CS162
Operating Systems and
Systems Programming

Lecture 4

Synchronization, Atomic operations,
Locks, Semaphores

January 31, 2011
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Another Concurrent Program

Example
+ Two threads, A and B, compete with each other

— One tries to increment a shared counter
— The other tries to decrement the counter

Thread A Thread B
i=0; i=0;
while (i < 10) while (i >-10)
i=i+1; i=i—1;

printf(“A wins!”); printf(“B wins!”);
+ Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

* Who wins?
Is it guaranteed that someone wins? Why or why not?

What it both threads have their own CPU running at same
speed? Is it guaranteed that it goes on forever?

311/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.3

Page 1

Space Shuttle Example

+ Original Space Shuttle launch aborted 20 minutes before
scheduled launch = =
+ Shuttle has five computers: j
— Four run the “Primary Avionics I PASS @
Software System” (PASS)
» Asynchronous and real-time
» Runs all of the control systems
» Results synchronized and compared every 3 to 4 ms
— The Fifth computer is the “Backup Flight System” (BFS)
» stays synchronized in case it is needed
» Written by completely different team than PASS
+ Countdown aborted because BFS disagreed with PASS
— A 1/67 chance that PASS was out of sync one cycle
— Bug due to modifications in initialization code of PASS
» A delayed init request placed into timer queue
» As a result, timer queue not empty at expected time to force use
of hardware clock
— Bug not found during extensive simulation
31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.2

BFS

Goals for Today

« Synchronization
« Hardware Support for Synchronization
+ Higher-level Synchronization Abstractions
— Semaphores, monitors, and condition variables
+ Programming paradigms for concurrent programs

MY PROJECT IS
A WHOLE NEW
PARADIGM

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated by Kubiatowicz.

31/1/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.4

Motivation: “Too much milk”

+ Great thing about OS’s — analogy between .
problems in OS and problems in real life
— Help you understand real life problems better nllk

— But, computers are much stupider than people
+ Example: People need to coordinate:

Time Person A Person B

3:00 Look in Fridge. Out of milk

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of milk

3:15 Buy milk Leave for store

3:20 Arrive home, put milk away | Arrive at store

3:25 Buy milk

3:30 Arrive home, put milk away
31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.5

More Definitions

+ Lock: prevents someone from doing something

— Lock before entering critical section and

before accessing shared data
— Unlock when leaving, after accessing shared data
— Wait if locked

» Important idea: all synchronization involves waiting

+ For example: fix the milk problem by putting a key on the
refrigerator

— Lock it and take key if you are going to go buy milk
— Fixes too much: roommate angry if only wants orange juice

— Of Course — We don’t know how to make a lock yet
31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.7

Page 2

Definitions

+ Synchronization: using atomic operations to ensure
cooperation between threads

— For now, only loads and stores are atomic

— We'll show its hard to build anything useful with only reads
and writes

+ Mutual Exclusion: ensuring that only one thread does a
particular thing at a time

— One thread excludes the other while doing its task

+ Critical Section: piece of code that only one thread can
execute at once
— Critical section is the result of mutual exclusion
— Critical section and mutual exclusion are two ways of
describing the same thing.

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.6

Too Much Milk: Correctness
Properties

* Need to be careful about correctness of concurrent
programs, since non-deterministic
— Always write down behavior first

— Impulse is to start coding first, then when it doesn’t work,
pull hair out

— Instead, think first, then code

+ What are the correctness properties for the “Too much
milk” problem?

— Never more than one person buys
— Someone buys if needed

* Restrict ourselves to use only atomic load and store
operations as building blocks
311/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.8

Too Much Milk: Solution #1

+ Use a note to avoid buying too much milk:
— Leave a note before buying (kind of “lock”)
— Remove note after buying (kind of “unlock”)
— Don't buy if note (wait)

« Suppose a computer tries this (remember, only memory read/

write are atomic):
)
! -

if (noMilk) {
if (noNote) {
leave Note;
buy milk;
remove note;

* Result?

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.9

Too Much Milk: Solution #1112

+ Clearly the Note is not quite blocking enough
— Let’s try to fix this by placing note first
» Another try at previous solution:

leave Note;
if (noMilk) {
if (noNote) {
buy milk;
}

}

remove note;

+ What happens here?
— Well, with human, probably nothing bad
— With computer: no one ever buys milk

311/11 lon Stoica CS162 ©UCB Spring 2011

Lec 4.11

Page 3

Too Much Milk: Solution #1

+ Still too much milk but only occasionally!
Thread A Thread B
if (noMilk)
if (noNote) {
if (noMilk)
if (noNote) {
leave Note;
buy milk;
remove note;
}
}

leave Note;
buy milk;

+ Thread can get context switched after checking milk and note
but before buying milk!
» Solution makes problem worse since fails intermittently
— Makes it really hard to debug...
— Must work despite what the thread dispatcher does!

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.10
Too Much Milk Solution #2
+ How about labeled notes?
— Now we can leave note before checking
+ Algorithm looks like this:
Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNote A) {
if (noMilk) { if (noMilk) {
buy Milk; buy Milk;
} }
} }
remove note A; remove note B;
+ Does this work?
31/1/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.12

Too Much Milk Solution #2
+ Possible for neither thread to buy milk!
Thread A Thread B
leave note A;

leave note B;
if (noNote A) {
if (noMilk) {
buy Milk;
}

if (noNote B) {
if (noMilk) {
buy Milk;

remove note B;
* Really insidious:

— Unlikely that this would happen, but will at worse possible
time

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.13

Review: Too Much Milk Solution #3

* Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {

} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;

remove note A;
+ Does this work? Yes. Both can guarantee that:
— lt is safe to buy, or
— Other will buy, ok to quit
« At X:
— if no note B, safe for A to buy,
— otherwise wait to find out what will happen
« AtY:
—if no note A, safe for B to buy

— Otherwise, A is either bu in% or wa_iting for B to quit
162 ©UCB Spri "

311/11 lon Stoica C:! ng 21 Lec 4.15

Page 4

Too Much Milk Solution #2:

* I'm not getting milk, You're getting milk
+ This kind of lockup is called “starvation!”

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.14

Review: Solution #3 discussion
+ Our solution protects a single “Critical-Section” piece of code
for each thread:

if (noMilk) {
buy milk;
}

+ Solution #3 works, but it's really unsatisfactory
— Really complex — even for this simple an example
» Hard to convince yourself that this really works
— A’s code is different from B’s — what if lots of threads?
» Code would have to be slightly different for each thread
— While A is waiting, it is consuming CPU time
» This is called “busy-waiting”
» There’s a better way

— Have hardware provide better (higher-level) primitives than
atomic load and store

— Build even higher-level programming abstractions on this new
hardware support

311/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.16

High-Level Picture

» The abstraction of threads is good:
— Maintains sequential execution model
— Allows simple parallelism to overlap 1/0 and computation

» Unfortunately, still too complicated to access state shared
between threads

— Consider “too much milk” example

— Implementing a concurrent program with only loads and stores
would be tricky and error-prone

+ Today, we’ll implement higher-level operations on top of
atomic operations provided by hardware \

— Develop a “synchronization toolbox”
— Explore some common programming paradigms

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.17

How to implement Locks?
+ Lock: prevents someone from doing something
— Lock before entering critical section and
before accessing shared data
— Unlock when leaving, after accessing shared data
— Wait if locked
» |Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

¢

« Atomic Load/Store: get solution like Milk #3
— Pretty complex and error prone

« Hardware Lock instruction
—Is this a good idea?
— What about putting a task to sleep?
» How do you handle the interface between the hardware and scheduler?
— Complexity?
» Each feature makes hardware more complex and slow

311/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.19

Page 5

Too Much Milk: Solution #4
» Suppose we have some sort of implementation of a lock
(more in a moment).
- Lock.Acquire () —wait until lock is free, then grab
- Lock.Release () —unlock, waking up anyone waiting

— These must be atomic operations — if two threads are waiting
for the lock and both see it’s free, only one succeeds to grab
the lock

» Then, our milk problem is easy:
milklock.Acquire();
if (nomilk)
buy milk;
milklock.Release();

+ Once again, section of code between Acquire () and
Release () called a “Critical Section”

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.18

Naive use of Interrupt Enable/Disable

* How can we build multi-instruction atomic operations?
— Recall: dispatcher gets control in two ways.
» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU
— On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts
+ Consequently, naive Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }
» Problems with this approach:
— Can't let user do this! Consider following:

LockAcquire () ;
While (TRUE) {;}

— Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long
— What happens with 1/0 or other important events?

» “Reactor about to meltdown. Help?”
311/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.20

Better Implementation of Locks by Disabling

Interrupts
+ Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE; g

Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();
// Enable interrupts?
} else {
value = BUSY;
} }
enable interrupts;

}

Release() {

disable interrupts;

if (anyone on wait queue) {
take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}

enable interrupts;

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.21

Project Signup

+ Concerning the 3 people group
* Need to find another member or spread to 4 people
groups
— HARD deadline: due Tuesday (1/2) by 11:59pm

+ Otherwise we will split the group and do the re-
assignment

311/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.23

Page 6

Project Signup
+ Two sections are overloaded:
— 11-12pm: 7 groups
— 1-2pm: 8 groups (no one provided alternatives!!)

« People in above sections provide alternatives
— HARD deadline: due Tuesday (1/2) by 11:59pm
— 2-3pm section is CLOSED
— If not, we will randomly move
» 1 group from 11-12pm
» 2 groups from 1-2pm
— If you do not provide an alternative YOUR GROUP WILL BE PICKED!

Section Time Location
101 Th 10:00A-11:00A 5 groups
102 Th 11:00A-12:00P 7 groups
104 Th 1:00P-2:00P 8 groups
105 Th 2:00P-3:00P 6 groups
103 Th 3:00P-4:00P 5 groups
106 Th 4:00P-5:00P 2 groups

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.22
5min Break
31/1/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.24

New Lock Implementation: Discussion

+ Why do we need to disable interrupts at all?
— Avoid interruption between checking and setting lock value
— Otherwise two threads could think that they both have lock
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();
// Enable interrupts?
} else {
value = BUSY;

Critical
Section

}
enable interrupts;

}
+ Note: unlike previous solution, the critical section (inside
Acquire ()) is very short
— User of lock can take as long as they like in their own critical
section: doesn’t impact global machine behavior

- Critical interrupts taken in time

3111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.25

How to Re-enable After Sleep()?
+ Since ints are disabled when you call sleep:
— Responsibility of the next thread to re-enable ints

— When the sleeping thread wakes up, returns to acquire and re-
enables interrupts

Thread A Thread B

disable ints
sleep %
Switch >sleep return
enable ints

disable int
‘c/of\ﬁ’d(sleep
sleep return“switc
enable ints

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.27

Page 7

Interrupt re-enable in going to sleep

+ What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
Enable Position J—E'f value == BUSY) {

Enable Position ut thread on wait queue;

Enable Position ——Ggto sleep();
}else {

value = BUSY;

enable interrupts;
}

311/ lon Stoica C§162 ©UCB Spring 2011 Lec 4.26

Atomic Read-Modify-Write

instructions
* Problems with previous solution:

— Can't give lock implementation to users
— Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages and
would be very time consuming

+ Alternative: atomic instruction sequences

— These instructions read a value from memory and write a new
value atomically
— Hardware is responsible for implementing this correctly
» on both uniprocessors (not too hard)

» and multiprocessors (requires help from cache coherence
protocol)

— Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors

311/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.28

Examples of Read-Modify-Write

+ testé&set (&address) {
result = M[address];
M[address] = 1;
return result;

/* most architectures */

}

* swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;
}

* compareg&swap (&address, regl, reg2) { /* 68000 */

if (regl == M[address]) {
M[address] = reg2;
return success;

} else {

return failure;

}

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.29

Problem: Busy-Waiting for Lock
» Positives for this solution
— Machine can receive interrupts
— User code can use this lock
— Works on a multiprocessor
* Negatives

— This is very inefficient because the busy-waiting thread will
consume cycles waiting

— Waiting thread may take cycles away from thread holding lock
(no one wins!)

— Priority Inversion: If busy-waiting thread has higher priority
than thread holding lock = no progress!

Priority Inversion problem with original Martian rover

» For semaphores and monitors, waiting thread may wait for
an arbitrary length of time!

— Thus even if busy-waiting was OK for locks, definitely not ok
for other primitives

— Homework/exam solutions should not have busy-waiting!

311/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.31

Page 8

Implementing Locks with test&set

+ Simple solution:

int value = 0; // Free

Acquire () {

while (test&set(value)); // while busy
}
Release () |

value = 0;

}
+ Simple explanation:

— If lock is free, test&set reads 0 and sets value=1, so lock is now
busy. It returns 0 so while exits.

— If lock is busy, test&set reads 1 and sets value=1 (no change). It
returns 1, so while loop continues

— When we set value = 0, someone else can get lock

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.30

Better Locks using test&set

+ Can we build test&set locks without busy-waiting?
— Can't entirely, but can minimize!
— Idea: only busy-wait to atomically check lock value

int guard 0;

int value FREE; g

Acquire() {
// Short busy-wait time
while (testé&set(guard))
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

Release () {
// Short busy-wait time
while (testé&set(guard));
if anyone on wait queue {
take thread off wait queue
Place on ready queue;
} else {

} else { value = FREE;
value = BUSY; }
guard = 0; guard = 0;

}
}. Note: sleep has to be sure to reset the guard variable
— Why can’t we do it just before or just after the sleep?

311/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.32

Better Locks using test&set

+ Compare to “disable interrupt” solution

int value = FREE; g

Acquire() {
disable interrupts;
if (value == BUSY) ({
put thread on wait queue;
Go to sleep();
// Enable interrupts?
} else {
value = BUSY;
} }
enable interrupts;
}
- Basically replace
- disable interrupts 2 while (testé&set(guard));
- enable interrupts = guard = 0;
lon Stoica CS162 ©UCB Spring 2011

Release() {

disable interrupts;

if (anyone on wait queue) {
take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}

enable interrupts;

31111 Lec 4.33

Semaphores gl

+ Semaphores are a kind of generalized lock
— First defined by Dijkstra in late 60s
— Main synchronization primitive used in original UNIX

« Definition: a Semaphore has a non-negative integer value
and supports the following two operations:
— P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1
» Think of this as the wait() operation
—V(): an atomic operation that increments the semaphore by 1,
waking up a waiting P, if any
» This of this as the signal() operation
— Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch

311/11 lon Stoica CS162 ©UCB Spring 2011 Lec 4.35

Page 9

Higher-level Primitives than Locks

+ Goal of last couple of lectures:

— What is the right abstraction for synchronizing threads that
share memory?
— Want as high a level primitive as possible
+ Good primitives and practices important!
— Since execution is not entirely sequential, really hard to find
bugs, since they happen rarely

— UNIX is pretty stable now, but up until about mid-80s (10 years
after started), systems running UNIX would crash every week
or so — concurrency bugs

+ Synchronization is a way of coordinating multiple concurrent
activities that are using shared state

— This lecture and the next presents a couple of ways of
structuring the sharing

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.34

Semaphores Like Integers Except
+ Semaphores are like integers, except
— No negative values

— Only operations allowed are P and V — can’t read or write value,
except to set it initially

— Operations must be atomic
» Two P’s together can’t decrement value below zero

» Similarly, thread going to sleep in P won’t miss wakeup from V —
even if they both happen at same time

+ Semaphore from railway analogy
— Here is a semaphore initialized to 2 for resource control:

S—
Value=2
Lec 4.36

lon Stoica CS162 ©UCB Spring 2011

31/1/11

Two Uses of Semaphores
+ Mutual Exclusion (initial value = 1)
— Also called “Binary Semaphore”.
— Can be used for mutual exclusion:

semaphore.P () ;
// Critical section goes here
semaphore.V() ;

+ Scheduling Constraints (initial value = 0)

— Locks are fine for mutual exclusion, but what if you want a
thread to wait for something?

— Example: suppose you had to implement ThreadJoin which
must wait for thread to terminiate:
Initial value of semaphore = 0

ThreadJoin {
semaphore.P () ;
}

ThreadFinish {
semaphore.V () ;
}

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.37

Page 10

Summary
+ Important concept: Atomic Operations
— An operation that runs to completion or not at all

— These are the primitives on which to construct various
synchronization primitives

+ Talked about hardware atomicity primitives:
— Disabling of Interrupts, test&set

« Showed several constructions of Locks

— Must be very careful not to waste/tie up machine resources
» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

— Key idea: Separate lock variable, use hardware mechanisms to
protect modifications of that variable

+ Semaphores: Higher level constructs that are harder to
“screw up”

31111 lon Stoica CS162 ©UCB Spring 2011 Lec 4.38

