
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 2  

Concurrency: 
Processes, Threads, and Address Spaces"

January 24th, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 1.2!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Very Brief History of OS"
•  Several Distinct Phases:!

– Hardware Expensive, Humans Cheap !
»  Eniac, … Multics!

– Hardware Cheaper, Humans Expensive !
»  PCs, Workstations, Rise of GUIs!

– Hardware Really Cheap, Humans Really Expensive !
» Ubiquitous devices, Widespread networking!

•  Rapid Change in Hardware Leads to changing OS!
– Batch ⇒ Multiprogramming ⇒ Timeshare ⇒ Graphical UI ⇒

Ubiquitous Devices!
– Gradual Migration of Features into Smaller Machines!

•  Situation today is much like the late 60s!
– Small OS: 100K lines/Large: 10M lines (5M browser!)!
– 100-1000 people-years!

Lec 1.3!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Review: Migration of OS Concepts and
Features"

Lec 1.4!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Implementation Issues  
(How is the OS implemented?)"

•  Policy vs. Mechanism!
– Policy: What do you want to do?!
– Mechanism: How are you going to do it?!
– Should be separated, since policies change !

•  Algorithms used!
– Linear, Tree-based, Log Structured, etc…!

•  Event models used!
– Threads vs. event loops!

•  Backward compatibility issues!
– Very important for Windows 2000/XP/Vista/…!
– POSIX tries to help here!

•  System generation/configuration!
– How to make generic OS fit on specific hardware!

Page 2

Lec 1.5!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Goals for Today"
•  How do we provide multiprogramming?!
•  What are processes?!
•  How are they related to threads and address

spaces?!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Kubiatowicz."

Lec 1.6!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Threads"
•  Unit (“thread”) of execution:!

–  Independent Fetch/Decode/Execute loop!
– Unit of scheduling!
– Operating in some address space"

•  Uniprogramming: one thread at a time!
– MS/DOS, early Macintosh, Batch processing!

•  Multiprogramming: more than one thread at a time!
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, Mac

OS X!

•  ManyCore ⇒ Multiprogramming, right?"

Lec 1.7!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Fetch"
Exec"

R0"
…"

R31"
F0"
…"

F30"
PC"

…"
Data1"
Data0"

Inst237"
Inst236"

…"
Inst5"
Inst4"
Inst3"
Inst2  
Inst1"
Inst0"

Addr 0"

Addr 232-1"

Recall (61C): What happens during execution?"

•  Execution sequence:!
– Fetch Instruction at PC !
– Decode!
– Execute (possibly using registers)!
– Write results to registers/mem!
– PC = Next Instruction(PC)!
– Repeat !

PC"
PC"
PC"
PC"

Lec 1.8!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Uniprograming vs. Multiprograming"

•  Uniprogramming: one thread at a time!
– MS/DOS, early Macintosh, Batch processing!
– Easier for operating system builder!
– Get rid of concurrency (only one thread accessing resources!)!
– Does this make sense for personal computers?!

•  Multiprogramming: more than one thread at a time!
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, Mac OS X!
– Often called “multitasking”, but multitasking has other

meanings (talk about this later)!

Page 3

Lec 1.9!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Challenges of Multiprograming"

•  Each applications wants to own the machine  virtual
machine abstraction"

•  Applications compete with each other for resources!
– Need to arbitrate access to shared resources  concurrency"
– Need to protect applications from each other  protection"

•  Applications need to communicate/cooperate with each
other  concurrency"

Lec 1.10!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Processes"
•  Process: unit of resource allocation and execution!

– Owns memory (address space)!
– Owns file descriptors, file system context, …!
– Encapsulate one or more threads sharing process

resources!

•  Why processes? !
– Navigate fundamental tradeoff between protection and

efficiency!
– Processes provides memory protection while threads

donʼt (share a process memory)!
– Threads more efficient than processes (later)!

•  Application instance consists of one or more processes !

Lec 1.11!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

The Basic Problem of Concurrency"
•  The basic problem of concurrency involves resources:!

– Hardware: single CPU, single DRAM, single I/O devices!
– Multiprogramming API: processes think they have exclusive

access to shared resources!
•  OS has to coordinate all activity!

– Multiple processes, I/O interrupts, …!
– How can it keep all these things straight?!

•  Basic Idea: Use Virtual Machine abstraction!
– Simple machine abstraction for processes!
– Multiplex these abstract machines!

•  Dijkstra did this for the “THE system”!
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)!

Lec 1.12!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

How can we give the illusion of multiple
processors?"

CPU3"CPU2"CPU1"

Shared Memory"

•  Assume a single processor. How do we provide the illusion
of multiple processors?!

– Multiplex in time!!
•  Each virtual “CPU” needs a structure to hold:!

– Program Counter (PC), Stack Pointer (SP)!
– Registers (Integer, Floating point, others…?)!

•  How switch from one CPU to the next?!
– Save PC, SP, and registers in current state block!
– Load PC, SP, and registers from new state block!

•  What triggers switch?!
– Timer, voluntary yield, I/O, other things!

CPU1" CPU2" CPU3" CPU1" CPU2"

Time "

Page 4

Lec 1.13!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Properties of this simple multiprogramming
technique"

•  All virtual CPUs share same non-CPU resources!
–  I/O devices the same!
– Memory the same!

•  Consequence of sharing:!
– Each thread can access the data of every other thread

(good for sharing, bad for protection)!
– Threads can share instructions 

(good for sharing, bad for protection)!
– Can threads overwrite OS functions? !

•  This (unprotected) model common in:!
– Embedded applications!
– Windows 3.1/Machintosh (switch only with yield)!
– Windows 95—ME? (switch with both yield and timer)!

Lec 1.14!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

How to protect threads from one
another?"

1.  Protection of memory!
–  Every task does not have access to all memory!

2.  Protection of I/O devices!
–  Every task does not have access to every device!

3.  Protection of Access to Processor: preemptive
switching from task to task!
–  Use of timer!
–  Must not be possible to disable timer from usercode!

Lec 1.15!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Program
 A

ddress Space"

Recall: Programʼs Address Space"
•  Address space ⇒ the set of accessible

addresses + associated states:!
– For a 32-bit processor there are 232 = 4

billion addresses!

•  What happens when you read or write
to an address?!

– Perhaps nothing!
– Perhaps acts like regular memory!
– Perhaps ignores writes!
– Perhaps causes I/O operation!

»  (Memory-mapped I/O)!
– Perhaps causes exception (fault)!

Lec 1.16!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Providing Illusion of Separate Address Space: 
Load new Translation Map on Switch"

Prog 1"
Virtual"

Address"
Space 1"

Prog 2"
Virtual"

Address"
Space 2"

Code"
Data"
Heap"
Stack"

Code"
Data"
Heap"
Stack"

Data 2"

Stack 1"

Heap 1"

OS heap & "
Stacks"

Code 1"

Stack 2"

Data 1"

Heap 2"

Code 2"

OS code"

OS data"Translation Map 1" Translation Map 2"

Physical Address Space"

Page 5

Lec 1.17!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Project Signup"
•  Project Signup: Watch “Group/Section Signup” Link!

–  4-5 members to a group!
»  Everyone in group must be able to actually attend same section!
»  The sections assigned to you by Telebears are temporary!!

– Only submit once per group!!
»  Everyone in group must have logged into their cs162-xx accounts once

before you register the group!
»  Make sure that you select at least 2 potential sections!
»  Hard deadline: due Friday (1/28) by 11:59pm"

•  Sections:!
– Watch for section assignments next Monday/Tuesday!
–  Attend new sections next week!

Section! Time! Location! TA!
101! Th 10:00A-11:00A ! 3105 Etcheverry!

Jorge Ortiz!
102! Th 11:00A-12:00P ! 4 Evans!
104! Th 1:00P-2:00P ! 85 Evans! Stephen Dawson-

Haggerty!105! Th 2:00P-3:00P ! B56 Hildebrand!
103! Th 3:00P-4:00P ! 4 Evans!

David Zhu!
106! Th 4:00P-5:00P! 320 Soda! Lec 1.18!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Others…"
•  We are going to use Piazzza instead of the newsgroup!

– Got to http://www.piazzza.com/class#cs162/!
– Make an account!
– Join the Berkeley version of cs162 (it's open.)!

•  Final exam conflict with cs184!
– Unfortunately, youʼd have to pick one class or another!
– We can only accommodate very few exceptions!

Lec 1.19!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

5min Break"

Lec 1.20!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Traditional UNIX Process"
•  Process: Operating system abstraction to represent

what is needed to run a single program!
– Often called a “HeavyWeight Process”!
– Formally: a single, sequential stream of execution in its

own address space!
•  Two parts:!

– Sequential Program Execution Stream!
» Code executed as a single, sequential stream of execution

(i.e., thread)!
»  Includes State of CPU registers!

– Protected Resources:!
» Main Memory State (contents of Address Space)!
»  I/O state (i.e. file descriptors)!

•  Important: There is no concurrency in a heavyweight
process!

Page 6

Lec 1.21!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Process  
Control"
Block"

How do we multiplex processes?"
•  The current state of process held in a

process control block (PCB):!
– This is a “snapshot” of the execution and

protection environment!
– Only one PCB active at a time!

•  Give out CPU time to different processes
(Scheduling):!

– Only one process “running” at a time!
– Give more time to important processes!

•  Give pieces of resources to different
processes (Protection):!

– Controlled access to non-CPU resources!
– Sample mechanisms: !

» Memory Mapping: Give each process their
own address space!

»  Kernel/User duality: Arbitrary multiplexing of I/
O through system calls!

Lec 1.22!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

CPU Switch From Process to Process"

•  This is also called a “context switch”!
•  Code executed in kernel above is overhead !

– Overhead sets minimum practical switching time!
– Less overhead with SMT/hyperthreading, but… contention

for resources instead!

Lec 1.23!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Diagram of Process State"

•  As a process executes, it changes state!
– new: The process is being created!
– ready: The process is waiting to run!
– running: Instructions are being executed!
– waiting: Process waiting for some event to occur!
– terminated: The process has finished execution!

Lec 1.24!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Process Scheduling"

•  PCBs move from queue to queue as they change state!
– Decisions about which order to remove from queues are

Scheduling decisions!
– Many algorithms possible (few weeks from now)!

Page 7

Lec 1.25!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

What does it take to create a process?"
•  Must construct new PCB !

–  Inexpensive!

•  Must set up new page tables for address space!
– More expensive!

•  Copy data from parent process? (Unix fork())!
– Semantics of Unix fork() are that the child process gets a

complete copy of the parent memory and I/O state!
– Originally very expensive!
– Much less expensive with “copy on write”!

•  Copy I/O state (file handles, etc)!
– Medium expense!

Lec 1.26!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Process =? Program"

•  More to a process than just a program:!
– Program is just part of the process state!
–  I run emacs on lectures.txt, you run it on homework.java –

Same program, different processes!
•  Less to a process than a program:!

– A program can invoke more than one process!
– cc starts up cpp, cc1, cc2, as, and ld!

main () {"
 …;"

}"
A() {"

 …"

}"

main () {"
 …;"

}"
A() {"

 …"

}"

Heap"

Stack"

A"
main"

Program" Process"

Lec 1.27!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Multiple Processes Collaborate on a Task"

•  High Creation/memory Overhead!
•  (Relatively) High Context-Switch Overhead!
•  Need Communication mechanism:!

– Separate Address Spaces Isolates Processes!
– Shared-Memory Mapping!

»  Accomplished by mapping addresses to common DRAM!
» Read and Write through memory!

– Message Passing!
» send() and receive() messages!
» Works across network!

Proc 1" Proc 2" Proc 3"

Lec 1.28!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Shared Memory Communication"

Prog 1"
Virtual"

Address"
Space 1"

Prog 2"
Virtual"

Address"
Space 2"

Data 2"
Stack 1"
Heap 1"
Code 1"
Stack 2"
Data 1"
Heap 2"
Code 2"
Shared"

•  Communication occurs by “simply” reading/writing to
shared address page!

– Really low overhead communication!
–  Introduces complex synchronization problems!

Code"
Data"
Heap"
Stack"

Shared"

Code"
Data"
Heap"
Stack"

Shared"

Page 8

Lec 1.29!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Inter-process Communication (IPC)"
•  Mechanism for processes to communicate and to

synchronize their actions!
•  Message system – processes communicate with each

other without resorting to shared variables!
•  IPC facility provides two operations:!

– send(message) – message size fixed or variable !
– receive(message)

•  If P and Q wish to communicate, they need to:!
– establish a communication link between them!
– exchange messages via send/receive!

•  Implementation of communication link!
– physical (e.g., shared memory, hardware bus, systcall/

trap)!
–  logical (e.g., logical properties)!

Lec 1.30!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Modern “Lightweight” Process with
Threads"

•  Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)!

– Process still contains a single Address Space!
– No protection between threads!

•  Multithreading: a single program made up of a number of
different concurrent activities !

– Sometimes called multitasking, as in Ada…!

•  Why separate the concept of a thread from that of a process?!
– Discuss the “thread” part of a process (concurrency)!
– Separate from the “address space” (protection)!
– Heavyweight Process ≡ Process with one thread!

Lec 1.31!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Single and Multithreaded Processes"

•  Threads encapsulate concurrency: “Active” component!
•  Address spaces encapsulate protection: “Passive” part!

– Keeps buggy program from trashing the system!
•  Why have multiple threads per address space?!

Lec 1.32!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Examples of multithreaded
programs"

•  Embedded systems !
– Elevators, Planes, Medical systems, Wristwatches!
– Single Program, concurrent operations!

•  Most modern OS kernels!
–  Internally concurrent because have to deal with concurrent

requests by multiple users!
– But no protection needed within kernel!

•  Database Servers!
– Access to shared data by many concurrent users!
– Also background utility processing must be done!

Page 9

Lec 1.33!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Examples of multithreaded
programs (conʼt)"

•  Network Servers!
– Concurrent requests from network!
– Again, single program, multiple concurrent operations!
– File server, Web server, and airline reservation systems!

•  Parallel Programming (More than one physical CPU)!
– Split program into multiple threads for parallelism!
– This is called Multiprocessing!

•  Some multiprocessors are actually uniprogrammed:!
– Multiple threads in one address space but one program at a

time!

Lec 1.34!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Thread State"
•  State shared by all threads in process/addr space!

– Contents of memory (global variables, heap)!
–  I/O state (file system, network connections, etc)!

•  State “private” to each thread !
– Kept in TCB ≡ Thread Control Block!
– CPU registers (including, program counter)!
– Execution stack – what is this?!

•  Execution Stack!
– Parameters, Temporary variables!
–  return PCs are kept while called procedures are executing!

Lec 1.35!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Execution Stack Example"

•  Stack holds temporary results!
•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"

 if (tmp<2)"
 B();"
 printf(tmp);"

}"
B() {"

 C();"
}"
C() {"

 A(2);"
}"

A(1);"

Lec 1.36!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Execution Stack Example"

•  Stack holds temporary results!
•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"

 if (tmp<2)"
 B();"
 printf(tmp);"

}"
B() {"

 C();"
}"
C() {"

 A(2);"
}"

A(1);"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=exit"

Page 10

Lec 1.37!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Execution Stack Example"

•  Stack holds temporary results!
•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"

 if (tmp<2)"
 B();"
 printf(tmp);"

}"
B() {"

 C();"
}"
C() {"

 A(2);"
}"

A(1);"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=exit"

Lec 1.38!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Execution Stack Example"

•  Stack holds temporary results!
•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"

 if (tmp<2)"
 B();"
 printf(tmp);"

}"
B() {"

 C();"
}"
C() {"

 A(2);"
}"

A(1);"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=exit"

B: ret=A+2"

Lec 1.39!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Execution Stack Example"

•  Stack holds temporary results!
•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"

 if (tmp<2)"
 B();"
 printf(tmp);"

}"
B() {"

 C();"
}"
C() {"

 A(2);"
}"

A(1);"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=exit"

B: ret=A+2"

C: ret=B+1"

Lec 1.40!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Execution Stack Example"

•  Stack holds temporary results!
•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"

 if (tmp<2)"
 B();"
 printf(tmp);"

}"
B() {"

 C();"
}"
C() {"

 A(2);"
}"

A(1);"

A: tmp=2"
 ret=C+1"Stack"

Pointer"

Stack Growth"

A: tmp=1"
 ret=exit"

B: ret=A+2"

C: ret=B+1"

Page 11

Lec 1.41!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Classification"

•  Real operating systems have either!
– One or many address spaces!
– One or many threads per address space!

•  Did Windows 95/98/ME have real memory protection?!
– No: Users could overwrite process tables/System DLLs!

Mach, OS/2, Linux"
Windows 9x???"

Win NT to XP, Solaris,
HP-UX, OS X"

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)"
JavaOS, Pilot(PC)"

Traditional UNIX"MS/DOS, early
Macintosh"

Many"

One"

threads"
Per AS:"

Many"One"

of

 a
dd

r
sp

ac
es

:"

Lec 1.42!1/19/10! Ion Stoica CS162 ©UCB Spring 2011!

Summary"
•  Processes have two parts!

– Threads (Concurrency)!
– Address Spaces (Protection)!

•  Concurrency accomplished by multiplexing CPU Time:!
– Unloading current thread (PC, registers)!
– Loading new thread (PC, registers)!
– Such context switching may be voluntary (yield(), I/O

operations) or involuntary (timer, other interrupts)!
•  Protection accomplished restricting access:!

– Memory mapping isolates processes from each other!
– Dual-mode for isolating I/O, other resources!

•  Book talks about processes !
– When this concerns concurrency, really talking about thread

portion of a process!
– When this concerns protection, talking about address space

portion of a process!

