 10 ratings).
  Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250)

  Total: 4060 page I/Os. (note: T2 sort takes 4 passes with B=5)

•  If use BNL join, join = 10+4*250, total cost = 2770.

•  Can also `push’ projections, but must be careful!
  T1 has only sid, T2 only sid, sname:
  T1 fits in 3 pgs, cost of BNL under 250 pgs, total < 2000.

Reserves Sailors

sid=sid

bid=100

sname (On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Cost-based Query Sub-System

Query Plan Evaluator

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Statistics

Catalog Manager

Schema

Select *
From Blah B
Where B.blah = blah

Queries

Query Parser

4/6/11

12

Relational Model: Summary
•  ER is a high-level model that is typically not directly

implemented but is “user-friendly”
•  Relational Model: A tabular representation of data.
•  Simple and intuitive, currently the most widely used

  Object-relational and XML extensions in most products

•  Integrity constraints
  Specified by the DB designer to capture application semantics.
  DBMS prevents violations.
  Some important ICs:

•  primary and foreign keys
•  Domain constraints

•  Powerful query languages:
  SQL is the standard commercial one

•  DDL - Data Definition Language
•  DML - Data Manipulation Language

•  Lots of machinery to ensure “declarative”-ness

