
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 4  

Synchronization, Atomic operations,
Locks, Semaphores"

January 31, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 4.2!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Space Shuttle Example"
•  Original Space Shuttle launch aborted 20 minutes before

scheduled launch!
•  Shuttle has five computers:!

– Four run the “Primary Avionics  
Software System” (PASS)!

»  Asynchronous and real-time!
» Runs all of the control systems!
» Results synchronized and compared every 3 to 4 ms!

– The Fifth computer is the “Backup Flight System” (BFS)!
»  stays synchronized in case it is needed!
» Written by completely different team than PASS!

•  Countdown aborted because BFS disagreed with PASS!
– A 1/67 chance that PASS was out of sync one cycle!
– Bug due to modifications in initialization code of PASS!

»  A delayed init request placed into timer queue!
»  As a result, timer queue not empty at expected time to force use

of hardware clock!
– Bug not found during extensive simulation!

PASS

BFS

Lec 4.3!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Another Concurrent Program
Example"

•  Two threads, A and B, compete with each other!
– One tries to increment a shared counter!
– The other tries to decrement the counter!

! ! !Thread A ! !Thread B!
! !i = 0; ! !i = 0; 

!while (i < 10) !while (i > -10) 
! i = i + 1; ! i = i – 1; 
!printf(“A wins!”); !printf(“B wins!”);!

•  Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic !

•  Who wins? !
•  Is it guaranteed that someone wins? Why or why not?!
•  What it both threads have their own CPU running at same

speed? Is it guaranteed that it goes on forever?!

Lec 4.4!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Goals for Today"
•  Synchronization!
•  Hardware Support for Synchronization!
•  Higher-level Synchronization Abstractions!

– Semaphores, monitors, and condition variables!
•  Programming paradigms for concurrent programs!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne "
Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated by Kubiatowicz."

Page 2

Lec 4.5!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Motivation: “Too much milk”"
•  Great thing about OSʼs – analogy between

problems in OS and problems in real life!
– Help you understand real life problems better!
– But, computers are much stupider than people!

•  Example: People need to coordinate:!

Arrive home, put milk away"3:30"
Buy milk"3:25"
Arrive at store"Arrive home, put milk away"3:20"
Leave for store"Buy milk"3:15"

Leave for store"3:05"
Look in Fridge. Out of milk"3:00"

Look in Fridge. Out of milk"Arrive at store"3:10"

Person B"Person A"Time"

Lec 4.6!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Definitions"
•  Synchronization: using atomic operations to ensure

cooperation between threads!
– For now, only loads and stores are atomic!
– Weʼll show its hard to build anything useful with only reads

and writes!

•  Mutual Exclusion: ensuring that only one thread does a
particular thing at a time!

– One thread excludes the other while doing its task!

•  Critical Section: piece of code that only one thread can
execute at once!

– Critical section is the result of mutual exclusion!
– Critical section and mutual exclusion are two ways of

describing the same thing.!

Lec 4.7!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

More Definitions"
•  Lock: prevents someone from doing something!

– Lock before entering critical section and  
before accessing shared data!

– Unlock when leaving, after accessing shared data!
– Wait if locked!

»  Important idea: all synchronization involves waiting!
•  For example: fix the milk problem by putting a key on the

refrigerator!
– Lock it and take key if you are going to go buy milk!
– Fixes too much: roommate angry if only wants orange juice!

– Of Course – We donʼt know how to make a lock yet!

#$@%@#$@

Lec 4.8!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Too Much Milk: Correctness
Properties"

•  Need to be careful about correctness of concurrent
programs, since non-deterministic!

– Always write down behavior first!
–  Impulse is to start coding first, then when it doesnʼt work,

pull hair out!
–  Instead, think first, then code!

•  What are the correctness properties for the “Too much
milk” problem?!

– Never more than one person buys!
– Someone buys if needed!

•  Restrict ourselves to use only atomic load and store
operations as building blocks!

Page 3

Lec 4.9!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Too Much Milk: Solution #1"
•  Use a note to avoid buying too much milk:!

– Leave a note before buying (kind of “lock”)!
– Remove note after buying (kind of “unlock”)!
– Donʼt buy if note (wait)!

•  Suppose a computer tries this (remember, only memory read/
write are atomic):!

 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

•  Result? !

Lec 4.10!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Too Much Milk: Solution #1"
•  Still too much milk but only occasionally!!
 Thread A Thread B
 if (noMilk)
 if (noNote) {
 if (noMilk)
 if (noNote) {
 leave Note;

 buy milk;
 remove note;
 }
 }!
 leave Note;

 buy milk;
 …
•  Thread can get context switched after checking milk and note

but before buying milk!!
•  Solution makes problem worse since fails intermittently!

– Makes it really hard to debug…!
– Must work despite what the thread dispatcher does!!

Lec 4.11!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Too Much Milk: Solution #1½ "
•  Clearly the Note is not quite blocking enough!

– Letʼs try to fix this by placing note first!
•  Another try at previous solution:!

 leave Note;
 if (noMilk) {
 if (noNote) {
 buy milk;
 }
 }

 remove note;

•  What happens here?!
– Well, with human, probably nothing bad!
– With computer: no one ever buys milk!

Lec 4.12!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Too Much Milk Solution #2"
•  How about labeled notes? !

– Now we can leave note before checking!

•  Algorithm looks like this:!

! !Thread A ! !Thread B!
 leave note A; leave note B;

 if (noNote B) { if (noNote A) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;

•  Does this work?!

Page 4

Lec 4.13!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Too Much Milk Solution #2"
•  Possible for neither thread to buy milk!!
! ! !Thread A ! !Thread B!
 leave note A;
 leave note B;

 if (noNote A) {
 if (noMilk) {
 buy Milk;
 }
 }

 if (noNote B) {
 if (noMilk) {
 buy Milk;
 …
 remove note B;!
•  Really insidious: !

– Unlikely that this would happen, but will at worse possible
time!

Lec 4.14!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Too Much Milk Solution #2:
problem!"

•  Iʼm not getting milk, Youʼre getting milk!
•  This kind of lockup is called “starvation!”!

Lec 4.15!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Review: Too Much Milk Solution #3"
•  Here is a possible two-note solution:!
! ! !Thread A ! !Thread B!
 leave note A; leave note B;

 while (note B) {\\X if (noNote A) {\\Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;!

•  Does this work? Yes. Both can guarantee that: !
–  It is safe to buy, or!
– Other will buy, ok to quit!

•  At X: !
–  if no note B, safe for A to buy, !
– otherwise wait to find out what will happen!

•  At Y: !
–  if no note A, safe for B to buy!
– Otherwise, A is either buying or waiting for B to quit!

Lec 4.16!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Review: Solution #3 discussion"
•  Our solution protects a single “Critical-Section” piece of code

for each thread:!
 if (noMilk) {
 buy milk;

 } !
•  Solution #3 works, but itʼs really unsatisfactory!

– Really complex – even for this simple an example!
» Hard to convince yourself that this really works!

– Aʼs code is different from Bʼs – what if lots of threads?!
» Code would have to be slightly different for each thread!

– While A is waiting, it is consuming CPU time!
»  This is called “busy-waiting”!

•  Thereʼs a better way!
– Have hardware provide better (higher-level) primitives than

atomic load and store!
– Build even higher-level programming abstractions on this new

hardware support!

Page 5

Lec 4.17!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

High-Level Picture"
•  The abstraction of threads is good:!

– Maintains sequential execution model !
– Allows simple parallelism to overlap I/O and computation!

•  Unfortunately, still too complicated to access state shared
between threads !

– Consider “too much milk” example!
–  Implementing a concurrent program with only loads and stores

would be tricky and error-prone!
•  Today, weʼll implement higher-level operations on top of

atomic operations provided by hardware!
– Develop a “synchronization toolbox”!
– Explore some common programming paradigms!

Lec 4.18!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Too Much Milk: Solution #4"
•  Suppose we have some sort of implementation of a lock

(more in a moment). !
– Lock.Acquire() – wait until lock is free, then grab!
– Lock.Release() – unlock, waking up anyone waiting!
– These must be atomic operations – if two threads are waiting

for the lock and both see itʼs free, only one succeeds to grab
the lock!

•  Then, our milk problem is easy:!
! milklock.Acquire();
 if (nomilk)
 buy milk;
 milklock.Release();

•  Once again, section of code between Acquire() and
Release() called a “Critical Section”!

Lec 4.19!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

How to implement Locks?"
•  Lock: prevents someone from doing something!

– Lock before entering critical section and  
before accessing shared data!

– Unlock when leaving, after accessing shared data!
– Wait if locked!

»  Important idea: all synchronization involves waiting!
»  Should sleep if waiting for a long time!

•  Atomic Load/Store: get solution like Milk #3!
– Pretty complex and error prone!

•  Hardware Lock instruction!
–  Is this a good idea?!
– What about putting a task to sleep?!

»  How do you handle the interface between the hardware and scheduler?!
– Complexity?!

»  Each feature makes hardware more complex and slow!

Lec 4.20!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

•  How can we build multi-instruction atomic operations?!
– Recall: dispatcher gets control in two ways. !

»  Internal: Thread does something to relinquish the CPU!
»  External: Interrupts cause dispatcher to take CPU!

– On a uniprocessor, can avoid context-switching by:!
»  Avoiding internal events (although virtual memory tricky)!
»  Preventing external events by disabling interrupts!

•  Consequently, naïve Implementation of locks:!
! !LockAcquire { disable Ints; }
 LockRelease { enable Ints; }!

•  Problems with this approach:!
– Canʼt let user do this! Consider following:!

 LockAcquire();
While(TRUE) {;}

– Real-Time system—no guarantees on timing! !
» Critical Sections might be arbitrarily long!

– What happens with I/O or other important events? !!
»  “Reactor about to meltdown. Help?”!

Naïve use of Interrupt Enable/Disable"

Page 6

Lec 4.21!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Better Implementation of Locks by Disabling
Interrupts"

•  Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable!

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;

}

Lec 4.22!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Project Signup"
•  Two sections are overloaded:!

–  11-12pm: 7 groups!
–  1-2pm: 8 groups (no one provided alternatives!!)!

•  People in above sections provide alternatives!
–  HARD deadline: due Tuesday (1/2) by 11:59pm"
–  2-3pm section is CLOSED!
–  If not, we will randomly move!

»  1 group from 11-12pm!
»  2 groups from 1-2pm!

–  If you do not provide an alternative YOUR GROUP WILL BE PICKED!!

Section! Time! Location!
101! Th 10:00A-11:00A ! 5 groups!
102! Th 11:00A-12:00P ! 7 groups!
104! Th 1:00P-2:00P ! 8 groups!
105! Th 2:00P-3:00P ! 6 groups!
103! Th 3:00P-4:00P ! 5 groups!
106! Th 4:00P-5:00P! 2 groups!

Lec 4.23!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Project Signup"
•  Concerning the 3 people group!
•  Need to find another member or spread to 4 people

groups!
–  HARD deadline: due Tuesday (1/2) by 11:59pm!

•  Otherwise we will split the group and do the re-
assignment!

Lec 4.24!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

5min Break"

Page 7

Lec 4.25!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

New Lock Implementation: Discussion"
•  Why do we need to disable interrupts at all?!

–  Avoid interruption between checking and setting lock value!
– Otherwise two threads could think that they both have lock!

•  Note: unlike previous solution, the critical section (inside
Acquire()) is very short!

– User of lock can take as long as they like in their own critical
section: doesnʼt impact global machine behavior!

– Critical interrupts taken in time!

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Critical
Section

Lec 4.26!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Interrupt re-enable in going to sleep"
•  What about re-enabling ints when going to sleep?!

•  Before Putting thread on the wait queue?!
– Release can check the queue and not wake up thread!

•  After putting the thread on the wait queue!
– Release puts the thread on the ready queue, but the thread still

thinks it needs to go to sleep!
– Misses wakeup and still holds lock (deadlock!)!

•  Want to put it after sleep(). But – how?!

Acquire() {  
"disable interrupts; 
"if (value == BUSY) {  
" "put thread on wait queue; 
" "Go to sleep(); 
"} else {  
" "value = BUSY; 
"}  
"enable interrupts; 

}"

Enable Position"
Enable Position"
Enable Position"

Lec 4.27!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

How to Re-enable After Sleep()?"
•  Since ints are disabled when you call sleep:!

– Responsibility of the next thread to re-enable ints!
– When the sleeping thread wakes up, returns to acquire and re-

enables interrupts!
 Thread A !Thread B!
 .

 .
 disable ints

 sleep
 sleep return

 enable ints
 .

 .
 .

 disable int
 sleep

 sleep return
 enable ints

 .
 .

context switch

context
switch

Lec 4.28!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Atomic Read-Modify-Write
instructions"

•  Problems with previous solution:!
– Canʼt give lock implementation to users!
– Doesnʼt work well on multiprocessor!

» Disabling interrupts on all processors requires messages and
would be very time consuming!

•  Alternative: atomic instruction sequences!
– These instructions read a value from memory and write a new

value atomically!
– Hardware is responsible for implementing this correctly !

»  on both uniprocessors (not too hard) !
»  and multiprocessors (requires help from cache coherence

protocol)!
– Unlike disabling interrupts, can be used on both

uniprocessors and multiprocessors!

Page 8

Lec 4.29!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Examples of Read-Modify-Write "

•  test&set (&address) { /* most architectures */
 result = M[address];
 M[address] = 1;
 return result;

}

•  swap (&address, register) { /* x86 */
 temp = M[address];

 M[address] = register;
 register = temp;

}

•  compare&swap (&address, reg1, reg2) { /* 68000 */
 if (reg1 == M[address]) {
 M[address] = reg2;
 return success;
 } else {
 return failure;
 }

}

Lec 4.30!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Implementing Locks with test&set"
•  Simple solution:!
! !int value = 0; // Free
 Acquire() {

 while (test&set(value)); // while busy
 }

 Release() {
 value = 0;
 }

•  Simple explanation:!
–  If lock is free, test&set reads 0 and sets value=1, so lock is now

busy. It returns 0 so while exits.!
–  If lock is busy, test&set reads 1 and sets value=1 (no change). It

returns 1, so while loop continues!
– When we set value = 0, someone else can get lock!

Lec 4.31!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Problem: Busy-Waiting for Lock"
•  Positives for this solution!

– Machine can receive interrupts!
– User code can use this lock!
– Works on a multiprocessor!

•  Negatives!
– This is very inefficient because the busy-waiting thread will

consume cycles waiting!
– Waiting thread may take cycles away from thread holding lock

(no one wins!)!
– Priority Inversion: If busy-waiting thread has higher priority

than thread holding lock ⇒ no progress!!
•  Priority Inversion problem with original Martian rover !
•  For semaphores and monitors, waiting thread may wait for

an arbitrary length of time!!
– Thus even if busy-waiting was OK for locks, definitely not ok

for other primitives!
– Homework/exam solutions should not have busy-waiting!!

Lec 4.32!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Better Locks using test&set"
•  Can we build test&set locks without busy-waiting?!

– Canʼt entirely, but can minimize!!
–  Idea: only busy-wait to atomically check lock value!

•  Note: sleep has to be sure to reset the guard variable!
– Why canʼt we do it just before or just after the sleep?!

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
 // Short busy-wait time
 while (test&set(guard));
 if (value == BUSY) {
 put thread on wait queue;
 go to sleep() & guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 }

}

Page 9

Lec 4.33!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Better Locks using test&set"
•  Compare to “disable interrupt” solution!

•  Basically replace !
– disable interrupts  while (test&set(guard));
– enable interrupts  guard = 0;"

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;

}

Lec 4.34!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Higher-level Primitives than Locks"
•  Goal of last couple of lectures:!

– What is the right abstraction for synchronizing threads that
share memory?!

– Want as high a level primitive as possible!
•  Good primitives and practices important!!

– Since execution is not entirely sequential, really hard to find
bugs, since they happen rarely!

– UNIX is pretty stable now, but up until about mid-80s (10 years
after started), systems running UNIX would crash every week
or so – concurrency bugs!

•  Synchronization is a way of coordinating multiple concurrent
activities that are using shared state!

– This lecture and the next presents a couple of ways of
structuring the sharing!

Lec 4.35!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Semaphores"
•  Semaphores are a kind of generalized lock!

– First defined by Dijkstra in late 60s!
– Main synchronization primitive used in original UNIX!

•  Definition: a Semaphore has a non-negative integer value
and supports the following two operations:!

– P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1 !

»  Think of this as the wait() operation!
– V(): an atomic operation that increments the semaphore by 1,

waking up a waiting P, if any!
»  This of this as the signal() operation!

– Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch!

Lec 4.36!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Value=2 Value=1 Value=0

Semaphores Like Integers Except"
•  Semaphores are like integers, except!

– No negative values!
– Only operations allowed are P and V – canʼt read or write value,

except to set it initially!
– Operations must be atomic!

»  Two Pʼs together canʼt decrement value below zero!
»  Similarly, thread going to sleep in P wonʼt miss wakeup from V –

even if they both happen at same time!
•  Semaphore from railway analogy!

– Here is a semaphore initialized to 2 for resource control:!

Value=1 Value=0 Value=2

Page 10

Lec 4.37!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Two Uses of Semaphores"
•  Mutual Exclusion (initial value = 1)!

– Also called “Binary Semaphore”.!
– Can be used for mutual exclusion:!

 semaphore.P();
 // Critical section goes here
 semaphore.V();

•  Scheduling Constraints (initial value = 0)!
– Locks are fine for mutual exclusion, but what if you want a

thread to wait for something?!
– Example: suppose you had to implement ThreadJoin which

must wait for thread to terminiate:!
! !Initial value of semaphore = 0
 ThreadJoin {

 semaphore.P();
 }

 ThreadFinish {
 semaphore.V();
 }

Lec 4.38!31/1/11! Ion Stoica CS162 ©UCB Spring 2011!

Summary"
•  Important concept: Atomic Operations!

– An operation that runs to completion or not at all!
– These are the primitives on which to construct various

synchronization primitives!

•  Talked about hardware atomicity primitives:!
– Disabling of Interrupts, test&set!

•  Showed several constructions of Locks!
– Must be very careful not to waste/tie up machine resources!

»  Shouldnʼt disable interrupts for long!
»  Shouldnʼt spin wait for long!

– Key idea: Separate lock variable, use hardware mechanisms to
protect modifications of that variable!

•  Semaphores: Higher level constructs that are harder to
“screw up”!

