CS162
Operating Systems and
Systems Programming

Lecture 9

Address Translation

February 16, 2011
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Goals for Today

+ Address Translation Schemes
— Segmentation
— Paging
— Multi-level translation
— Paged page tables
— Inverted page tables
+ Discussion of Dual-Mode operation

Note: Some slides and/or pictures in the following are adapted
from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides
generated from lecture notes by Kubiatowicz.

2116 lon Stoica CS162 ©UCB Spring 2011 Lec 9.3

Page 1

Review: Important Aspects of Memory

+ Controlled overlap: Multiplexing

— Ability to explicitly control whether to processes should share or
not a region of memory

* Protection:
— Prevent access to private memory of other processes
» Kernel data protected from User programs
» Programs protected from themselves
» Different pages of memory can be given special behavior (Read
Only, Invisible to user programs, etc)

+ Translation:
— Ability to translate accesses from one address space (virtual) to
a different one (physical)
— When translation exists, processor uses virtual addresses,
physical memory uses physical addresses
— Side effects:
» Can be used to avoid overlap

» Can be used to g!ive uniform view of memory to programs.
e

2/16 lon Stoica CS162 ©UCB Spring 2011 c 9.2

Uniprograming: Loading Program

in Memory Memory
0x0000
0x0300{ 00000020
Program view of memory
datal: dw 32 0x300 00000020) °*0900| 8c2000c0
0C000340
start: 1w rl,0(datal) 0x900 8C2000C0 2021FFFF
jal. checkit 0x904 0C000340 1420FFFF
Hosps ECER &, S, =i 0x908 2021FFFF
bnz rl, r0, loop 0x90C 1420FFFF
checkit: ..
OXFFFF
2116 lon Stoica CS162 ©UCB Spring 2011 Lec 9.4

Multiprograming: Where do you
load program?

Memory
0x0000
0x0300
Program view of memory
datal: dw 32 0x300 00000020) X% App X
start: 1w rl,0(datal) 0x960 8C2600C0 .
jal checkit 0x904 0C000340
loop: addi rl, rl, -1 0x908 2021FFFF
bnz rl, r0, loop 0x90C 1420FFFF
checkit: ..
OxFFFF
Need address translation!
2116 lon Stoica CS162 ©UCB Spring 2011 Lec 9.5

Segmentation with Base and Limit Registers

Base
Virtual
:cr'u Address R f_b > [orAm
e Physical
Limit Address
No: Error!

+ Could use base/limit for dynamic address translation (often
called “segmentation”):
— Alter address of every load/store by adding “base”
— User allowed to read/write within segment
» Accesses are relative to segment so don’t have to be relocated
when program moved to different segment
— User may have multiple segments available (e.g x86)
» Loads and stores include segment ID in opcode:
x86 Example: mov [es:bx],ax.

» Operating system moves around segment base pointers as

necessary
2116 lon Stoica CS162 ©UCB Spring 2011 Lec 9.7

Page 2

Example of General Address Translation

Code \. “ Stack 1 Code
3 ac
Data ¥ Data
i Heap 1
Heap) °ap Heap
Stack ¥ 3 (i [St Stack
Prog 1 ER Prog 2
Virtual o ol Virtual
Address K Address
Space 1 N Space 2
[OS code \
Translation Map 1 OS data Translation Map 2
OS heap &
Stacks

Physical Address Space

2/16 lon Stoica CS162 ©UCB Spring 2011 Lec 9.6

More Flexible Segmentation

subroutine stack

symbol
table

sqrt
main
program

logical address

user view of

physical

+ Logical View: multiple separate segments
— Typical: Code, Data, Stack
— Others: memory sharing, etc

+ Each segment is given region of contiguous memory
— Has a base and limit

ane — CanN reside anywhere in physigalmemory Lec9.8

Implementation of Multi-Segment
Model

Base0| Limit0
Base1| Limit
Base2.Li

Virtual Offset Error

Address

Physical
Address

Based4| Limit4

Base5| Limit5

Base7| Limit7

+ Segment map resides in processor
— Segment number mapped into base/limit pair
— Base added to offset to generate physical address
— Error check catches offset out of range

+ As many chunks of physical memory as entries
— Segment addressed by portion of virtual address
— However, could be included in instruction instead:

» x86 Example: mov [es:bx], ax.
+ What is “V/N"?

— Can mark segments as invalid; requires check as well
2/16 lon Stoica CS162 ©UCB Spring 2011 Lec9.9

Example of segment translation

0x240 main: la $a0, varx

0x244 jal strlen Seg ID # Base Limit
a "3'60 - 13 S . 0 (code) 0x4000 | 0x0800
X! strlen: i v0, ;coun

0x364 loop: b $t0, ($a0) 1 (data) 0x4800 | 0x1400
0x368 beq $r0,$tl, done 2 (shared) | 0xF000 | 0x1000
0x4050 varx aw 0x314159 Bi(stack)am(l0x00008I{0xS000

Let’s simulate a bit of this code to see what happens (PC=0x240):

1. Fetch 0x240. Virtual segment #? 0; Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

2. Fetch 0x244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0,0”
Move 0x0000 — $v0, Move PC+4—PC

4. Fetch 0x364. Translated to Physical=0x4364. Get “Ib $t0,($a0)”
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050. Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,
Load Byte from 0x4850—$t0, Move PC+4—PC

2/16 lon Stoica CS162 ©UCB Spring 2011 Lec9.11

Page 3

Example: Four Segments (16 bit addresses)

Seg ID # Base Limit
0 (code) 0x4000 | 0x0800
1 (data) 0x4800 | 0x1400
2 (shared) | 0xF000 | 0x1000

[Segl offset]

15 1413 0
Virtual Address Format

3 (stack) 0x0000 | 0x3000
0x0000 0x0000
0x4000 Might
0x4000 0 V9
0x4800 be shared
0x5C00
0x8000
Space for
0xC000 Other Apps
0xF000 Shared with
. . Other Apps
Virtual Physical
Address Space Address Space
2/16 lon Stoica CS162 ©UCB Spring 2011 Lec 9.10

Issues with simple segmentation method

process 6 process 6 process 6 process 6
process 5 process 5 process 5 process 5

process 9 process 9
process2 | > =) =) process 10
0os 0s os os

» Fragmentation problem

— Not every process is the same size

— Over time, memory space becomes fragmented
* Hard to do inter-process sharing

— Want to share code segments when possible

— Want to share memory between processes

— Helped by providing multiple segments per process
* Need enough physical memory for every process

2/16 lon Stoica CS162 ©UCB Spring 2011 Lec9.12

2/16

Observations about Segmentation
+ A correct program should never address gaps (except as
mentioned in moment)
— If it does, trap to kernel and dump core

When it is OK to address outside valid range:
— This is how the stack and heap are allowed to grow
— For instance, stack takes fault, system automatically increases
size of stack

Need protection mode in segment table

— For example, code segment would be read-only
— Data and stack would be read-write (stores allowed)
— Shared segment could be read-only or read-write

+ What must be saved/restored on context switch?

— Segment table stored in CPU, not in memory (small)
— Might store all of processes memory onto disk when switched
2116 (Ca"ed Swapplng })on Stoica CS162 ©UCB Spring 2011

Lec9.13

+ Problems with segmentation?

Solution to fragmentation from segments?

Should pages be as big as our previous segments?
— No: Can lead to lots of internal fragmentation

— Consequently: need multiple pages/segment

Paging: Physical Memory in Fixed Size Chunks

— Must fit variable-sized chunks into physical memory
— May move processes multiple times to fit everything
— Limited options for swapping to disk
Fragmentation: wasted space
— External: free gaps between allocated chunks

Internal: don’t need all memory within allocated chunks

— Allocate physical memory in fixed size chunks (“pages”)
— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 ... 110010

» Each bit represents page of phyS|caI memory
1=allocated, 0=free

» Typically have small pages (1K-16K)

lon Stoica CS162 ©UCB Spring 2011

Lec9.15

Page 4

+ Extreme form of Context Switch: Swapping

— In order to make room for next process, some or all of the
previous process is moved to disk

Schematic View of Swapping

-
operating M~
system

@swapout | [POEESS

process P,
@ swapin

user
space

N e

backing store
main memon

— This greatly increases the cost of context-switching
+ Desirable alternative?

— Some way to keep only active portions of a process in
memory at any one time

— Need finer granularity control over physical memory
2/16

lon Stoica CS162 ©UCB Spring 2011

Lec9.14

How to Implement Paging?
Virtual Address:

PageTablePtr

PageTableSize

rror Access
- Page Table (One per process) Error
— Resides in physical memory

- Contalns physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
Virtual address mapping

— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
— Virtual page # is all remaining bits

» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries

» Physical page # copied from table mtc; bhysmal address
e Check Page Table bounds and permissions

!

page #2 Physical Address
page #3 | V.RW Check Perm

page #4 |N
éccess page #5 | ViR,

lon Stoica CS162 ©UCB Spring 2011

Lec9.16

What about Sharing?

Virtual Address

Offset
(Process A):
PageTablePtrA age #0 | V.R
age #1 | V.R
| page #2 "JV.RW|
#3 | V,RW
ﬁ: 72 [N Shared
[page #5 | V.R.W Page
PageTablePtrB page #0 V,R/l
 page #1 [N . .
[page #2_| WR.W This physical page
[page #3 N appears in address
[page #4 *[V.R space of both processes
| page #5 | V.R,W|
(Process B):
2/16 lon Stoica CS162 ©UCB Spring 2011 Lec9.17

Multi-level Translation
+ What about a tree of tables?
— Lowest level page table=>memory still allocated with bitmap
— Higher levels often segmented
+ Could have any number of levels. Example (top segment):

Virtual

Offset
Address:

age #0 | V,R
Base0| Limit2+*V| age #1 | V,R -Offs:et:|
Base1| lifhit1 | V page #2 R,)
BaseZ2| Limi page #3 | VRW| Physical Address
Base3| Limit page #4 |N
Base4| Limit4

vaW (CheckPerm

Bases| Limits page #5 Check Perm
Base6| Limit6 | N
Base7| Limit7 | V. —Access Access

Error Error

+ What must be saved/restored on context switch?
— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)

2116 lon Stoica CS162 ©UCB Spring 2011 Lec9.19

Page 5

Simple Page Table Discussion

+ What needs to be switched on a
context switch?
H — Page table pointer and limit
i+ Analysis
i —Pros
» Simple memory allocation
» Easy to Share
— Con: What if address space is
sparse?
» E.g. on UNIX, code starts at 0,
stack starts at (231-1).
» With 1K pages, need 4 million
page table entries!
— Con: What if table really big?
: » Not all pages used all the time =
= would be nice to have working
Physical ; set of page table in memory
Memory : - How about combining paging and

I ettt A o
Example (4 byte pages) segmentation’

0x04

Page oxoc
Table

—
b
c
| d__|
e
f
g
i oxos JIJ—
i
K
-

. 0x10
Virtual

Memory

i i

2/16 lon Stoica CS162 ©UCB Spring 2011 Lec9.18

What about Sharing (Complete Segment)?

Process A orset |
P page 70 v
| page #1 | ViR
page #2 | V.R,
e e e #2
BaseZ[Limit2| V ﬂ"%
Base3| Limit3 | N| | page #5 |
e Wlulie o Shared Segment
Base5| Limit5 | N Basahl Limito [V
Base6| Limit6 | N| e Y
Base7| Limit7 | V v
Base3| Limit3 | N|
Base4| Limit4 | V|
Base5| Limit5 | N
Base6| Limit6 | N|
Base7| Limit7 | V

Process B

2116 lon Stoica CS162 ©UCB Spring 2011 Lec 9.20

5min Break

2/16 lon Stoica CS162 ©UCB Spring 2011 Lec9.21

Multi-level Translation Analysis

* Pros:
— Only need to allocate as many page table entries as we need
for application
» In other words, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing
» Share at segment or page level (need additional reference
counting)
+ Cons:
— One pointer per page (typically 4K — 16K pages today)
— Page tables need to be contiguous
» However, previous example keeps tables to exactly one page in
size
— Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

2116 lon Stoica CS162 ©UCB Spring 2011 Lec9.23

Page 6

Another common example: two-level page table
Physical
10bits_10bits _12bits __ pivei S
Virtual
Address:
4KB
PageTablePtr 0L
— 4 bytes «—
+ Tree of Page Tables L
+ Tables fixed size (1024 entries)
— On context-switch: save single
PageTablePtr register
+ Valid bits on Page Table Entries
— Don’t need every 2"d-level table
— Even when exist, 2"-level tables can_, 4 bytes +—
reside on disk if not in use
2/16 lon Stoica CS162 ©UCB Spring 2011 Lec 9.22

Inverted Page Table
+ With all previous examples (“Forward Page Tables”)
— Size of page table is at least as large as amount of virtual
memory allocated to processes
— Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table

* Answer: use a hash table
— Called an “Inverted Page Table”
— Size is independent of virtual address space
— Directly related to amount of physical memory
— Very attractive option for 64-bit address spaces
+ Cons: Complexity of managing hash changes

— Often in hardware!

2/16 lon Stoica CS162 ©UCB Spring 2011 Lec 9.24

Dual-Mode Operation

« Can Application Modify its own translation tables?
— If it could, could get access to all of physical memory
— Has to be restricted somehow

+ To Assist with Protection, hardware provides at least two
modes (Dual-Mode Operation):

— “Kernel” mode (or “supervisor” or “protected”)
—“User” mode (Normal program mode)

— Mode set with bits in special control register only accessible
in kernel-mode

+ Intel processor actually has four “rings” of protection:
— PL (Priviledge Level) from 0 — 3
» PLO has full access, PL3 has least

— Typical OS kernels on Intel processors only use PLO (“user”
and PL3 (“kernel”)

2/16 lon Stoica CS162 ©UCB Spring 2011 Lec 9.25

How to get from Kernel—User
» What does the kernel do to create a new user process?
— Allocate and initialize process control block
— Read program off disk and store in memory
— Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
— Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
+ How does kernel switch between processes?
— Same saving/restoring of registers as before
— Save/restore hardware pointer to translation table

2/16 lon Stoica CS162 ©UCB Spring 2011 Lec9.27

Page 7

For Protection, Lock User-Programs in Asylum

+ Idea: Lock user programs in padded cell
with no exit or sharp objects
— Cannot change mode to kernel mode
— User cannot modify page table mapping
— Limited access to memory: cannot
adversely affect other processes

» Side-effect: Limited access to
memory-mapped I/O operations

— What else needs to be protected?

+ A couple of issues
— How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are the
same person. How do you manage this?

— How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell
» User— OS (user — kernel mode): getting out of cell

2/16 lon Stoica CS162 ©UCB Spring 2011 Lec 9.26

User—Kernel (System Call)

« Can't let inmate (user) get out of padded cell on own
— Would defeat purpose of protection!
— So, how does the user program get back into kernel?

user process
user mode
(mode bit = 1)|

‘ user process executing H calls system call ‘ ! return from system call ‘

Ly ra

Y 7
K trap return
Sl mode bit= 0 mode bit = 1

execute system call

« System call: Voluntary procedure call into kernel
— Hardware for controlled User—Kernel transition
— Can any kernel routine be called?
» No! Only specific ones.
— System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

kernel mode
(mode bit = 0)|

2116 lon Stoica CS162 ©UCB Spring 2011 Lec 9.28

System Call Continued

+ What are some system calls?
—1/0O: open, close, read, write, Iseek
— Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
— Process: fork, exit, wait (like join)
— Network: socket create, set options
+ Are system calls constant across operating systems?
— Not entirely, but there are lots of commonalities
— Also some standardization attempts (POSIX)
+ What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started
System Call argument passing:
— In registers (not very much can be passed)
— Write into user memory, kernel copies into kernel mem
» User addresses must be translated!
» Kernel has different view of memory than user
— Every Argument must be explicitly checked!
2116 lon Stoica CS162 ©UCB Spring 2011 Lec9.29

Closing thought: Protection without Hardware

+ Does protection require hardware support for translation and
dual-mode behavior?
— No: Normally use hardware, but anythmg you candoi |n
hardware can also do in software (possibly expensive)
+ Protection via Strong Typing
— Restrict programming language so that you can’t express
program that would trash another program
— Loader needs to make sure that program produced by valid
compiler or all bets are off
— Example languages: LISP, Ada, Modula-3 and Java
+ Protection via software fault isolation:
- Language independent approach: have compiler generate
object code that provably can’t step out of bounds
» Compiler puts in checks for every “dangerous” operation (loads,
stores, etc). Again, need special loader.
» Alternative, compiler 8enerates “proof” that code cannot do
certain thlngs (Proof Carrying Code)

— Or: use virtual machine to guarantee safe behavior (loads and

stores recompiled on fly to check bounds)
2116 lon Stoica'CS162 ©UCB Spring 2011 Lec 9.31

Page 8

User—Kernel (Exceptions: Traps and Interrupts)
+ A system call instruction causes a synchronous exception
(or *trap”)
— In fact, often called a software “trap” instruction

+ Other sources of Synchronous Exceptions:

— Divide by zero, lllegal instruction, Bus error (bad address, e.g.
unaligned access)

— Segmentation Fault (address out of range)
— Page Fault (for illusion of infinite-sized memory)

« Interrupts are Asynchronous Exceptions
— Examples: timer, disk ready, network, etc....
— Interrupts can be disabled, traps cannot!

» On system call, exception, or interrupt:
— Hardware enters kernel mode with interrupts disabled
— Saves PC, then jumps to appropriate handler in kernel
— For some processors (x86), processor also saves registers,
changes stack, etc.

2/16 lon Stoica CS162 ©UCB Spring 2011 Lec 9.30

Summary (1/2)

» Memory is a resource that must be shared
— Controlled Overlap: only shared when appropriate

— Translation: Change Virtual Addresses into Physical
Addresses

— Protection: Prevent unauthorized Sharing of resources
* Dual-Mode

— Kernel/User distinction: User restricted

— User—Kernel: System calls, Traps, or Interrupts

— Inter-process communication: shared memory, or through
kernel (system calls)

+ Exceptions
— Synchronous Exceptions: Traps (including system calls)
— Asynchronous Exceptions: Interrupts

2116 lon Stoica CS162 ©UCB Spring 2011 Lec 9.32

Summary (2/2)
+ Segment Mapping
— Segment registers within processor
— Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)
— Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base
+ Page Tables
— Memory divided into fixed-sized chunks of memory
— Virtual page number from virtual address mapped through
page table to physical page number
— Offset of virtual address same as physical address
— Large page tables can be placed into virtual memory
+ Multi-Level Tables
— Virtual address mapped to series of tables
— Permit sparse population of address space
+ Inverted page table
— Size of page table related to physical memory size
2116 lon Stoica CS162 ©UCB Spring 2011 Lec 9.33

Page 9

