
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 8  

CPU Scheduling, Protection Address
Spaces"

February 14, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 8.2!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Review: Last Time"
•  Scheduling: selecting a waiting process from the ready queue

and allocating the CPU to it!

•  FCFS Scheduling:!
– Run threads to completion in order of submission!
– Pros: Simple (+)!
– Cons: Short jobs get stuck behind long ones (-)!

•  Round-Robin Scheduling: !
– Give each thread a small amount of CPU time when it

executes; cycle between all ready threads!
– Pros: Better for short jobs (+)!
– Cons: Poor when jobs are same length (-)!

Lec 8.3!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Goals for Today"
•  Finish discussion of Scheduling!
•  Kernel vs User Mode!
•  What is an Address Space?!
•  How is it Implemented?!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne "

Lec 8.4!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Round-Robin Discussion"
•  How do you choose time slice?!

– What if too big?!
» Response time suffers!

– What if infinite (∞)?!
» Get back FIFO!

– What if time slice too small?!
»  Throughput suffers! !

•  Actual choices of timeslice:!
–  Initially, UNIX timeslice one second:!

» Worked ok when UNIX was used by one or two people.!
» What if three compilations going on? 3 seconds to echo each

keystroke!!
–  In practice, need to balance short-job performance and long-

job throughput:!
»  Typical time slice today is between 10ms – 100ms!
»  Typical context-switching overhead is 0.1ms – 1ms!
» Roughly 1% overhead due to context-switching!

Page 2

Lec 8.5!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Comparisons between FCFS and Round Robin"
•  Assuming zero-cost context-switching time, is RR always

better than FCFS?!
•  Simple example: !10 jobs, each takes 100s of CPU time  

!RR scheduler quantum of 1s 
!All jobs start at the same time!

•  Completion Times:!

– Both RR and FCFS finish at the same time!
– Average response time is much worse under RR!!

»  Bad when all jobs same length!
•  Also: Cache state must be shared between all jobs with RR

but can be devoted to each job with FCFS!
– Total time for RR longer even for zero-cost switch!!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

Lec 8.6!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Quantum!

Completion!
Time!

Wait!
Time!

Average!P4!P3!P2!P1!

Earlier Example with Different Time Quantum"
P2!
[8]!

P4!
[24]!

P1!
[53]!

P3!
[68]!

0! 8! 32! 85! 153!

Best FCFS:"

62!57!85!22!84!Q = 1!

104½!112!153!28!125!Q = 20!

100½!81!153!30!137!Q = 1!

66¼ !88!85!20!72!Q = 20!

31¼!8!85!0!32!Best FCFS!

121¾!145!68!153!121!Worst FCFS!

69½!32!153!8!85!Best FCFS!
83½!121!0!145!68!Worst FCFS!

95½!80!153!16!133!Q = 8!

57¼!56!85!8!80!Q = 8!

99½!92!153!18!135!Q = 10!

99½!82!153!28!135!Q = 5!

61¼!68!85!10!82!Q = 10!

61¼!58!85!20!82!Q = 5!

P1!

0! 8! 56!

P2! P3! P4! P1! P3! P4! P1! P3! P4! P1! P3! P1! P3! P3!P3!

16" 24! 32! 40! 48! 64! 72! 80" 88! 96! 104! 112!

P1! P3! P1!
120! 128! 133"141!149!

P3!
153"

Lec 8.7!2/14! Ion Stoica CS162 ©UCB Spring 2011!

What if we Knew the Future?"
•  Could we always mirror best FCFS?!
•  Shortest Job First (SJF):!

– Run whatever job has the least amount of  
computation to do!

•  Shortest Remaining Time First (SRTF):!
– Preemptive version of SJF: if job arrives and has a shorter

time to completion than the remaining time on the current job,
immediately preempt CPU!

•  These can be applied either to a whole program or the
current CPU burst of each program!

–  Idea is to get short jobs out of the system!
– Big effect on short jobs, only small effect on long ones!
– Result is better average response time!

Lec 8.8!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Discussion"
•  SJF/SRTF are the best you can do at minimizing average

response time!
– Provably optimal (SJF among non-preemptive, SRTF among

preemptive)!
– Since SRTF is always at least as good as SJF, focus on

SRTF!

•  Comparison of SRTF with FCFS and RR!
– What if all jobs the same length?!

»  SRTF becomes the same as FCFS (i.e. FCFS is best can do if
all jobs the same length)!

– What if jobs have varying length?!
»  SRTF (and RR): short jobs not stuck behind long ones!

Page 3

Lec 8.9!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Example to illustrate benefits of SRTF"

•  Three jobs:!!
– A,B: CPU bound, each run for a week 

C: I/O bound, loop 1ms CPU, 9ms disk I/O!
–  If only one at a time, C uses 90% of the disk, A or B could use

100% of the CPU!
•  With FIFO:!

– Once A or B get in, keep CPU for one week each!
•  What about RR or SRTF?!

– Easier to see with a timeline!

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Lec 8.10!2/14! Ion Stoica CS162 ©UCB Spring 2011!

RR vs. SRTF"

Cʼs "
I/O"

CABAB…" C"

Cʼs "
I/O"

RR 1ms time slice"

Cʼs "
I/O"

Cʼs "
I/O"

C"A" B"C"

RR 100ms time slice"

Cʼs "
I/O"

A"C"

Cʼs "
I/O"

A"A"

SRTF"

Disk Utilization:"
~90% but lots of
wakeups!"

Disk Utilization:"
90%"

Disk Utilization:"
9/201 ~ 4.5%"

Lec 8.11!2/14! Ion Stoica CS162 ©UCB Spring 2011!

SRTF Further discussion"
•  Starvation!

– SRTF can lead to starvation if many small jobs!!
– Large jobs never get to run!

•  Somehow need to predict future!
– How can we do this? !
– Some systems ask the user!

» When you submit a job, have to say how long it will take!
»  To stop cheating, system kills job if takes too long!

– But: even non-malicious users have trouble predicting runtime
of their jobs!

•  Bottom line, canʼt really know how long job will take!
– However, can use SRTF as a yardstick  

for measuring other policies!
– Optimal, so canʼt do any better!

•  SRTF Pros & Cons!
– Optimal (average response time) (+)!
– Hard to predict future (-)!
– Unfair (-)! Lec 8.12!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Multi-Level Feedback Scheduling"

•  Multiple queues, each with different priority!
– Higher priority queues often considered “foreground” tasks!

•  Each queue has its own scheduling algorithm!
– e.g. foreground – RR, background – FCFS!

•  Adjust each jobʼs priority as follows (details vary)!
– Job starts in highest priority queue!
–  If it doesnʼt finish in its time quantum, drop one level!
–  If it finishes, push up one level (or to top)!

Long-Running Compute  
Tasks Demoted to  
Low Priority!

Page 4

Lec 8.13!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Scheduling Fairness"
•  What about fairness?!

– Strict fixed-priority scheduling between queues is unfair (run
highest, then next, etc):!

»  long running jobs may never get CPU !
»  In Multics, shut down machine, found 10-year-old job!

– Must give long-running jobs a fraction of the CPU even when
there are shorter jobs to run!

– Tradeoff: fairness gained by hurting avg response time!!

•  How to implement fairness?!
– Could give each queue some fraction of the CPU !

» What if one long-running job and 100 short-running ones?!
»  Like express lanes in a supermarket—sometimes express lanes

get so long, get better service by going into one of the other lines!
– Could increase priority of jobs that donʼt get service!

» What is done in UNIX!
»  This is ad hoc—what rate should you increase priorities?!

Lec 8.14!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Lottery Scheduling"
•  Yet another alternative: Lottery Scheduling!

– Give each job some number of lottery tickets!
– On each time slice, randomly pick a winning ticket!
– On average, CPU time is proportional to number of tickets

given to each job!

•  How to assign tickets?!
– To approximate SRTF, short running jobs get more, long

running jobs get fewer!
– To avoid starvation, every job gets at least one ticket

(everyone makes progress)!

•  Advantage over strict priority scheduling: behaves
gracefully as load changes!

– Adding or deleting a job affects all jobs proportionally,
independent of how many tickets each job possesses!

Lec 8.15!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Lottery Scheduling Example"
•  Lottery Scheduling Example!

– Assume short jobs get 10 tickets, long jobs get 1 ticket!

– What if too many short jobs to give reasonable  
response time? !

»  In UNIX, if load average is 100, hard to make progress!
» One approach: log some user out!

short jobs/"
long jobs"

% of CPU each
short jobs gets"

% of CPU each
long jobs gets"

1/1" 91%" 9%"
0/2" N/A" 50%"
2/0" 50%" N/A"

10/1" 9.9%" 0.99%"
1/10" 50%" 5%"

Lec 8.16!2/14! Ion Stoica CS162 ©UCB Spring 2011!

A Final Word On Scheduling"
•  When do the details of the scheduling policy and fairness

really matter?!
– When there arenʼt enough resources to go around!

•  When should you simply buy a faster computer?!
–  (Or network link, or expanded highway, or …)!
– One approach: Buy it when it will pay  

for itself in improved response time!
» Might think that you should buy a  

faster X when X is utilized 100%,  
but usually, response time goes  
to infinity as utilization⇒100%!

•  An interesting implication of this curve:!
– Most scheduling algorithms work fine in the “linear” portion of

the load curve, fail otherwise!
– Argues for buying a faster X when hit “knee” of curve!

Utilization"

R
esponse"

tim
e"

100%
"

Page 5

Lec 8.17!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Administrivia"
•  Deadlines, project 1:!

– Design: Tomorrow, February 15th!
– Code: March 1st !
– Submitting instructions posted on Piazzza!

Lec 8.18!2/14! Ion Stoica CS162 ©UCB Spring 2011!

5min Break"

Lec 8.19!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Virtualizing Resources"

•  Physical Reality:  
Different Processes/Threads share the same hardware!

– Need to multiplex CPU (Just finished: scheduling)!
– Need to multiplex use of Memory (Today)!
– Need to multiplex disk and devices (later in term)!

•  Why worry about memory sharing?!
– The complete working state of a process and/or kernel is defined

by its data in memory (and registers)!
– Consequently, cannot just let different threads of control use the

same memory!
– Probably donʼt want different threads to even have access to each

otherʼs memory (protection)!
Lec 8.20!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Recall: Single and Multithreaded Processes"

•  Threads encapsulate execution (concurrency)!
–  “Active” component of a process!

•  Address spaces encapsulate protection!
– Keeps buggy program from trashing the system!
–  “Passive” component of a process!

Page 6

Lec 8.21!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Important Aspects of Memory Multiplexing"
•  Controlled overlap:!

– Processes should not collide in physical memory!
– Conversely, would like the ability to share memory when desired

(for communication)!
•  Protection:!

– Prevent access to private memory of other processes!
» Different pages of memory can be given special behavior (Read

Only, Invisible to user programs, etc).!
»  Kernel data protected from User programs!
»  Programs protected from themselves!

•  Translation: !
– Ability to translate accesses from one address space (virtual) to

a different one (physical)!
– When translation exists, processor uses virtual addresses,

physical memory uses physical addresses!
– Side effects:!

» Can be used to avoid overlap!
» Can be used to give uniform view of memory to programs!

Lec 8.22!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Binding of Instructions and Data to Memory"
•  Binding of instructions and data to addresses:!

– Choose addresses for instructions and data from the
standpoint of the processor!

– Could we place data1, start, and/or checkit at different
addresses? !

»  Yes!
» When? Compile time/Load time/Execution time!

– Related: which physical memory locations hold particular
instructions or data?!

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, r0, loop
 …

checkit: …

0x300 00000020
 … …
0x900 8C2000C0
0x904 0C000340
0x908 2021FFFF
0x90C 1420FFFF
 …
0xD00 …

Assume 4byte words
0x300 = 4 * 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000

Lec 8.23!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Multi-step Processing of a Program for Execution"
•  Preparation of a program for execution

involves components at:!
– Compile time (i.e., “gcc”)!
– Link/Load time (unix “ld” does link)!
– Execution time (e.g. dynamic libs)!

•  Addresses can be bound to final
values anywhere in this path!

– Depends on hardware support !
– Also depends on operating system!

•  Dynamic Libraries!
– Linking postponed until execution!
– Small piece of code, stub, used to

locate appropriate memory-resident
library routine!

– Stub replaces itself with the address of
the routine, and executes routine!

Lec 8.24!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Uniprogramming"
•  Uniprogramming (no Translation or Protection)!

– Application always runs at same place in physical memory
since only one application at a time!

– Application can access any physical address!

– Application given illusion of dedicated machine by giving it
reality of a dedicated machine!

•  Of course, this doesnʼt help us with multithreading!

0x00000000"

0xFFFFFFFF"

Application"

Operating"
System"

Va
lid

 3
2-

bi
t"

A
dd

re
ss

es
"

Page 7

Lec 8.25!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Multiprogramming (First Version)"
•  Multiprogramming without Translation or Protection!

– Must somehow prevent address overlap between threads!

– Trick: Use Loader/Linker: Adjust addresses while program
loaded into memory (loads, stores, jumps)!

»  Everything adjusted to memory location of program!
»  Translation done by a linker-loader!
» Was pretty common in early days!

•  With this solution, no protection: bugs in any program can
cause other programs to crash or even the OS!

0x00000000"

0xFFFFFFFF"

Application1"

Operating"
System"

Application2" 0x00020000"

Lec 8.26!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Multiprogramming (Version with Protection)"
•  Can we protect programs from each other without

translation?!

– Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area!

»  If user tries to access an illegal address, cause an error!
– During switch, kernel loads new base/limit from TCB!

» User not allowed to change base/limit registers!

0x00000000"

0xFFFFFFFF"

Application1"

Operating"
System"

Application2" 0x00020000" BaseAddr=0x20000"

LimitAddr=0x10000"

Lec 8.27!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Segmentation with Base and Limit Registers"

•  Could use base/limit for dynamic address translation (often
called “segmentation”):!

– Alter address of every load/store by adding “base”!
– User allowed to read/write within segment!

»  Accesses are relative to segment so donʼt have to be relocated
when program moved to different segment!

– User may have multiple segments available (e.g x86)!
»  Loads and stores include segment ID in opcode: 

!x86 Example: mov [es:bx],ax. !
» Operating system moves around segment base pointers as

necessary!

DRAM"

<?"
+"

Base"

Limit"

CPU"

Virtual"
Address"

Physical"
Address"

No: Error!"

Lec 8.28!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Issues with simple segmentation method"

•  Fragmentation problem!
– Not every process is the same size!
– Over time, memory space becomes fragmented!

•  Hard to do inter-process sharing!
– Want to share code segments when possible!
– Want to share memory between processes!
– Helped by by providing multiple segments per process!

•  Need enough physical memory for every process!

process 6!

process 5!

process 2!

OS!

process 6!

process 5!

OS!

process 6!

process 5!

OS!

process 6!

process 5!
process 9!

OS!

process 9!

process 10!

Page 8

Lec 8.29!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Multiprogramming (Translation and Protection v2) "
•  Problem: Run multiple applications in such a way that they

are protected from one another!
•  Goals: !

–  Isolate processes and kernel from one another!
– Allow flexible translation that:!

» Doesnʼt lead to fragmentation!
»  Allows easy sharing between processes!
»  Allows only part of process to be resident in physical memory!

•  (Some of the required) Hardware Mechanisms:!
– General Address Translation!

»  Flexible: Can fit physical chunks of memory into arbitrary places in
users address space!

» Not limited to small number of segments!
»  Think of this as providing a large number (thousands) of fixed-

sized segments (called “pages”)!
– Dual Mode Operation!

»  Protection base involving kernel/user distinction!

Lec 8.30!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Example of General Address Translation"

Prog 1"
Virtual"

Address"
Space 1"

Prog 2"
Virtual"

Address"
Space 2"

Code"
Data"
Heap"
Stack"

Code"
Data"
Heap"
Stack"

Data 2"

Stack 1"

Heap 1"

OS heap & "
Stacks"

Code 1"

Stack 2"

Data 1"

Heap 2"

Code 2"

OS code"

OS data"Translation Map 1" Translation Map 2"

Physical Address Space"

Lec 8.31!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Two Views of Memory"

•  Recall: Address Space:!
– All the addresses and state a process can touch!
– Each process and kernel has different address space!

•  Consequently, two views of memory:!
– View from the CPU (what program sees, virtual memory)!
– View from memory (physical memory)!
– Translation box converts between the two views!

•  Translation helps to implement protection!
–  If task A cannot even gain access to task Bʼs data, no way for A

to adversely affect B!
•  With translation, every program can be linked/loaded into

same region of user address space!

Physical"
Addresses"CPU" MMU"

Virtual"
Addresses"

Untranslated read or write"

Lec 8.32!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Example of Translation Table Format"
Two-level Page Tables

32-bit address:

P1 index P2 index page offset
10 10 12

4 bytes

4 bytes

4KB

1K
PTEs

•  Page: a unit of memory translatable by
memory management unit (MMU)!

– Typically 1K – 8K!
•  Page table structure in memory!

– Each user has different page table!
•  Address Space switch: change pointer to

base of table (hardware register)!
– Hardware traverses page table (for many

architectures)!
– MIPS uses software to traverse table!

Page 9

Lec 8.33!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Dual-Mode Operation"
•  Can Application Modify its own translation tables?!

–  If it could, could get access to all of physical memory!
– Has to be restricted somehow!

•  To Assist with Protection, hardware provides at least two
modes (Dual-Mode Operation):!

–  “Kernel” mode (or “supervisor” or “protected”)!
–  “User” mode (Normal program mode)!
– Mode set with bits in special control register only accessible

in kernel-mode!

•  Intel processor actually has four “rings” of protection:!
– PL (Priviledge Level) from 0 – 3!

»  PL0 has full access, PL3 has least!
– Typical OS kernels on Intel processors only use PL0 (“user”)

and PL3 (“kernel”)!

Lec 8.34!2/14! Ion Stoica CS162 ©UCB Spring 2011!

For Protection, Lock User-Programs in Asylum"
•  Idea: Lock user programs in padded cell  

with no exit or sharp objects!
– Cannot change mode to kernel mode!
– User cannot modify page table mapping !
– Limited access to memory: cannot  

adversely effect other processes!
»  Side-effect: Limited access to  

memory-mapped I/O operations !
– What else needs to be protected?!

•  A couple of issues!
– How to share CPU between kernel and user programs? !

»  Kinda like both the inmates and the warden in asylum are the
same person. How do you manage this???!

– How does one switch between kernel and user modes?!
» OS → user (kernel → user mode): getting into cell!
» User→ OS (user → kernel mode): getting out of cell!

Lec 8.35!2/14! Ion Stoica CS162 ©UCB Spring 2011!

How to get from Kernel→User"
•  What does the kernel do to create a new user process?!

– Allocate and initialize process control block!
– Read program off disk and store in memory!
– Allocate and initialize translation table !

»  Point at code in memory so program can execute!
»  Possibly point at statically initialized data!

– Run Program:!
»  Set machine registers!
»  Set hardware pointer to translation table!
»  Set processor status word for user mode!
»  Jump to start of program!

•  How does kernel switch between processes?!
– Same saving/restoring of registers as before!
– Save/restore hardware pointer to translation table!

Lec 8.36!2/14! Ion Stoica CS162 ©UCB Spring 2011!

User→Kernel (System Call)"
•  Canʼt let inmate (user) get out of padded cell on own!

– Would defeat purpose of protection!!
– So, how does the user program get back into kernel?!

•  System call: Voluntary procedure call into kernel!
– Hardware for controlled User→Kernel transition!
– Can any kernel routine be called?!

» No! Only specific ones.!
– System call ID encoded into system call instruction!

»  Index forces well-defined interface with kernel!

Page 10

Lec 8.37!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Summary (1)"
•  Shortest Job First (SJF)/Shortest Remaining Time First

(SRTF):!
– Run whatever job has the least amount of computation to

do/least remaining amount of computation to do!
– Pros: Optimal (average response time) !
– Cons: Hard to predict future, Unfair!

•  Multi-Level Feedback Scheduling:!
– Multiple queues of different priorities!
– Automatic promotion/demotion of process priority in order to

approximate SJF/SRTF!
•  Lottery Scheduling:!

– Give each thread a priority-dependent number of tokens
(short tasks⇒more tokens)!

– Reserve a minimum number of tokens for every thread to
ensure forward progress/fairness!

•  Evaluation of mechanisms:!
– Analytical, Queuing Theory, Simulation!

Lec 8.38!2/14! Ion Stoica CS162 ©UCB Spring 2011!

Summary (2)"
•  Memory is a resource that must be shared!

– Controlled Overlap: only shared when appropriate!
– Translation: Change virtual addresses into physical

addresses!
– Protection: Prevent unauthorized sharing of resources!

•  Simple Protection through segmentation!
– Base+limit registers restrict memory accessible to user!
– Can be used to translate as well!

•  Full translation of addresses through Memory Management
Unit (MMU)!

– Every Access translated through page table!
– Changing of page tables only available to user!

•  Dual-Mode!
– Kernel/User distinction: User restricted!
– User→Kernel: System calls, Traps, or Interrupts!

