CS162
Operating Systems and
Systems Programming

Lecture 11

Page Allocation and Replacement

February 28, 2011
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Goals for Today

+ Finish discussion on TLBs
+ Page Replacement Policies
- FIFO, LRU
— Clock Algorithm
+ Working Set/Thrashing

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.2

Review: Caching Applied to Address Translation

+ Problem: address translation expensive (especially multi-level)
+ Solution: cache address translation (TLB)
— Instruction accesses spend a lot of time on the same page (since
accesses sequential)
— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...

P TLB
e
Cached?
- Address [o) sical

> Yes —3
o A Memory
QIR
c? 09‘)\
<&

Translate
(MMU)

Data Read or Write

(untranslated)
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.3

TLB organization

* How big does TLB actually have to be?
—Usually small: 128-512 entries
—Not very big, can support higher associativity

+ TLB usually organized as fully-associative cache
—Lookup is by Virtual Address
—Returns Physical Address

» What happens when fully-associative is too slow?
—Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”

* When does TLB lookup occur?
—Before cache lookup?
—In parallel with cache lookup?

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.4

Reducing translation time further

+ As described, TLB lookup is in serial with cache lookup:

Virtual Address
—10—

V page no. offset

TLB Lookup

V Rignts! PA

P page no. offset

Physical Address
+ Machines with TLBs go one step further: they overlap TLB
lookup with cache access.
— Works because offset available early

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.5

Review: Paging & Address Transla'r,jgsggal

Virtual Address: Memory:
Offset
PageTablePtr Physic resg:
Offset
Page Table
(13t level)
Page Table
(2 level)
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.7

Page 2

Overlapping TLB & Cache Access

» Here is how this might work with a 4K cache:

W assoc [

lookup
‘—’]—’ 4K Cache 1K
20 10 2 ——4 bytes— J

J page # disp |og
Hit/ /{
Miss
PA (? PA Data Hit/
Miss
» What if cache size is increased to 8KB?
— Overlap not complete
— Need to do something else. See CS152/252
+ Another option: Virtual Caches
—Tags in cache are virtual addresses

— Translation only happens on cache misses
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.6

32 |TLB index

Review: Translation Look-aside Buffer

Physical
Virtual Address: Memory:
Offset
PageTablpPtr P—"] Physic ress:
Offset
Page Table
(1st level)
Page Table
(2 level)
TLB:
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.8

Review: Cache ,
Physical

Memory:

2/28 lon Stoica CS162 ©UCE Spring 2011 Lec 11.9

Demand Paging is Caching

+ Since Demand Paging is Caching, must ask:
— What is block size?
» 1 page
— What is organization of this cache (i.e. direct-mapped, set-
associative, fully-associative)?

» Fully associative: arbitrary virtual—physical mapping
— How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal
— What is page replacement policy? (i.e. LRU, Random...)
» This requires more explanation... (kinda LRU)
— What happens on a miss?
» Go to lower level to fill miss (i.e. disk)
— What happens on a write? (write-through, write back)
» Definitely write-back. Need a “dirty” bit (D)!

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.11

Page 3

Demand Paging

* Modern programs require a lot of physical memory
— Memory per system growing faster than 25%-30%/year
+ But they don’t use all their memory all of the time

—90-10 rule: programs spend 90% of their time in 10% of their
code

— Wasteful to require all of user’s code to be in memory
+ Solution: use main memory as cache for disk

Processor

Control

Tertiary
Second Storage
ILevel Memory| Ktorage (Tape)
Datapath Cache |[(DRAM)| [Disk)
SRAM]|
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.10

Demand Paging Mechanisms

+ PTE helps us implement demand paging
— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on
disk when necessary
« Suppose user references page with invalid PTE?
— Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”
— What does OS do on a Page Fault?: |
» Choose an old page to replace
» If old page modified (“D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
— TLB for new page will be loaded when thread continued!
— While pulling pages off disk for one process, OS runs another
process from ready queue
» Suspended process sits on wait queue
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.12

Steps in Handling a Page Fault

page is on
backing store
(AR
operating
system @
reference
@ trap
load M [i
restart page table
instruction
free frame
® ®
reset page bring in
table missing page
physical
memon
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.13

Demand Paging Example
+ Since Demand Paging like caching, can compute average
access time! (“Effective Access Time”)
— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
+ Example:
— Memory access time = 200 nanoseconds
— Average page-fault service time = 8 milliseconds
— Suppose p = Probability of miss, 1-p = Probably of hit
— Then, we can compute EAT as follows:
EAT =(1-p)x200ns+px8ms
=(1-p) x200ns + p x 8,000,000ns
=200ns + p x 7,999,800ns
. g gne access out of 1,000 causes a page fault, then EAT =
2 us:
— This is a slowdown by a factor of 40!
+ What if want slowdown by less than 10%?
— 200ns x 1.1 <EAT =p<25x10°

. This is about 1 page fault in 400,000 !

2/2; lon Stoica CS162 ©UCB Spring 2011 Lec 11.14

2/28

What Factors Lead to Misses?

Compulsory Misses:
— Pages that have never been paged into memory before
— How might we remove these misses?
» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later.
Capacity Misses:
— Not enough memory. Must somehow increase size.
— Can we do this?
» One option: Increase amount of DRAM (not quick fix!)

» Another option: If multiple processes in memory: adjust percentage
of memory allocated to each one!

Conflict Misses:

— Technically, conflict misses don't exist in virtual memory, since it
is a “fully-associative” cache

Policy Misses:

— Caused when pages were in memory, but kicked out prematurely
because of the replacement policy

— How to fix? Better replacement policy
lon Stoica CS162 ©UCB Spring 2011 Lec 11.15

Page Replacement Policies

» Why do we care about Replacement Policy?
— Replacement is an issue with any cache
— Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
FIFO (First In, First Out)

— Throw out oldest page. Be fair — let every page live in memory
for same amount of time.

— Bad, because throws out heavily used pages instead of
infrequently used pages
MIN (Minimum):
— Replace page that won't be used for the longest time
— Great, but can't really know future...
— Makes good comparison case, however
+ RANDOM:
— Pick random page for every replacement
— Typical solution for TLB’s. Simple hardware
— Unpredictable

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.16

2

Replacement Policies (Con’t)

LRU (Least Recently Used):
— Replace page that hasn’t been used for the longest time
— Programs have locality, so if something not used for a while,
unlikely to be used in the near future.

— Seems like LRU should be a good approximation to MIN.
How to implement LRU? Use a list!

Head—| Page Page 7 Page 1 Page 2

Tail (LRU)
— On each use, remove page from list and place at head
— LRU page is at tail
Problems with this scheme for paging?
— List operations complex
» Many instructions for each hardware access
In practice, people approximate LRU (more later)

/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.17

2/28 lon Stoica CS162 ©UCB Spring 2011

Example: MIN

+ Suppose we have the same reference stream:
-ABCABDADBCB
+ Consider MIN Page replacement:

Ref:]A |[B |C (A |B |D |[A |D (B |[C |B
| Page:
1 A (o]
2 B
3 C D
— MIN: 5 faults

— Look for page not referenced farthest in future.

+ What will LRU do?
— Same decisions as MIN here, but won't always be true!

Lec 11.19

Page 5

Example: FIFO

» Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:
-ABCABDADBCB
+ Consider FIFO Page replacement:

Ref:]A |B |C |A |B |[D |A |[D (B |C |B
Page:

1_ A D (o3

2 B A

3 C B

— FIFO: 7 faults.

— When referencing D, replacing A is bad choice, since need A
again right away

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.18

When will LRU perform badly?
+ Consider the following: ABCDABCDABCD
+ LRU Performs as follows (same as FIFO here):

Ref:}]JA |B |C (D |[A |IB |[C D |[A |B |C |D
Page:
1 A D (o3 B

N
@
>
=]
(9]

3 C B A D

— Every reference is a page fault!
+ MIN Does much better:

Ref:]A |[B [C D |[A |[B |[C (D (A |B |C |D
e:

A B

“ICE
QD

2/4

Graph of Page Faults Versus The Number of Frames

number of page faults

| | i L L i
1 2 3 4 5 6
number of frames

+ One desirable property: When you add memory the miss rate
goes down
— Does this always happen?
— Seems like it should, right?
* No: BeLady’s anomaly
— Certain replacement algorithms (FIFO) don’t have this obvious

property!
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.21
5min Break
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.23

Page 6

Administrivia
» Project 1
— Code: Tuesday, March 1st
— Final document, peer evaluation: Wednesday, March 2"

+ Midterm next week:
— Wednesday, March 9t
— Closed book, one page of hand-written notes (both sides)

+ Midterm Topics: Everything up to this Wednesday, March 2nd

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.22

Adding Memory Doesn’t Always Help Fault Rate

* Does adding memory reduce number of page faults?
— Yes for LRU and MIN
— Not necessarily for FIFO! (Called Belady’s anomaly)

Page:J]A |B (C (D |[A |B |[E (A |B [C |D |E

1 A D E
2 B A C
3 C B D
Page:|{A |[B |C |D |A |[B |[E |A (B |C (D |E

WIN | =
w
>
m

C B
4 D C
+ After adding memory:

— With FIFO, contents can be completely different

— In contrast, with LRU or MIN, contents of memory with X pages

are a subset of contents with X+1 Page
lon Stoica CS162 ©UCB Spring 2011

Lec 11.24

Implementing LRU & Second Chance

+ Perfect:
— Timestamp page on each reference
— Keep list of pages ordered by time of reference
— Too expensive to implement in reality for many reasons

+ Second Chance Algorithm:
— Approximate LRU
» Replace an old page, not the oldest page
— FIFO with “use” bit

* Details
— A “use” bit per physical page
— On page fault check page at head of queue
» If use bit=1 - clear bit, and move page at tail (give the page
second chance!)
» If use bit=0 > replace page
— Moving pages to tail still complex

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.25
Second Chance lllustration
+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
first loaded last loaded
page l page
B u:0 Aul D u:0 Cu:0
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.27

Page 7

Clock Algorithm

- Clock Algorithm: more efficient implementation of second
chance algorithm
— Arrange physical pages in circle with single clock hand
+ Details:
— On page fault:
» Advance clock hand (not real time)
» Check use bit: 1—used recently; clear and leave it alone
0—selected candidate for replacement
— Will always find a page or loop forever?

+ What if hand moving slowly?
— Good sign or bad sign?
» Not many page faults and/or find page quickly

+ What if hand is moving quickly?
— Lots of page faults and/or lots of reference bits set

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.26
Second Chance lllustration
+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
first loaded last loaded
page l page
B u:0 Aul D u:0 Cu:0
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.28

Second Chance lllustration

» Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives

first loaded last loaded
page page
Au:l D u:0 Cu:0 Fu:0
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.29
Second Chance lllustration
+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
—Access page D
—Page E arrives
first loaded last loaded
page page
Du:l Cu:0 F u:0 A u:0
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.31

Page 8

Second Chance lllustration

+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
—Access page D
—Page E arrives

first loaded last loaded
page page
A u:l Du:l Cu:0 Fu:0
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.30
Second Chance lllustration
+ Max page table size 4
—Page B arrives
—Page A arrives
—Access page A
—Page D arrives
—Page C arrives
—Page F arrives
—Access page D
—Page E arrives
first loaded last loaded
page page
Cu:0 Fu:0 A u:0 pmo|
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.32

Clock Replacement lllustration

* Max page table size 4

+ Invariant: point at oldest page

—Page B arrives

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.33
Clock Replacement lllustration
+ Max page table size 4
* Invariant: point at oldest page
—Page B arrives
—Page A arrives
—Access page A Bu
—Page D arrives 0
Au:
1
Du
0
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.35

Page 9

2/28

Clock Replacement lllustration

+ Max page table size 4
+ Invariant: point at oldest page
—Page B arrives

—Page A arrives
—Access page A

lon Stoica CS162 ©UCB Spring 2011

Lec 11.34

2/28

Clock Replacement lllustration
+ Max page table size 4
+ Invariant: point at oldest page

—Page B arrives
—Page A arrives

— Access page A Bu
. 0
—Page D arrives
—Page C arrives Cu Au
0 1
Du
0
lon Stoica CS162 ©UCB Spring 2011 Lec 11.36

Clock Replacement lllustration

* Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives
—Access page A B Uty
. 0
—Page D arrives

—Page C arrives Cu AU
. 0 1
—Page F arrives
Du
0
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.37

Nt Chance version of Clock Algorithm

+ N chance algorithm: Give page N chances
— OS keeps counter per page: # sweeps
— On page fault, OS checks use bit:
» 1=>clear use and also clear counter (used in last sweep)
» O=sincrement counter; if count=N, replace page
— Means that clock hand has to sweep by N times without page
being used before page is replaced
» How do we pick N?
— Why pick large N? Better approx to LRU
» If N ~ 1K, really good approximation
— Why pick small N? More efficient
» Otherwise might have to look a long way to find free page
+ What about dirty pages?
— Takes extra overhead to replace a dirty page, so give dirty
pages an extra chance before replacing?
— Common approach:
» Clean pages, use N=1

» Dirty pages, use N=2 (and write back to disk when N=1)

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.39

Page 10

Clock Replacement lllustration

+ Max page table size 4

+ Invariant: point at oldest page

—Page B arrives
—Page A arrives
—Access page A F u:0
—Page D arrives

—Page C arrives Eu Au
. 0 0
—Page F arrives
— Access page D Du:
. 0
—Page E arrives
2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.38

Clock Algorithms: Details

» Which bits of a PTE entry are useful to us?
— Use: Set when page is referenced; cleared by clock algorithm

— Modified: set when page is modified, cleared when page
written to disk

— Valid: ok for program to reference this page
— Read-only: ok for program to read page, but not modify
» For example for catching modifications to code pages!
» Do we really need hardware-supported “modified” bit?
—No. Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages

» On write, trap to OS. OS sets software “modified” bit, and marks
page as read-write.

» Whenever page comes back in from disk, mark read-only

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.40

Clock Algorithms Details
(continued)

» Do we really need a hardware-supported “use” bit?

— No. Can emulate it using “invalid” bit:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

— When clock hand passes by, reset use bit and mark page as
invalid again

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.41

Summary (2/2)

* Replacement policies
— FIFO: Place pages on queue, replace page at end
— MIN: Replace page that will be used farthest in future
— LRU: Replace page used farthest in past

+ Clock Algorithm: Approximation to LRU
— Arrange all pages in circular list
— Sweep through them, marking as not “in use”
— If page not “in use” for one pass, than can replace

+ Second-Chance List algorithm: Yet another approx LRU

— Divide pages into two groups, one of which is truly LRU and
managed on page faults.

2/28 lon Stoica CS162 ©UCB Spring 2011 Lec 11.43

Page 11

2/28

Summary (1/2)

» TLB is cache on translations
— Fully associative to reduce conflicts
— Can be overlapped with cache access

» Demand Paging:
— Treat memory as cache on disk
— Cache miss = get page from disk

« Transparent Level of Indirection
— User program is unaware of activities of OS behind
scenes
— Data can be moved without affecting application
correctness

lon Stoica CS162 ©UCB Spring 2011

Lec 11.42

