
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 14  

Protocols, Layering and e2e Argument"

March 14, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 14.2!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Goals for Today"
•  Finish Page Replacement!
•  Working Set/Thrashing!
•  Introduction to networking!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Vern Paxson,
and Scott Shenker."

Lec 14.3!3/14! Ion Stoica CS162 ©UCB Spring 2011!

What Is A Protocol?"

•  A protocol is an agreement on how to communicate!

•  Includes!
–  Syntax: how a communication is specified & structured!

»  Format, order messages are sent and received!
–  Semantics: what a communication means!

»  Actions taken when transmitting, receiving, or when a
timer expires!

Lec 14.4!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Examples of Protocols in Human Interactions"

•  Telephone!
1.  (Pick up / open up the phone.)!
2.  Listen for a dial tone / see that you have service.!
3.  Dial.!
4.  Should hear ringing …!
5.  Callee: “Hello?”!
6.  Caller: “Hi, itʼs Alice ….” 

Or: “Hi, itʼs me” (← whatʼs that about?)!
7.  Caller: “Hey, do you think … blah blah blah …” pause!
8.  Callee: “Yeah, blah blah blah …” pause"
9.  Caller: Bye!
10.  Callee: Bye!
11.  Hang up!

Page 2

Lec 14.5!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Examples of Protocols in Human
Interactions"

•  Asking a question!
1.  Raise your hand.!
2.  Wait to be called on.!

3.  Or: wait for speaker to pause and vocalize!

Lec 14.6!3/14! Ion Stoica CS162 ©UCB Spring 2011!

The Internet Protocol (IP): “Best-Effort”
Packet Delivery"

•  Datagram packet switching!
– Send data in packets!
– Header with source & destination address!

•  Service it provides:!
– Packets may be lost!
– Packets may be corrupted!
– Packets may be delivered out of order!

source destination

IP network

Lec 14.7!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Example: Transmission Control
Protocol (TCP)"

•  Communication service!
–  Ordered, reliable byte stream!
–  Simultaneous transmission in both directions!

•  Key mechanisms at end hosts!
–  Retransmit lost and corrupted packets!
–  Discard duplicate packets and put packets in order!
–  Flow control to avoid overloading the receiver buffer!
–  Congestion control to adapt sending rate to network load!

source network destination

TCP connection

Lec 14.8!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Protocol Standardization"
•  Ensure communicating hosts speak the same protocol!

–  Standardization to enable multiple implementations!
– Or, the same folks have to write all the software!

•  Standardization: Internet Engineering Task Force!
–  Based on working groups that focus on specific issues!
–  Produces “Request For Comments” (RFCs)!

»  Promoted to standards via rough consensus and running code!
–  IETF Web site is http://www.ietf.org!
– RFCs archived at http://www.rfc-editor.org!

•  De facto standards: same folks writing the code!
–  P2P file sharing, Skype, <your protocol here>…!

Page 3

Lec 14.9!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Layering: The Problem"

•  Many different applications!
– email, web, P2P, etc.!

•  Many different network styles and technologies!
– Circuit-switched vs packet-switched, etc.!
– Wireless vs. wired vs optical, etc.!

•  How do we organize this mess?!

Lec 14.10!3/14! Ion Stoica CS162 ©UCB Spring 2011!

The Problem (contʼd)"

•  Re-implement every application for every
technology?!

•  No! But how does the Internet design avoid this?!

Skype SSH NFS

Radio Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Lec 14.11!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Solution: Intermediate Layers"

•  Introduce intermediate layers that provide set of abstractions
for various network functionality & technologies!

–  A new app/media implemented only once!
–  Variation on “add another level of indirection”!

Skype SSH NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate
layers

Lec 14.12!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Network Architecture"
•  Architecture is not the implementation itself!

•  Architecture is how to organize/structure the elements
of the system & their implementation!

– What interfaces are supported!
» Using what sort of abstractions!

– Where functionality is implemented!
– The modular design of the network!

Page 4

Lec 14.13!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Software System Modularity"
Partition system into modules & abstractions:!
•  Well-defined interfaces give flexibility!

– Hides implementation - thus, it can be freely changed!
–  Extend functionality of system by adding new modules!

•  E.g., libraries encapsulating set of functionality!
•  E.g., programming language + compiler abstracts away

not only how the particular CPU works …!
– … but also the basic computational model!

•  Well-defined interfaces hide information!
–  Isolate assumptions !
–  Present high-level abstractions!
– But can impair performance!

Lec 14.14!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Network System Modularity"

Like software modularity, but:!
•  Implementation distributed across many machines

(routers and hosts)!
•  Must decide:!

– How to break system into modules!
»  Layering!

– What functionality does each module implement!
»  End-to-End Principle"

– Where state is stored!
»  Fate-sharing!

•  We will address these choices in turn!

Lec 14.15!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Layering: A Modular Approach"

•  Partition the system!
– Each layer solely relies on services from layer below !
– Each layer solely exports services to layer above!

•  Interface between layers defines interaction!
– Hides implementation details!
– Layers can change without disturbing other layers!

Lec 14.16!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Properties of Layers (OSI Model)"

•  Service: what a layer does!
•  Service interface: how to access the service !

–  Interface for layer above !
•  Protocol (peer interface): how peers communicate to

achieve the service!
– Set of rules and formats that specify the communication

between network elements!
– Does not specify the implementation on a single machine,

but how the layer is implemented between machines!

Page 5

Lec 14.17!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Physical Layer (1)"
•  Service: move information between two systems

connected by a physical link!

•  Interface: specifies how to send and receive bits !

•  Protocol: coding scheme used to represent a bit,
voltage levels, duration of a bit!

•  Examples: coaxial cable, optical fiber links;
transmitters, receivers !

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

Lec 14.18!3/14! Ion Stoica CS162 ©UCB Spring 2011!

(Data) Link Layer (2)"

•  Service: !
–  Enable end hosts to exchange atomic messages with one another !

»  Using abstract addresses (i.e., not just direct physical connections)!
–  Perhaps over multiple physical links!

»  But using the same framing (headers/trailers)!
–  Possible other services:!

»  arbitrate access to common physical media!
»  reliable transmission, flow control!

•  Interface: send messages (frames) to other end hosts;
receive messages addressed to end host!

•  Protocols: addressing, routing, Media Access Control
(MAC) (e.g., CSMA/CD - Carrier Sense Multiple Access /
Collision Detection) !

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

Lec 14.19!3/14! Ion Stoica CS162 ©UCB Spring 2011!

(Inter) Network Layer (3)"
•  Service: !

– Deliver packets to specified inter-network destination!
»  Inter-network = across multiple layer-2 networks"

– Works across networking technologies (e.g., Ethernet +
802.11 + Frame Relay …)!

»  No longer the same framing all the way!
–  Possible other services:!

»  packet scheduling/priority!
»  buffer management!

•  Interface: send packets to specified inter-network
destinations; receive packets destined for end host!

•  Protocols: define inter-network addresses (globally
unique); construct routing tables!

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

Lec 14.20!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Transport Layer (4)"
•  Service:!

–  Provide end-to-end communication between processes!
– Demultiplexing of communication between hosts!
–  Possible other services:!

»  Reliability in the presence of errors!
»  Timing properties!
»  Rate adaption (flow-control, congestion control)!

•  Interface: send message to specific process at given
destination; local process receives messages sent to it!

•  Protocol: port numbers, perhaps implement reliability,
flow control, packetization of large messages, framing!

•  Examples: TCP and UDP!

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

Page 6

Lec 14.21!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Application Layer (7 - not 5!)"
•  Service: any service provided to the end user!
•  Interface: depends on the application!
•  Protocol: depends on the application!

•  Examples: Skype, SMTP (email), HTTP (Web), Halo,
BitTorrent …!

•  What happened to layers 5 & 6?!
–  “Session” and “Presentation” layers!
– Part of OSI architecture, but not Internet architecture!

Transport"
Network"
Datalink"
Physical"

Session"
Present."

Application"

5 Minute Break"

Questions Before We Proceed?!

Lec 14.23!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Who Does What?"

•  Five layers!
– Lower three layers implemented everywhere!
– Top two layers implemented only at hosts!

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host B Router

Lec 14.24!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Logical Communication"

•  Layers interacts with peerʼs corresponding layer!

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host B Router

Page 7

Lec 14.25!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Physical Communication"

•  Communication goes down to physical network!
•  Then from network peer to peer!
•  Then up to relevant layer!

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host B Router

Lec 14.26!3/14! Ion Stoica CS162 ©UCB Spring 2011!

IP Suite: End Hosts vs. Routers"

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packet IP packet

Lec 14.27!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Layer Encapsulation"

Trans: Connection ID

 Net: Source/Dest

Link: Src/Dest

Appl: Get index.html

User A User B

Common case: 20 bytes TCP header + 20 bytes IP header  
+ 14 bytes Ethernet header = 54 bytes overhead"

Lec 14.28!3/14! Ion Stoica CS162 ©UCB Spring 2011!

The Internet Hourglass"

Data Link"
Physical"

Applications"

The Hourglass Model"

Waist!

There is just one network-layer protocol, IP.!
The “narrow waist” facilitates interoperability.!

SMTP! HTTP! NTP!DNS!

TCP! UDP!

IP!

Ethernet! SONET! 802.11!

Transport"

Fiber!Copper! Radio!

Page 8

Lec 14.29!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Implications of Hourglass"

Single Internet-layer module (IP):!
•  Allows arbitrary networks to interoperate!

– Any network technology that supports IP can exchange
packets!

•  Allows applications to function on all networks!
– Applications that can run on IP can use any network!

•  Supports simultaneous innovations above and below IP!
– But changing IP itself, i.e., IPv6, very involved!

Lec 14.30!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Drawbacks of Layering"
•  Layer N may duplicate layer N-1 functionality !

–  E.g., error recovery to retransmit lost data!
•  Layers may need same information!

–  E.g., timestamps, maximum transmission unit size!
•  Layering can hurt performance!

–  E.g., hiding details about what is really going on!
•  Some layers are not always cleanly separated!

–  Inter-layer dependencies for performance reasons!
–  Some dependencies in standards (header checksums)!

•  Headers start to get really big!
–  Sometimes header bytes >> actual content!

Lec 14.31!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Placing Network Functionality"
•  Hugely influential paper: “End-to-End Arguments in

System Design” by Saltzer, Reed, and Clark (ʻ84)!

•  “Sacred Text” of the Internet!
– Endless disputes about what it means!
– Everyone cites it as supporting their position!

Lec 14.32!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Basic Observation"
•  Some types of network functionality can only be

correctly implemented end-to-end!
– Reliability, security, etc!

•  Because of this, end hosts:!
– Can satisfy the requirement without networkʼs help!
– Will/must do so, since canʼt rely on networkʼs help!

•  Therefore donʼt go out of your way to implement them
in the network!

Page 9

Lec 14.33!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Example: Reliable File Transfer"

•  Solution 1: make each step reliable, and then
concatenate them!

•  Solution 2: end-to-end check and try again if
necessary!

OS

Appl.

OS

Appl.

Host A Host B

OK

Lec 14.34!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Discussion"

•  Solution 1 is incomplete!
– What happens if memory is corrupted?!
– Receiver has to do the check anyway!!

•  Solution 2 is complete!
– Full functionality can be entirely implemented at

application layer with no need for reliability from lower
layers!

•  Is there any need to implement reliability at lower
layers?!

– Well, it could be more efficient!

Lec 14.35!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Summary of End-to-End Principle"

Implementing this functionality in the network:!
•  Doesnʼt reduce host implementation complexity!
•  Does increase network complexity!
•  Probably imposes delay and overhead on all

applications, even if they donʼt need functionality!

•  However, implementing in network can enhance
performance in some cases!

– E.g., very losy link!

Lec 14.36!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Conservative Interpretation of E2E"

•  Donʼt implement a function at the lower levels of the
system unless it can be completely implemented at this
level!

•  Unless you can relieve the burden from hosts, donʼt
bother!

Page 10

Lec 14.37!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Moderate Interpretation"

•  Think twice before implementing functionality in the
network!

•  If hosts can implement functionality correctly,
implement it in a lower layer only as a performance
enhancement!

•  But do so only if it does not impose burden on
applications that do not require that functionality!

Lec 14.38!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Related Notion of Fate-Sharing!
•  Idea: when storing state in a distributed system, keep it

co-located with the entities that ultimately rely on the
state!

•  Fate-sharing is a technique for dealing with failure!
– Only way that failure can cause loss of the critical state is if the

entity that cares about it also fails ...!
– … in which case it doesnʼt matter!

•  Often argues for keeping network state at end hosts
rather than inside routers!

–  In keeping with End-to-End principle!
–  E.g., packet-switching rather than circuit-switching!
–  E.g., NFS file handles, HTTP “cookies”!

Lec 14.39!3/14! Ion Stoica CS162 ©UCB Spring 2011!

Summary"

•  Roles of!
– Standardization!
– Clients, servers, peer-to-peer!

•  Layered architecture as a powerful means for organizing
complex networks!

– Though layering has its drawbacks too!
•  Unified Internet layering (Application/Transport/

Internetwork/Link/Physical) decouples apps from
networking technologies!

•  E2E argument encourages us to keep IP simple!
– Commercial realities (need to control the network) can

greatly stress this!

