
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 5  

Semaphores, Conditional Variables"

February 2, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 5.2!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Goals for Today"
•  Continue with Synchronization Abstractions!

– Monitors and condition variables!
•  Readers-Writers problem and solution!
•  Language Support for Synchronization!
•  Tips for Programming in a Project Team!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Kubiatowicz."

Lec 5.3!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Where are we going with
synchronization?"

•  We are going to implement various higher-level
synchronization primitives using atomic operations!

– Everything is pretty painful if only atomic primitives are load
and store!

– Need to provide primitives useful at user-level!

Load/Store Disable Ints Test&Set Comp&Swap"

Locks Semaphores Monitors Send/Receive"

Shared Programs"

Hardware"

Higher-
level "
API"

Programs"

Lec 5.4!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Review: Implementing Locks with test&set"
•  Simple solution:!
! !int value = 0; // Free
 Acquire() {

 while (test&set(value)); // while busy
 }

 Release() {
 value = 0;
 }

•  Advantage:!
– Simple!

•  Disadvantage:!
– Busy-wait until previous thread exists critical section !

•  Example: thread T1 in critical section, T2, T3 waiting to enter!
T1! T2! T3! T1! T2! T3! T1! T2! T3!CPU! …!

Waiting – wasting CPU time!

Page 2

Lec 5.5!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Review: Better Locks using test&set"
•  Can we build test&set locks without busy-waiting?!

– Canʼt entirely, but can minimize!!
–  Idea: only busy-wait to atomically check lock value!

•  Previous example: T2, T3 suspended !

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
 // Short busy-wait time
 while (test&set(guard));
 if (value == BUSY) {
 put thread on wait queue;
 go to sleep() & guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 }

}

Lec 5.6!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Review: Better Locks using test&set"
•  Can we build test&set locks without busy-waiting?!

– Canʼt entirely, but can minimize!!
–  Idea: only busy-wait to atomically check lock value!

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
 // Short busy-wait time
 while (test&set(guard));
 if (value == BUSY) {
 put thread on wait queue;
 go to sleep() & guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 }

}
T1!CPU! …!T1! T1!

T2 go to sleep!T3 go to sleep!
•  Example: T2 and T3 go to sleep immediately!

Lec 5.7!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Higher-level Primitives than Locks"

•  Synchronization is a way of coordinating multiple concurrent
activities that are using shared state!

– This lecture and the next presents a couple of ways of
structuring the sharing!

•  Good primitives and practices important!!
– Since execution is not entirely sequential, really hard to find

bugs, since they happen rarely!
– UNIX is pretty stable now, but up until about mid-80s (10 years

after started), systems running UNIX would crash every week
or so – concurrency bugs!

Lec 5.8!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Semaphores"
•  Semaphores are a kind of generalized lock!

– First defined by Dijkstra in late 60s!
– Main synchronization primitive used in original UNIX!

•  Definition: a Semaphore has a non-negative integer value
and supports the following two operations:!

– P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1 !

»  Think of this as the wait() operation!
– V(): an atomic operation that increments the semaphore by 1,

waking up a waiting P, if any!
»  This of this as the signal() operation!

– Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch!

Page 3

Lec 5.9!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Value=2 Value=1 Value=0

Semaphores Like Integers Except"
•  Semaphores are like integers, except!

– No negative values!
– Only operations allowed are P and V – canʼt read or write value,

except to set it initially!
– Operations must be atomic!

»  Two Pʼs together canʼt decrement value below zero!
»  Similarly, thread going to sleep in P wonʼt miss wakeup from V –

even if they both happen at same time!
•  Semaphore from railway analogy!

– Here is a semaphore initialized to 2 for resource control:!

Value=1 Value=0 Value=2

Lec 5.10!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Producer-consumer with a bounded buffer"

•  Problem Definition!
– Producer puts things into a shared buffer!
– Consumer takes them out!
– Need synchronization to coordinate producer/consumer!

•  Donʼt want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them!

– Need to synchronize access to this buffer!
– Producer needs to wait if buffer is full!
– Consumer needs to wait if buffer is empty!

•  Example 1: GCC compiler!
– cpp | cc1 | cc2 | as | ld!

•  Example 2: Coke machine!
– Producer can put limited number of cokes in machine!
– Consumer canʼt take cokes out if machine is empty!

Producer Consumer Buffer

Lec 5.11!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Correctness constraints for solution"

•  Correctness Constraints:!
– Consumer must wait for producer to fill buffers, if none full

(scheduling constraint)!
– Producer must wait for consumer to empty buffers, if all full

(scheduling constraint)!
– Only one thread can manipulate buffer queue at a time (mutual

exclusion)!

•  General rule of thumb:  
Use a separate semaphore for each constraint!
– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Lec 5.12!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Full Solution to Bounded Buffer"
 Semaphore fullBuffer = 0; // Initially, no coke
 Semaphore emptyBuffers = numBuffers;

 // Initially, num empty slots
 Semaphore mutex = 1; // No one using machine

Producer(item) {
 emptyBuffers.P(); // Wait until space
 mutex.P(); // Wait until buffer free
 Enqueue(item);
 mutex.V();
 fullBuffers.V(); // Tell consumers there is
 // more coke

}
 Consumer() {

 fullBuffers.P(); // Check if there’s a coke
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptyBuffers.V(); // tell producer need more
 return item;

}

Page 4

Lec 5.13!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Discussion about Solution"
•  Why asymmetry?!

– Producer does: emptyBuffer.P(), fullBuffer.V()!
– Consumer does: fullBuffer.P(), emptyBuffer.V()

•  Is order of Pʼs important?!
– Yes! Can cause deadlock!

•  Is order of Vʼs important?!
– No, except that it might affect scheduling efficiency!

•  What if we have 2 producers or 2 consumers?!
– Do we need to change anything?!

Lec 5.14!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Motivation for Monitors and Condition
Variables"

•  Semaphores are a huge step up; just think of trying to do
the bounded buffer with only loads and stores!

– Problem is that semaphores are dual purpose:!
»  They are used for both mutex and scheduling constraints!
»  Example: the fact that flipping of Pʼs in bounded buffer gives

deadlock is not immediately obvious. How do you prove
correctness to someone?!

•  Cleaner idea: Use locks for mutual exclusion and condition
variables for scheduling constraints!

•  Monitor: a lock and zero or more condition variables for
managing concurrent access to shared data!

– Some languages like Java provide this natively!
– Most others use actual locks and condition variables!

Lec 5.15!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

 Monitor with Condition Variables"

•  Lock: the lock provides mutual exclusion to shared data!
– Always acquire before accessing shared data structure!
– Always release after finishing with shared data!
– Lock initially free!

•  Condition Variable: a queue of threads waiting for something
inside a critical section!

– Key idea: make it possible to go to sleep inside critical section by
atomically releasing lock at time we go to sleep!

Lec 5.16!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Simple Monitor Example (version 1)"
•  Here is an (infinite) synchronized queue!
! Lock lock;

 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Lock shared data
 queue.enqueue(item); // Add item
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {
 lock.Acquire(); // Lock shared data
 item = queue.dequeue();// Get next item or null
 lock.Release(); // Release Lock
 return(item); // Might return null
 }

•  Not very interesting use of “Monitor”!
– It only uses a lock with no condition variables!
– Cannot put consumer to sleep if no work!!

Page 5

Lec 5.17!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Condition Variables"
•  How do we change the RemoveFromQueue() routine to wait

until something is on the queue?!
– Could do this by keeping a count of the number of things on the

queue (with semaphores), but error prone!
•  Condition Variable: a queue of threads waiting for something

inside a critical section!
– Key idea: allow sleeping inside critical section by atomically

releasing lock at time we go to sleep!
– Contrast to semaphores: Canʼt wait inside critical section!

•  Operations:!
– Wait(&lock): Atomically release lock and go to sleep. Re-

acquire lock later, before returning. !
– Signal(): Wake up one waiter, if any!
– Broadcast(): Wake up all waiters!

•  Rule: Must hold lock when doing condition variable ops!!
–  In Birrell paper, he says can perform signal() outside of lock –

IGNORE HIM (this is only an optimization)!
Lec 5.18!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Complete Monitor Example (with condition
variable)"

•  Here is an (infinite) synchronized queue!
! Lock lock;

 Condition dataready;
 Queue queue;

 AddToQueue(item) {
 lock.Acquire(); // Get Lock
 queue.enqueue(item); // Add item
 dataready.signal(); // Signal any waiters
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {
 lock.Acquire(); // Get Lock
 while (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item
 lock.Release(); // Release Lock
 return(item);
 }!

Lec 5.19!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Mesa vs. Hoare monitors"
•  Need to be careful about precise definition of signal and wait.

Consider a piece of our dequeue code:!
 while (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

– Why didnʼt we do this?!
 if (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

•  Answer: depends on the type of scheduling!
– Hoare-style (most textbooks):!

»  Signaler gives lock, CPU to waiter; waiter runs immediately!
» Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again!
– Mesa-style (most real operating systems):!

»  Signaler keeps lock and processor!
» Waiter placed on ready queue with no special priority!
»  Practically, need to check condition again after wait!

Lec 5.20!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Readers/Writers Problem"

•  Motivation: Consider a shared database!
– Two classes of users:!

» Readers – never modify database!
» Writers – read and modify database!

–  Is using a single lock on the whole database sufficient?!
»  Like to have many readers at the same time!
» Only one writer at a time!

R
R

R

W

Page 6

Lec 5.21!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Basic Readers/Writers Solution"
•  Correctness Constraints:!

– Readers can access database when no writers!
– Writers can access database when no readers or writers!
– Only one thread manipulates state variables at a time!

•  Basic structure of a solution:!
– Reader()
 Wait until no writers
 Access data base
 Check out – wake up a waiting writer

– Writer()
 Wait until no active readers or writers
 Access database
 Check out – wake up waiting readers or writer

– State variables (Protected by a lock called “lock”):!
»  int AR: Number of active readers; initially = 0!
»  int WR: Number of waiting readers; initially = 0!
»  int AW: Number of active writers; initially = 0!
»  int WW: Number of waiting writers; initially = 0!
» Condition okToRead = NIL!
» Condition okToWrite = NIL!

Lec 5.22!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Code for a Reader"
 Reader() {

 // First check self into system
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.Acquire();
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer
 lock.Release();
}!

Lec 5.23!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

 Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.Acquire();
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }
 lock.Release();
}!

Code for a Writer"

Lec 5.24!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Administrivia"

•  All groups have been assigned!
– We believe we satisfied all your constraints!!

•  Project 1!
– Out: Today by midnight!
– Design due: Tuesday, February 14!
– Code due: Tuesday, March 1!
– Final design document: March 2!

Page 7

Lec 5.25!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Simulation of Readers/Writers
solution"•  Consider the following sequence of operators:!

– R1, R2, W1, R3!
•  On entry, each reader checks the following:!

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

•  First, R1 comes along: 
!AR = 1, WR = 0, AW = 0, WW = 0!

•  Next, R2 comes along: 
!AR = 2, WR = 0, AW = 0, WW = 0!

•  Now, readers may take a while to access database!
– Situation: Locks released!
– Only AR is non-zero!

Lec 5.26!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Simulation(2)"
•  Next, W1 comes along: 

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;

•  Canʼt start because of readers, so go to sleep:!
! !AR = 2, WR = 0, AW = 0, WW = 1!

•  Finally, R3 comes along: 
!AR = 2, WR = 1, AW = 0, WW = 1!

•  Now, say that R2 finishes before R1: 
!AR = 1, WR = 1, AW = 0, WW = 1!

•  Finally, last of first two readers (R1) finishes and wakes up
writer:!

 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

Lec 5.27!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Simulation(3)"
•  When writer wakes up, get: 

!AR = 0, WR = 1, AW = 1, WW = 0!
•  Then, when writer finishes:!
 if (WW > 0){ // Give priority to writers

 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }

– Writer wakes up reader, so get:!
!AR = 1, WR = 0, AW = 0, WW = 0!

•  When reader completes, we are finished!

Lec 5.28!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Questions"
•  Can readers starve? Consider Reader() entry code:!

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

•  What if we erase the condition check in Reader exit?!
! AR--; // No longer active

 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

•  Further, what if we turn the signal() into broadcast()!
 AR--; // No longer active

 okToWrite.broadcast(); // Wake up one writer

•  Finally, what if we use only one condition variable (call it
“okToContinue”) instead of two separate ones?

– Both readers and writers sleep on this variable!
– Must use broadcast() instead of signal()!

Page 8

Lec 5.29!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Tips for Programming in a Project
Team"

•  Big projects require more than one
person (or long, long, long time)!

– Big OS: thousands of person-years!!
•  Itʼs very hard to make software  

project teams work correctly!
– Doesnʼt seem to be as true of big

construction projects!
»  Empire state building finished in one

year: staging iron production thousands
of miles away!

» Or the Hoover dam: built towns to hold
workers!

“You just have
to get your
synchronization right!”

Lec 5.30!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Big Projects"
•  What is a big project?!

– Time/work estimation is hard!
– Programmers are eternal optimistics  

(it will only take two days)!!
»  This is why we bug you about  

starting the project early!

•  Can a project be efficiently partitioned?!
– Partitionable task decreases in time as 

you add people!
– But, if you require communication:!

»  Time reaches a minimum bound!
» With complex interactions, time increases!!

– Mythical person-month problem:!
»  You estimate how long a project will take!
»  Starts to fall behind, so you add more people!
»  Project takes even more time!!

Lec 5.31!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Techniques for Partitioning Tasks"
•  Functional!

– Person A implements threads, Person B implements
semaphores, Person C implements locks…!

– Problem: Lots of communication across APIs!
»  If B changes the API, A may need to make changes!
»  Story: Large airline company spent $200 million on a new

scheduling and booking system. Two teams “working together.”
After two years, went to merge software. Failed! Interfaces had
changed (documented, but no one noticed). Result: would cost
another $200 million to fix. !

•  Task!
– Person A designs, Person B writes code, Person C tests!
– May be difficult to find right balance, but can focus on each

personʼs strengths (Theory vs systems hacker)!
– Since Debugging is hard, Microsoft has two testers for each

programmer!
•  Most CS162 project teams are functional, but people have

had success with task-based divisions!
Lec 5.32!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Communication"
•  More people mean more communication!

– Changes have to be propagated to more people!
– Think about person writing code for most  

fundamental component of system: everyone depends  
on them!!

•  Miscommunication is common!
–  “Index starts at 0? I thought you said 1!”!

•  Who makes decisions?!
–  Individual decisions are fast but trouble!
– Group decisions take time!
– Centralized decisions require a big picture view (someone who

can be the “system architect”)!
•  Often designating someone as the system architect can be a

good thing!
– Better not be clueless!
– Better have good people skills!
– Better let other people do work !

Page 9

Lec 5.33!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Coordination"
•  More people ⇒ no one can make all meetings!!

– They miss decisions and associated discussion!
– Example from earlier class: one person missed  

meetings and did something group had rejected!
– Why do we limit groups to 5 people? !

»  You would never be able to schedule meetings otherwise!
– Why do we require 4 people minimum?!

»  You need to experience groups to get ready for real world!
•  People have different work styles!

– Some people work in the morning, some at night!
– How do you decide when to meet or work together?!

•  What about project slippage?!
–  It will happen, guaranteed!!
– Ex: everyone busy but not talking. One person way behind.

No one knew until very end – too late!!
•  Hard to add people to existing group!

– Members have already figured out how to work together!
Lec 5.34!2/2/11! Ion Stoica CS162 ©UCB Spring 2011!

Summary"
•  Semaphores: Like integers with restricted interface!

– Two operations:!
» P(): Wait if zero; decrement when becomes non-zero!
» V(): Increment and wake a sleeping task (if exists)!
» Can initialize value to any non-negative value!

– Use separate semaphore for each constraint!
•  Monitors: A lock plus one or more condition variables!

– Always acquire lock before accessing shared data!
– Use condition variables to wait inside critical section!

»  Three Operations: Wait(), Signal(), and Broadcast()
•  Readers/Writers!

– Readers can access database when no writers!
– Writers can access database when no readers!
– Only one thread manipulates state variables at a time!

•  Language support for synchronization:!
– Java provides synchronized keyword and one condition-

variable per object (with wait() and notify())!

