CS162
Operating Systems and
Systems Programming

Lecture 7

Deadlock, CPU Scheduling

February 9, 2011
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Read/Writer Revisited

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {

WR++;
okToRead.wait (&lock) ;
WR-—;

}

AR++;

lock.release();

What if we
// read-only _
AccessDbase | remove this
line?

// check out

lock.Acquire

AR———¢

lif (AR == 0 && WW > 0]
okToWrite.signal () ;

lock.Release () ;

}

2/9/11 lon Stoica CS162 ©UCB Spring 2011

Writ?;() {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++; .
%%Toerte.walt(&lock);

AW++;
lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system

lock.Acquire () ;

AWN——;

if (Ww > 0){
okToWrite.signal ()

} else if (WR > 0) {
okToRead.broadcast

’

()

ock.Release () ;

Lec 7.2

Read/Writer Revisited

Reader () { Writer () { .

// check into system // check into system

lock.Acquire () ; lock.Acquire () ;

while ((AW + WW) > 0) { "Pygg A0+ AR)> 0) A
WR++; , okToWrite.wait (&lock) ;
okToRead.wait (&lock) ; WW—-;
WR—-7;

} AW++;

AR++; lock.release();

lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// read-only :
AccessDbase | What if we
// check out of system

turn signal to lock.Acquire () ;

AW--;
// check ouli hrogdcast? if (W o> 0){
lock.Acquirg okToWrite.signal () ;
AR——_ —\ £ } else if (WR > 0) {
lif (AR == &&xAW_Z_Q] okToRead.broadcast () ;
okToWrite.brdadcast () ; i
lock.Release () ; ock.Release();

) }

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.3

Read/Writer Revisited

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okContinue.wait (&lock);
WR—-;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire () ;

AR—-;

if (AR 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

} 1

Writer () | .
// check into system
lock.Acquire () ;
while ((AW + AR) > 0) {
WWH++;

okContinue.wait (&lock) ;
WW—-—>

AW++;
lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system
lock.Acquire () ;
AW--;
(WWw > 0){ .
okToWrite.signal () ;
} else if (WR > 0) {
okContinue.broadcast () ;

iock.Release();

2/9/11

What if we turn okToWrite and okToRead into okContinue?

Read/Writer Revisited

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okContinue.wait (&lock) ;
WR—-;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire();

AR—-;

if (AR == 0 && WW > 0)
okContinue.signal () ;

lock.Release () ;

Writer () {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++; .
okContinue.wait (&lock) ;
WW—-7;

}

AW++;

lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system

lock.Acquire () ;

AWN=—;

if (Ww > 0){
okToWrite.signal () ;

} else 1if (WR > 0) {
okContinue.broadcast () ;

ock.Release () ;

* R1 arrives

* R1 signals R2

2/9/11

W1, R2 arrive while R1 reads

Read/Writer Revisited

Reader () {

// check into system
lock.Acquire();

while ((AW + WW) > 0) {
WR++;
okContinue.wait (&lock);
WR—-;

}

AR++;

lock.release () ;

// read-only access
AccessDbase (ReadOnly) ;

// check out of system

lock.Acquire () ;

AR-—7;

if (AR 0 && WW > 0)
okContinue.broadcast () ;

lock.Release () ;
} S

1

Writ?;() {

check 1nto system
lock.Acquire () ;

while ((AW + AR) > 0) {
WW++; .
%%Contlnue.walt(&lock);

AW++;
lock.release () ;

// read/write access
AccessDbase (ReadWrite) ;

// check out of system
lock.Acquire () ;
AW--;
(WWw > 0){ .
okToWrite.signal () ;
} else if (WR > 0) {
okContinue.broadcast () ;

ock.Release () ;

2/9/11 I

Need to change to broadcast!

Why?

Lec 7.6

Resources

Resources — passive entities needed by threads to do their
work

— CPU time, disk space, memory

Two types of resources:

— Preemptable — can take it away
» CPU, Embedded security chip

— Non-preemptable — must leave it with the thread
» Disk space, printer, chunk of virtual address space
» Critical section
Resources may require exclusive access or may be sharable
— Read-only files are typically sharable
— Printers are not sharable during time of printing

One of the major tasks of an operating system is to manage
resources

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.7

Starvation vs Deadlock @

« Starvation vs. Deadlock

— Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources constantly
in use by high-priority threads
— Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

— Deadlock = Starvation but not vice versa
» Starvation can end (but doesn’t have t0)

» Deadlock can’t end without external intervention
2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.8

Conditions for Deadlock
Deadlock not always deterministic — Example 2 mutexes:

Thread A Thread B Deadlock
x.P(); v.P(O);
A: x.P();
v.P(); Xx.P(); <B' v.P();
Y°V(); x.V(); A vy. ():
x.V(); y.-V(); B: x.P();
— Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” tim

» SO you release a piece of software, and you tested it, and there it is,
controlling a nuclear power plant...

- Deadlocks occur with multiple resources
— Means you can’t decompose the problem
— Can’t solve deadlock for each resource independently
Example: System with 2 disk drives and two threads
— Each thread needs 2 disk drives to function

— Each thread gets one disk and waits for another one
2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.9

Bridge Crossing Example

Each segment of road can be viewed as a resource
— Car must own the segment under them
— Must acquire segment that they are moving into

For bridge: must acquire both halves
— Traffic only in one direction at a time

— Problem occurs when two cars in opposite directions on bridge:
each acquires one segment and needs next

If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

— Several cars may have to be backed up
Starvation is possible

— East-going traffic really fast = no one goes west
2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.10

Train Example (Wormhole-Routed Network)

» Circular dependency (Deadlock!)
— Each train wants to turn right
— Blocked by other trains
— Similar problem to multiprocessor networks
- Fix? Imagine grid extends in all four directions

— Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south

— Called “dimension ordering” (X then Y)

‘ $32 F
/]
n
EEEEN = = - Emi! !.'&
-
) -
% |
I 6)’,:0/6
!

=]
/ /

zeas) [neses)

CS162 ©UCB Spling 2011 Lec 7.11

(-l':l_l'l'. ENENE

2/9/17 lon §

Train Example (Wormhole-Routed Network)

» Circular dependency (Deadlock!)
— Each train wants to turn right
— Blocked by other trains
— Similar problem to multiprocessor networks
- Fix? Imagine grid extends in all four directions

— Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south

— Called “dimension ordering” (X then Y)

X

2/9/17 lon Stoici CS162 ©UCB Spjing 2011 Lec 7.12

Dining Philosopher Problem

Five chopsticks/Five philosopher (really cheap restaurant)
— Free-for all: Philosopher will grab any one they can
— Need two chopsticks to eat
What if all grab at same time?
— Deadlock!
How to fix deadlock?
— Make one of them give up a chopstick (Hah!)
— Eventually everyone will get chance to eat

How to prevent deadlock?

— Never let philosopher take last chopstick if no hungry philosopher

has two chopsticks afterwards |
2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.13

Four requirements for Deadlock

Mutual exclusion
— Only one thread at a time can use a resource.
Hold and wait

— Thread holding at least one resource is waiting to acquire
additional resources held by other threads

No preemption
— Resources are released only voluntarily by the thread holding
the resource, after thread is finished with it
Circular wait

— There exists a set{T,, ..., T} of waiting threads
» T, is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T,

» .

» T is waiting for a resource that is held by T,

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.14

Resource-Allocation Graph

- System Model
—Asetof Threads 7,, T,, ..., T,

n

— Resource types R, R,, . . ., R,
CPU cycles, memory space, 1/0 devices

— Each resource type R has W, instances.
— Each thread utilizes a resource as follows:

Symbols

© ©
-]

» Request () / Use() / Release /()
- Resource-Allocation Graph:

— V is partitioned into two types:
» T={Ty, T,, ..., T}, the set threads in the system.

» R={R,, R,, ..., R}, the set of resource types in system

— request edge — directed edge T, — R,
— assignment edge — directed edge R, — T,

2/9/11 lon Stoica CS162 ©UCB Spring 2011

Lec 7.15

Resource Allocation Graph Examples
- Recall:
—request edge — directed edge 7, = R,
— assignment edge — directed edge R, — T,

R, R,

Rs ®
R, R,
Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but

No Deadlock
2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.16

Methods for Handling Deadlocks @

- Allow system to enter deadlock and then recover
— Requires deadlock detection algorithm

— Some technique for forcibly preempting resources and/or
terminating tasks

- Ensure that system will never enter a deadlock
— Need to monitor all lock acquisitions
— Selectively deny those that might lead to deadlock

- Ignore the problem and pretend that deadlocks never
occur in the system

— Used by most operating systems, including UNIX

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.17

Deadlock Detection Algorithm

- Only one of each type of resource = look for loops

« More General Deadlock Detection Algorithm

— Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources]: Current free resources each type

[Requesty]: Current requests from thread X

[Allocy] : Current resources held by thread X
— See if tasks can eventually terminate on their own

[Avail] = [FreeResources]

Add all nodes to UNFINISHED

do |

done = true

Foreach node in UNFINISHED {

if ([Request,. 4.1 <= [Availl) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,.4]

done = false

}
}
} until (done)
— Nodes left in UNFINISHED = deadlocked

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.18

Deadlock Detection Algorithm

Example
[Available] = [0,0] [Available] = [1,0] [Available] = [1,1]
[Request,] = [0,0] [Request+] = [1,0] [Request;;] = [0,1]
[Requesty,] <= [Requestq] <= [Request ;] <=
[Available] [Available] [Available]

R, @ R, @
B [4]

R, 0 R,

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.19

Techniques for Preventing Deadlock

 |Infinite resources

— Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

— Give illusion of infinite resources (e.g. virtual memory)
— Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

- No Sharing of resources (totally independent threads)
— Not very realistic

- Don’t allow waiting

— How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone lines,
but if blocked get busy signal

— Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.20

Techniques for Preventing Deadlock (con’t)

- Make all threads request everything they’ll need at the
beginning
— Problem: Predicting future is hard, tend to over-estimate
resources
— Example:
» If need 2 chopsticks, request both at same time

» Don’t leave home until we know no one is using any intersection
between here and where you want to go!

» Force all threads to request resources in a particular order
preventing any cyclic use of resources

— Thus, preventing deadlock
— Example (x.P, y.P, z.P,...)
» Make tasks request disk, then memory, then...

» Keep from deadlock on freeways around SF by requiring

everyone to go clockwise

2/9/11 on Stoica CS162 ©UCB Spring 2011 Lec 7.21

Review: Train Example (Wormhole-Routed
- Circular dependency (Deadlock')
— Each train wants to turn right

— Blocked by other trains
— Similar problem to multiprocessor networks
 Fix? Imagine grid extends in all four directions

— Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south

— Called “dimension ordering” (X then Y)

e Sol{ =2

=]
/ /

zeas) [neses)

CS162 ©UCB Spling 2011 Lec 7.22

(-l':l_l'l'. ENENE

2/9/17 lon §

Banker’s Algorithm for Preventing
o Deadlock
- Toward right idea:

— State maximum resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) = max
remaining that might be needed by any thread

- Banker’s algorithm (less conservative):

— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting
([Max, 4c]-[Alloc, 4] < [Avail]) for ([Request, 4] < [Avail])
Grant request if result is deadlock free (conservative!)

» Keeps system in a “SAFE” state, i.e. there exists a sequence {T,,
T,, ... T} with T, requesting all remaining resources, finishing, then
T, requesting all remaining resources, etc..

— Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.23

Banker’s Algorithm Example

- Banker’s algorithm with dining philosophers

— “Sﬁfe” (won’t cause deadlock) if when try to grab chopstick
either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

— What if k-handed philosophers? Don’t allow if:
» |t’s the last one, no one would have k
» [t's 2" to last, and no one would have k-1
» [t's 3 to last, and no one would have k-2

o917 lon Stoica CS162 ©UCB Spring 2011 Lec 7.24

Administrivia

- SVN repository is up
— Source code already imported

- Deadlines, project 1:
— Design: February 15th
— Code: March 1st

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.25

5min Break

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.26

CPU Scheduling

ready queue » CPU }

r v

I/0 queue < I/O request [«
time slice
expired
child fork a B
executes child A
interrupt wait for an <
Q:curs interrupt

- Earlier, we talked about the life-cycle of a thread

— Active threads work their way from Ready queue to Running
to various waiting queues.

« Question: How is the OS to decide which of several
threads to take off a queue?
— Obvious queue to worry about is ready queue
— Others can be scheduled as well, however
- Scheduling: deciding which threads are given access to

resources
2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.27

Scheduling Assumptions

CPU scheduling big area of research in early 70’s
Many implicit assumptions for CPU scheduling:

— One program per user

— One thread per program

— Programs are independent

Clearly, these are unrealistic but they simplify the problem so
it can be solved

— For instance: is “fair” about fairness among users or programs?

» If | run one compilation job and you run five, you get five times as
much CPU on many operating systems

The high-level goal: Dole out CPU time to optimize some
desired parameters of system

USER1 USER2 USER3 USERI1 USER2

Time ————

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.28

Assumption: CPU Bursts

7y
load store
add store CPU burst| 160 k
read from file
140 Weighted toward small bursts
wait for I/O 1/O burst
120
store increment -
index CPU burst] o 100
write to file §
g 80
wait for I/O 1/O burst =
60
load store 40
add store CPU burst|
read from file
20 |
A Il 1 | 1 | >
wait for I/O 1/0O burst 0 8 16 od 30 20
burst duration (milliseconds)

- Execution model: programs alternate between bursts of CPU
and 1/0O

— Program typically uses the CPU for some period of time, then
does I/O, then uses CPU again

— Each scheduling decision is about which job to give to the CPU
for use by its next CPU burst

— With timeslicing, thread may be forced to give up CPU before
finishing current CPU burst

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.29

Scheduling Policy Goals/Criteria

* Minimize Response Time
— Minimize elapsed time to do an operation (or job)
— Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Maximize Throughput
— Maximize operations (or jobs) per second

— Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than
if you only maximized throughput

— Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)
 Fairness
— Share CPU among users in some equitable way
— Fairness is not minimizing average response time:
» Better average response time by making system Jess fair

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.30

First-Come, First-Served (FCFS) Scheduling

« First-Come, First-Served (FCFS)

— Also “First In, First Out” (FIFO) or “Run until done”

» In early systems, FCFS meant one program
scheduled until done (including 1/0O)

» Now, means keep CPU until thread blocks

- Example: Process Burst Time
P, 24
P 3
P, 3

— Suppose processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30
— Waiting time for P, =0; P, =24; P;,=27
— Average waiting time: (0 + 24 + 27)/3 =17
— Average Completion time: (24 + 27 + 30)/3 = 27

- Convoy effect: short process behind long process
2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.31

FCFS Scheduling (Cont.)

- Example continued:

— Suppose that processes arrive in order: P, , P;, P,
Now, the Gantt chart for the schedule is:

P, P, P,

0 3 6 30
— Waiting time for P, =6,P,=0.P;=3

— Average waitingtime: (6+ 0+ 3)/3=3
— Average Completion time: (3 + 6 + 30)/3 =13
+ In second case:
— average waiting time is much better (before it was 17)
— Average completion time is better (before it was 27)
- FCFS Pros and Cons:
— Simple (+)
— Short jobs get stuck behind long ones (-)
» Safeway: Getting milk, always stuck behind cart full of small items

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.32

Round Robin (RR)

- FCFS Scheme: Potentially bad for short jobs!
— Depends on submit order

— If you are first in line at supermarket with milk, you don’t care
who is behind you, on the other hand...

« Round Robin Scheme

— Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

— After quantum expires, the process is preempted
and added to the end of the ready queue

— n processes in ready queue and time quantumis g =
» Each process gets 1/n of the CPU time
» In chunks of at most g time units
» NO process waits more than (n-1)g time units
- Performance
— g large = FCFS
— g small = Interleaved

— g must be large with respect to context switch, otherwise

overhead is too high (all overhead)
2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.33

Example of RR with Time Quantum = 20

- Example: Process Burst Time
P, 53
P, 8
P, 68
P, 24

— The Gantt chart is:

O 20 28 48 68 88 108 112 125 145 153
— Waiting time for P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88
— Average waiting time = (72+20+85+88)/4=66"

— Average completion time = (125+28+153+112)/4 = 104>
- Thus, Round-Robin Pros and Cons:
— Better for short jobs, Fair (+)

— Context-switching time adds up for long jobs (-)
2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.34

Round-Robin Discussion

- How do you choose time slice?
— What if too big?
» Response time suffers
— What if infinite (o) ?
» Get back FIFO
— What if time slice too small?
» Throughput suffers!

« Actual choices of timeslice:

— Initially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.

» What if three compilations going on? 3 seconds to echo each
keystroke!

— In practice, need to balance short-job performance and long-
job throughput:
» Typical time slice today is between 10ms — 100ms
» Typical context-switching overhead is 0.1ms — 1ms
» Roughly 1% overhead due to context-switching

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.35

Comparisons between FCFS and
Robin

» Assuming zero-costB:c?nlfleQQSW|tch|ng time, is RR always
better than FCFS?

- Simple example: 10 jobs, each take 100s of CPU time
RR scheduler quantum of 1s

All jobs start at the same time

- Completion Times: Job # | FIFO RR
1 100 991
2 200 992
9 900 999
10 1000 1000

—Both RR and FCFS finish at the same time

— Average response time is much worse under RR!
» Bad when all jobs same length

 Also: Cache state must be shared between all jobs with RR
but can be devoted to each job with FCFS

— Total time for RR longer even for zero-cost switch!

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.36

Earlier Example with Different Time

Quantum
P, | P, P, P,
Best FCFS: | g] | [24] [53] [68]
0 8 32 85 153
Quantum P P, Ps P, Average
Best FCFS |32 |0 85 8 311
Q-1 84 |22 85 57 62
, Q:5 82 |20 85 58 612
1‘4{:\': Q-8 80 |8 85 56 574
Q=10 82 10 85 68 611
Q= 20 72 |20 85 88 661
Worst FCFS | 68 145 0 121 832
Best FCFS |85 |8 153 32 694
Q-1 137 |30 153 81 1002
Completion | =2 135 |28 153 82 991
= Q-8 133 |16 153 80 951
Q = 10 135 |18 153 92 991
Q=20 125 |28 153 112 1042
i Worst FCFS [121 | 153 68 145 1213

JIUVILVA UUJU 1 - YUV UMI

IuLUII

What if we Knew the Future?

Could we always mirror best FCFS?
Shortest Job First (SJF):

— Run whatever job has the least amount of
computation to do

— Sometimes called “Shortest Time to
Completion First” (STCF)

Shortest Remaining Time First (SRTF):

— Preemptive version of SJF: if job arrives and has a shorter
time to completion than the remaining time on the current job,
immediately preempt CPU

— Sometimes called “Shortest Remaining Time to Completion
First” (SRTCF)

These can be applied either to a whole program or the
current CPU burst of each program

— Idea is to get short jobs out of the system

— Big effect on short jobs, only small effect on long ones

— Result is better average response time
2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.38

Discussion

- SJF/SRTF are the best you can do at minimizing average
response time

— Provably optimal (SJF among non-preemptive, SRTF among
preemptive)

— Since SRTF is always at least as good as SJF, focus on
SRTF

- Comparison of SRTF with FCFS and RR

— What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can do if
all jobs the same length)

— What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.39

Example to illustrate benefits of
SRTF

AorB C

|
— — —
C's Cs C's
I/0 I/0 I/0

* Three jobs:

— A,B: CPU bound, each run for a week
C: I/0O bound, loop 1Tms CPU, 9ms disk 1/0

— If only one at a time, C uses 90% of the disk, A or B could use
100% of the CPU

- With FIFO:
— Once A or B get in, keep CPU for two weeks

« What about RR or SRTF?
— Easier to see with a timeline

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.40

SRTF Example continu

Disk Utilization:
9/201 ~ 4.5%

]

C A B
| I |
| | | .
C's RR 100ms time slice Disk Utilization:
I/0 ~90% but lots of
wakeups!
CABAB.. C)

ﬁﬁ

C's C's
I/0 I/O
C A A

RR 1ms time slice

J

Disk Utilization:
90%

— —

C's C's

I/0 I/0
2/9/11

SRTF

lon Stoica CS162 ©UCB Spring 2011

Lec 7.41

SRTF Further discussion

Starvation
— SRTF can lead to starvation if many small jobs!
— Large jobs never get to run

Somehow need to predict future
— How can we do this?

— Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system Kills job if takes too long

— But: Even non-malicious users have trouble predicting runtime
of their jobs

Bottom line, can’t really know how long job will take

— However, can use SRTF as a yardstick
for measuring other policies

— Optimal, so can’t do any better
SRTF Pros & Cons
— Optimal (average response time) (+)
— Hard to predict future (-)
— Unfair (-)

2/9/11 lon Stoica CS162 ©UCB Spring 2011

Summary (Deadlock)

 Four conditions required for deadlocks
— Mutual exclusion
» Only one thread at a time can use a resource

— Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

— No preemption
» Resources are released only voluntarily by the threads
— Circular wait
» 3set{T,, ..., T} of threads with a cyclic waiting pattern
» Deadlock detection

— Attempts to assess whether waiting graph can ever make
progress

- Deadlock prevention

— Assess, for each allocation, whether it has the potential to lead
to deadlock

— Banker’s algorithm gives one way to assess this

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.43

Summary (Scheduling)

Scheduling: selecting a waiting process from the ready queue
and allocating the CPU to it

FCFS Scheduling:
— Run threads to completion in order of submission
— Pros: Simple
— Cons: Short jobs get stuck behind long ones
Round-Robin Scheduling:

— Give each thread a small amount of CPU time when it
executes; cycle between all ready threads

— Pros: Better for short jobs

— Cons: Poor when jobs are same length
Shortest Job First (SJF)/Shortest Remaining Time First
(SRTF):

— Run whatever job has the least amount of computation to do/

least remaining amount of computation to do
— Pros: Optimal (average response time)
— Cons: Hard to predict future, Unfair

2/9/11 lon Stoica CS162 ©UCB Spring 2011 Lec 7.44

