
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 6  

Semaphores, Conditional Variables,
Deadlocks"

February 7, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 1.2!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Review: Definition of Monitor"
•  Semaphores are confusing because dual purpose:!

– Both mutual exclusion and scheduling constraints!
– Cleaner idea: Use locks for mutual exclusion and condition

variables for scheduling constraints!

•  Monitor: a lock and zero or more condition variables for
managing concurrent access to shared data!

•  Lock: provides mutual exclusion to shared data:!
– Always acquire before accessing shared data structure!
– Always release after finishing with shared data!

•  Condition Variable: a queue of threads waiting for
something inside a critical section!

– Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep!

– Contrast to semaphores: Canʼt wait inside critical section!

Lec 1.3!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Review: Readers/Writers Problem"

•  Motivation: Consider a shared database!
– Two classes of users:!

» Readers – never modify database!
» Writers – read and modify database!

–  Is using a single lock on the whole database sufficient?!
»  Like to have many readers at the same time!
» Only one writer at a time!

R
R

R

W

Lec 1.4!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Review: Code for a Reader"
 Reader() {

 // First check self into system
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.Acquire();
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer
 lock.Release();
}!

Page 2

Lec 1.5!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

 Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.Acquire();
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }
 lock.Release();
}!

Review: Code for a Writer"

Lec 1.6!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Simulation of Readers/Writers solution"
•  Consider the following sequence of operators:!

– R1, R2, W1, R3 (AR = WR = AW = WW = 0)!
•  On entry, each reader checks the following:!

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

•  First, R1 comes along: 
!AR = 1, WR = 0, AW = 0, WW = 0!

•  Next, R2 comes along: 
!AR = 2, WR = 0, AW = 0, WW = 0!

•  Now, readers may take a while to access database!
– Situation: Locks released!
– Only AR is non-zero!

Lec 1.7!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Simulation(2)"
•  Next, W1 comes along: 

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;

•  Canʼt start because of readers, so go to sleep:!
! !AR = 2, WR = 0, AW = 0, WW = 1!

•  Finally, R3 comes along: 
!AR = 2, WR = 1, AW = 0, WW = 1!

•  Now, say that R2 finishes before R1: 
!AR = 1, WR = 1, AW = 0, WW = 1!

•  Finally, last of first two readers (R1) finishes and wakes up
writer:!

 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

Lec 1.8!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Simulation(3)"
•  When writer wakes up, get: 

!AR = 0, WR = 1, AW = 1, WW = 0!
•  Then, when writer finishes:!
 if (WW > 0){ // Give priority to writers

 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }

– Writer wakes up reader, so get:!
!AR = 1, WR = 0, AW = 0, WW = 0!

•  When reader completes, we are finished!

Page 3

Lec 1.9!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Questions"
•  Can readers starve? Consider Reader() entry code:!

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!

•  What if we erase the condition check in Reader exit?!
! AR--; // No longer active

 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer

•  Further, what if we turn the signal() into broadcast()!
 AR--; // No longer active

 okToWrite.broadcast(); // Wake up one writer

•  Finally, what if we use only one condition variable (call it
“okToContinue”) instead of two separate ones?

– Both readers and writers sleep on this variable!
– Must use broadcast() instead of signal()!

Lec 1.10!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Can we construct Monitors from Semaphores?"
•  Locking aspect is easy: Just use a mutex!
•  Can we implement condition variables this way?!

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }
– Doesnʼt work: Wait() may sleep with lock held!

•  Does this work better?!
 Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have history:!
» What if thread signals and no one is waiting? NO-OP!
» What if thread later waits? Thread Waits!
» What if thread Vʼs and noone is waiting? Increment!
» What if thread later does P? Decrement and continue

Lec 1.11!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Construction of Monitors from Semaphores
(conʼt)"•  Problem with previous try:!

– P and V are commutative – result is the same no matter what
order they occur!

– Condition variables are NOT commutative!
•  Does this fix the problem?!

!Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() {
 if semaphore queue is not empty
 semaphore.V();
}

– Not legal to look at contents of semaphore queue!
– There is a race condition – signaler can slip in after lock

release and before waiter executes semaphore.P()!
•  It is actually possible to do this correctly!

– Complex solution for Hoare scheduling in book!
– Can you come up with simpler Mesa-scheduled solution?!

Lec 1.12!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Monitor Conclusion"
•  Monitors represent the logic of the program!

– Wait if necessary!
– Signal when change something so any waiting threads can

proceed!
•  Basic structure of monitor-based program:!

 lock
while (need to wait) {
 condvar.wait();
}
unlock

do something so no need to wait

lock

 condvar.signal();

unlock

Check and/or update
state variables
Wait if necessary

Check and/or update
state variables

Page 4

Lec 1.13!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

C-Language Support for Synchronization"
•  C language: Pretty straightforward synchronization!

– Just make sure you know all the code paths out of a
critical section!

 int Rtn() {
 lock.acquire();
 …
 if (exception) {
 lock.release();
 return errReturnCode;
 }
 …
 lock.release();
 return OK;
}

Lec 1.14!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

C++ Language Support for Synchronization"
•  Languages with exceptions like C++!

– Languages that support exceptions are problematic (easy to
make a non-local exit without releasing lock)!

– Consider:!
! !void Rtn() {
 lock.acquire();
 …
 DoFoo();
 …
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

– Notice that an exception in DoFoo() will exit without releasing
the lock!

Lec 1.15!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

C++ Language Support for Synchronization
(conʼt)"•  Must catch all exceptions in critical sections!

– Catch exceptions, release lock, and re-throw exception: 
!void Rtn() {
 lock.acquire();
 try {
 …
 DoFoo();
 …
 } catch (…) { // catch exception
 lock.release(); // release lock
 throw; // re-throw the exception
 }
 lock.release();
 }
 void DoFoo() {
 …
 if (exception) throw errException;
 …
 }

– Even Better: auto_ptr<T> facility. See C++ Spec.!
» Can deallocate/free lock regardless of exit method!

Lec 1.16!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Java Language Support for Synchronization"
•  Java has explicit support for threads and thread

synchronization!
•  Bank Account example: 

!class Account {
 private int balance;
 // object constructor
 public Account (int initialBalance) {
 balance = initialBalance;
 }
 public synchronized int getBalance() {
 return balance;
 }
 public synchronized void deposit(int amount) {
 balance += amount;
 }
 }

– Every object has an associated lock which gets automatically
acquired and released on entry and exit from a synchronized
method.!

Page 5

Lec 1.17!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Java Language Support for Synchronization
(conʼt)"

•  Java also has synchronized statements:!
! !synchronized (object) {

 …
 }

– Since every Java object has an associated lock, this type of
statement acquires and releases the objectʼs lock on entry
and exit of the body!

– Works properly even with exceptions:!
! !synchronized (object) {
 …
 DoFoo();
 …
 }
 void DoFoo() {
 throw errException;
 }

 !
Lec 1.18!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Java Language Support for Synchronization (2/2)"
•  In addition to a lock, every object has a single condition

variable associated with it!
– How to wait inside a synchronization method of block:!

»  void wait(long timeout); // Wait for timeout
»  void wait(long timeout, int nanoseconds); //variant
»  void wait();

– How to signal in a synchronized method or block:!
»  void notify(); // wakes up oldest waiter
»  void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of time. This
is useful for handling exception cases:!

 t1 = time.now();
 while (!ATMRequest()) {
 wait (CHECKPERIOD);
 t2 = time.new();
 if (t2 – t1 > LONG_TIME) checkMachine();
 }

– Not all Java VMs equivalent! !
» Different scheduling policies, not necessarily preemptive!!

Lec 1.19!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Summary: Semaphores and Cond. Variables"
•  Semaphores: Like integers with restricted interface!

– Two operations:!
» P(): Wait if zero; decrement when becomes non-zero!
» V(): Increment and wake a sleeping task (if exists)!
» Can initialize value to any non-negative value!

– Use separate semaphore for each constraint!

•  Monitors: A lock plus one or more condition variables!
– Always acquire lock before accessing shared data!
– Use condition variables to wait inside critical section!

»  Three Operations: Wait(), Signal(), and Broadcast()

•  Language support for synchronization:!
– Java provides synchronized keyword and one condition-

variable per object (with wait() and notify())!

Lec 1.20!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

5min Break"

Page 6

Lec 1.21!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Tips for Programming in a Project
Team"

•  Big projects require more than one
person (or long, long, long time)!

– Big OS: thousands of person-years!!
•  Itʼs very hard to make software  

project teams work correctly!
– Doesnʼt seem to be as true of big

construction projects!
»  Empire state building finished in one

year: staging iron production thousands
of miles away!

» Or the Hoover dam: built towns to hold
workers!

“You just have
to get your
synchronization right!”

Lec 1.22!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Big Projects"
•  What is a big project?!

– Time/work estimation is hard!
– Programmers are eternal optimistics  

(it will only take two days)!!
»  This is why we bug you about  

starting the project early!

•  Can a project be efficiently partitioned?!
– Partitionable task decreases in time as 

you add people!
– But, if you require communication:!

»  Time reaches a minimum bound!
» With complex interactions, time increases!!

– Mythical person-month problem:!
»  You estimate how long a project will take!
»  Starts to fall behind, so you add more people!
»  Project takes even more time!!

Lec 1.23!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Techniques for Partitioning Tasks"
•  Functional!

– Person A implements threads, Person B implements
semaphores, Person C implements locks…!

– Problem: Lots of communication across APIs!
»  If B changes the API, A may need to make changes!
»  Story: Large airline company spent $200 million on a new

scheduling and booking system. Two teams “working together.”
After two years, went to merge software. Failed! Interfaces had
changed (documented, but no one noticed). Result: would cost
another $200 million to fix. !

•  Task!
– Person A designs, Person B writes code, Person C tests!
– May be difficult to find right balance, but can focus on each

personʼs strengths (Theory vs systems hacker)!
– Since Debugging is hard, Microsoft has two testers for each

programmer!
•  Most CS162 project teams are functional, but people have

had success with task-based divisions!
Lec 1.24!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Communication"
•  More people mean more communication!

– Changes have to be propagated to more people!
– Think about person writing code for most  

fundamental component of system: everyone depends  
on them!!

•  Miscommunication is common!
–  “Index starts at 0? I thought you said 1!”!

•  Who makes decisions?!
–  Individual decisions are fast but trouble!
– Group decisions take time!
– Centralized decisions require a big picture view (someone who

can be the “system architect”)!
•  Often designating someone as the system architect can be a

good thing!
– Better not be clueless!
– Better have good people skills!
– Better let other people do work !

Page 7

Lec 1.25!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Coordination"
•  More people ⇒ no one can make all meetings!!

– They miss decisions and associated discussion!
– Example from earlier class: one person missed  

meetings and did something group had rejected!
– Why do we limit groups to 5 people? !

»  You would never be able to schedule meetings otherwise!
– Why do we require 4 people minimum?!

»  You need to experience groups to get ready for real world!
•  People have different work styles!

– Some people work in the morning, some at night!
– How do you decide when to meet or work together?!

•  What about project slippage?!
–  It will happen, guaranteed!!
– Ex: everyone busy but not talking. One person way behind.

No one knew until very end – too late!!
•  Hard to add people to existing group!

– Members have already figured out how to work together!
Lec 1.26!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

How to Make it Work?"
•  People are human. Get over it.!

– People will make mistakes, miss meetings, miss deadlines, etc.
You need to live with it and adapt!

–  It is better to anticipate problems than clean up afterwards. !
•  Document, document, document!

– Why Document?!
»  Expose decisions and communicate to others!
»  Easier to spot mistakes early!
»  Easier to estimate progress!

– What to document?!
»  Everything (but donʼt overwhelm people or no one will read)!

– Standardize!!
» One programming format: variable naming conventions, tab

indents,etc.!
» Comments (Requires, effects, modifies)—javadoc?!

Lec 1.27!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Suggested Documents for You to
Maintain"

•  Project objectives: goals, constraints, and priorities!
•  Specifications: the manual plus performance specs!

– This should be the first document generated and the last
one finished!

•  Meeting notes!
– Document all decisions!
– You can often cut & paste for the design documents!

•  Schedule: What is your anticipated timing?!
– This document is critical!!

•  Organizational Chart!
– Who is responsible for what task?!

Lec 1.28!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Test Continuously"
•  Integration tests all the time, not at 11pm 

on due date!!
– Write dummy stubs with simple functionality!

»  Letʼs people test continuously, but more work!
– Schedule periodic integration tests!

» Get everyone in the same room, check out code, build, and test.!
» Donʼt wait until it is too late!!

•  Testing types:!
– Unit tests: check each module in isolation (use JUnit?)!
– Daemons: subject code to exceptional cases !
– Random testing: Subject code to random timing changes!

•  Test early, test later, test again!
– Tendency is to test once and forget; what if something

changes in some other part of the code?!

Page 8

Lec 1.29!2/7/11! Ion Stoica CS162 ©UCB Spring 2011! Lec 1.30!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

•  Resources – passive entities needed by threads to do their
work!

– CPU time, disk space, memory!
•  Two types of resources:!

– Preemptable – can take it away!
» CPU, Embedded security chip!

– Non-preemptable – must leave it with the thread!
» Disk space, printer, chunk of virtual address space!
» Critical section !

•  Resources may require exclusive access or may be sharable!
– Read-only files are typically sharable!
– Printers are not sharable during time of printing!

•  One of the major tasks of an operating system is to manage
resources!

Resources"

Lec 1.31!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Starvation vs Deadlock"
•  Starvation vs. Deadlock!

– Starvation: thread waits indefinitely!
»  Example, low-priority thread waiting for resources constantly

in use by high-priority threads!
– Deadlock: circular waiting for resources!

»  Thread A owns Res 1 and is waiting for Res 2  
Thread B owns Res 2 and is waiting for Res 1!

– Deadlock ⇒ Starvation but not vice versa!
»  Starvation can end (but doesnʼt have to)!
» Deadlock canʼt end without external intervention!

Res 2 Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 1.32!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Conditions for Deadlock"
•  Deadlock not always deterministic – Example 2 mutexes:!
! !Thread A Thread B
 x.P(); y.P();
 y.P(); x.P();
 y.V(); x.V();
 x.V(); y.V();

– Deadlock wonʼt always happen with this code!
» Have to have exactly the right timing (“wrong” timing?)!
»  So you release a piece of software, and you tested it, and there it is,

controlling a nuclear power plant…!
•  Deadlocks occur with multiple resources!

– Means you canʼt decompose the problem!
– Canʼt solve deadlock for each resource independently!

•  Example: System with 2 disk drives and two threads!
– Each thread needs 2 disk drives to function!
– Each thread gets one disk and waits for another one!

A: x.P();
A: y.p();
B: y.P();
B: x.P();
...

Deadlock!

Page 9

Lec 1.33!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Bridge Crossing Example"

•  Each segment of road can be viewed as a resource!
– Car must own the segment under them!
– Must acquire segment that they are moving into!

•  For bridge: must acquire both halves !
– Traffic only in one direction at a time !
– Problem occurs when two cars in opposite directions on bridge:

each acquires one segment and needs next!
•  If a deadlock occurs, it can be resolved if one car backs up

(preempt resources and rollback)!
– Several cars may have to be backed up !

•  Starvation is possible!
– East-going traffic really fast ⇒ no one goes west!

Lec 1.34!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Train Example (Wormhole-Routed Network)"
•  Circular dependency (Deadlock!)!

– Each train wants to turn right!
– Blocked by other trains!
– Similar problem to multiprocessor networks!

•  Fix? Imagine grid extends in all four directions!
– Force ordering of channels (tracks)!

»  Protocol: Always go east-west first, then north-south!
– Called “dimension ordering” (X then Y)!

Disallowed

By Rule

Lec 1.35!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Train Example (Wormhole-Routed Network)"
•  Circular dependency (Deadlock!)!

– Each train wants to turn right!
– Blocked by other trains!
– Similar problem to multiprocessor networks!

•  Fix? Imagine grid extends in all four directions!
– Force ordering of channels (tracks)!

»  Protocol: Always go east-west first, then north-south!
– Called “dimension ordering” (X then Y)!

A

B

Lec 1.36!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Dining Philosopher Problem"

•  Five chopsticks/Five philosopher (really cheap restaurant)!
– Free-for all: Philosopher will grab any one they can!
– Need two chopsticks to eat!

•  What if all grab at same time?!
– Deadlock!!

•  How to fix deadlock?!
– Make one of them give up a chopstick (Hah!)!
– Eventually everyone will get chance to eat!

•  How to prevent deadlock?!
– Never let philosopher take last chopstick if no hungry philosopher

has two chopsticks afterwards!

Page 10

Lec 1.37!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Four requirements for Deadlock"
•  Mutual exclusion!

– Only one thread at a time can use a resource.!
•  Hold and wait!

– Thread holding at least one resource is waiting to acquire
additional resources held by other threads!

•  No preemption!
– Resources are released only voluntarily by the thread holding

the resource, after thread is finished with it!
•  Circular wait!

– There exists a set {T1, …, Tn} of waiting threads!
»  T1 is waiting for a resource that is held by T2!
»  T2 is waiting for a resource that is held by T3!
» …!
»  Tn is waiting for a resource that is held by T1!

Lec 1.38!2/7/11! Ion Stoica CS162 ©UCB Spring 2011!

Summary: Deadlock"
•  Suggestions for dealing with Project Partners!

– Start Early, Meet Often!
– Develop Good Organizational Plan, Document Everything,  

Use the right tools, Develop Comprehensive Testing Plan!
–  (Oh, and add 2 years to every deadline!)!

•  Starvation vs. Deadlock!
– Starvation: thread waits indefinitely!
– Deadlock: circular waiting for resources!

•  Four conditions for deadlocks!
– Mutual exclusion!

» Only one thread at a time can use a resource!
– Hold and wait!

»  Thread holding at least one resource is waiting to acquire
additional resources held by other threads!

– No preemption!
» Resources are released only voluntarily by the threads!

– Circular wait!
»  ∃ set {T1, …, Tn} of threads with a cyclic waiting pattern!

