CS162
Operating Systems and
Systems Programming

Lecture 14

Protocols, Layering and e2e Argument

March 14, 2011
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

3/14

What Is A Protocol?

+ A protocol is an agreement on how to communicate

* Includes
— Syntax: how a communication is specified & structured
» Format, order messages are sent and received
— Semantics: what a communication means

» Actions taken when transmitting, receiving, or when a
timer expires

lon Stoica CS162 ©UCB Spring 2011 Lec 14.3

Page 1

Goals for Today

+ Finish Page Replacement
+ Working Set/Thrashing
* Introduction to networking

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Vern Paxson,

and Scott Shenker.
3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.2

Examples of Protocols in Human Interactions

+ Telephone

(Pick up / open up the phone.)

Listen for a dial tone / see that you have service.
Dial.

Should hear ringing ...

Callee: “Hello?”

Caller: “Hi, it's Alice”
Or: “Hi, it's me” (< what's that about?)

7. Caller: “Hey, do you think ... blah blah blah ...” pause
8. Callee: “Yeah, blah blah blah ...” pause

9. Caller: Bye

10. Callee: Bye

11. Hang up

[

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.4

Examples of Protocols in Human
Interactions

Asking a question
1. Raise your hand.
2. Wait to be called on.

3. Or: wait for speaker to pause and vocalize

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.5

3/14

Example: Transmission Control
Protocol (TCP)

+ Communication service
— Ordered, reliable byte stream
— Simultaneous transmission in both directions
+ Key mechanisms at end hosts
— Retransmit lost and corrupted packets
— Discard duplicate packets and put packets in order
— Flow control to avoid overloading the receiver buffer
— Congestion control to adapt sending rate to network load
TCP connection

® © ©

network

source destination

lon Stoica CS162 ©UCB Spring 2011 Lec 14.7

Page 2

3/14

source

The Internet Protocol (IP): “Best-Effort”
Packet Delivery
+ Datagram packet switching
— Send data in packets

— Header with source & destination address
+ Service it provides:

— Packets may be lost
— Packets may be corrupted
— Packets may be delivered out of order

destination

=4

lon Stoica CS162 ©UCB Spring 2011

Lec 14.6

3/14

+ Ensure communicating hosts speak the same protocol

» De facto standards: same folks writing the code

Protocol Standardization

— Standardization to enable multiple implementations
— Or, the same folks have to write all the software
Standardization: Internet Engineering Task Force

— Based on working groups that focus on specific issues
— Produces “Request For Comments” (RFCs)

» Promoted to standards via rough consensus and running code
— IETF Web site is http:/www.ietf.org

— RFCs archived at http:/www.rfc-editor.org

— P2P file sharing, Skype, <your protocol here>...

lon Stoica CS162 ©UCB Spring 2011 Lec 14.8

Layering: The Problem

« Many different applications
—email, web, P2P, etc.

+ Many different network styles and technologies
— Circuit-switched vs packet-switched, etc.
— Wireless vs. wired vs optical, etc.

+ How do we organize this mess?

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.9

Solution: Intermediate Layers

+ Introduce intermediate layers that provide set of abstractions
for various network functionality & technologies

— A new app/media implemented only once
— Variation on “add another level of indirection”

Application

Intermediate

layers _ _ _ _ __
Transmission Coaxial Fiber Packet
Media cable optic radio
3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.11

Page 3

3/14

The Problem (cont’d)

Application |Skype| |S$H| |NF$| HTTP
--- V~\ - -

Transmission
Media

Coaxial
cable

Fiber
optic

Radio

+ Re-implement every application for every

technology?

+ No! But how does the Internet design avoid this?

lon Stoica CS162 ©UCB Spring 2011

3/14

Network Architecture

+ Architecture is not the implementation itself

 Architecture is how to organize/structure the elements
of the system & their implementation

— What interfaces are supported
» Using what sort of abstractions

— Where functionality is implemented
— The modular design of the network

lon Stoica CS162 ©UCB Spring 2011

Software System Modularity

Partition system into modules & abstractions:
« Well-defined interfaces give flexibility
— Hides implementation - thus, it can be freely changed
— Extend functionality of system by adding new modules
- E.g., libraries encapsulating set of functionality
+ E.g., programming language + compiler abstracts away
not only how the particular CPU works ...
— ... but also the basic computational model
+ Well-defined interfaces hide information
— Isolate assumptions
— Present high-level abstractions
— But can impair performance

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.13

Layering: A Modular Approach

+ Partition the system
— Each layer solely relies on services from layer below
— Each layer solely exports services to layer above

+ Interface between layers defines interaction
— Hides implementation details
— Layers can change without disturbing other layers

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.15

Page 4

Network System Modularity

Like software modularity, but:
+ Implementation distributed across many machines
(routers and hosts)
+ Must decide:
— How to break system into modules
» Layering
— What functionality does each module implement
» End-to-End Principle
— Where state is stored
» Fate-sharing
+ We will address these choices in turn

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.14

Properties of Layers (OSI Model)

+ Service: what a layer does
+ Service interface: how to access the service
— Interface for layer above

+ Protocol (peer interface): how peers communicate to
achieve the service

— Set of rules and formats that specify the communication
between network elements

— Does not specify the implementation on a single machine,
but how the layer is implemented between machines

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.16

. |Application|
Physical Layer (1)
+ Service: move information between two systems [“Network

connected by a physical link Datalink
+ Interface: specifies how to send and receive bits

+ Protocol: coding scheme used to represent a bit,
voltage levels, duration of a bit

+ Examples: coaxial cable, optical fiber links;
transmitters, receivers

Application

(Data) Link Layer (2)

Transport
Network

Datalink
. Service: [Physical |

— Enable end hosts to exchange atomic messages with one another
» Using abstract addresses (i.e., not just direct physical connections)
— Perhaps over multiple physical links
» But using the same framing (headers/trailers)
— Possible other services:
» arbitrate access to common physical media
» reliable transmission, flow control

+ Interface: send messages (frames) to other end hosts;
receive messages addressed to end host
+ Protocols: addressing, routing, Media Access Control

(MAC) (e.g., CSMA/CD - Carrier Sense Multiple Access /
Collision Detection)

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.18

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.17
Application
(Inter) Network Layer (3)
- Service:

3/14

Transport
Network
— Deliver packets to specified inter-network destination %

» Inter-network = across multiple layer-2 networks

— Works across networking technologies (e.g., Ethernet +
802.11 + Frame Relay ...)

» No longer the same framing all the way
— Possible other services:
» packet scheduling/priority
» buffer management
+ Interface: send packets to specified inter-network
destinations; receive packets destined for end host
+ Protocols: define inter-network addresses (globally
unique); construct routing tables

lon Stoica CS162 ©UCB Spring 2011 Lec 14.19

AEEIication

+ Service: Network
— Provide end-to-end communication between processes | Datalink_|
Physical
— Demultiplexing of communication between hosts
— Possible other services:
» Reliability in the presence of errors
» Timing properties
» Rate adaption (flow-control, congestion control)
+ Interface: send message to specific process at given
destination; local process receives messages sent to it

+ Protocol: port numbers, perhaps implement reliability,
flow control, packetization of large messages, framing

+ Examples: TCP and UDP

Transport Layer (4)

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.20

+ Examples: Skype, SMTP (email), HTTP (Web), Halo,

Application Layer (7 - not 5!)
Transport
Service: any service provided to the end user l\::rtlvsvoﬂz
- Datalink
Interface: depends on the application Physical

Protocol: depends on the application

BitTorrent ...

What happened to layers 5 & 6?
— “Session” and “Presentation” layers
— Part of OSI architecture, but not Internet architectu

re

5 Minute Break

Questions Before We Proceed?

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.21
Who Does What?
* Five layers
— Lower three layers implemented everywhere
— Top two layers implemented only at hosts
Application Application
Transport Transport
Network Network Network
Datalink Datalink Datalink
Physical Physical Physical
Host A Router Host B
Lec 14.23

3/14

lon Stoica CS162 ©UCB Spring 2011

3/14

Logical Communication

+ Layers interacts with peer’s corresponding layer

Application Application
Transport Transport
Network Network Network
Datalink Datalink Datalink
Physical Physical Physical
Host A Router Host B
Lec 14.24

lon Stoica CS162 ©UCB Spring 2011

Physical Communication

+ Communication goes down to physical network
+ Then from network peer to peer
» Then up to relevant layer

Application Afplication
Transpory 1mnspor-1'
Network Network Network
Datalink Datalink Datalink
Physical Physical Physical
Host A Router Host B
314 lon Stoica CS162 ©UCB Spring 2011 Lec 14.25

Layer Encapsulation

2K

User A User B

- Appl: Get index.html -
- Trans: Connection ID-
- Net: Source/Dest -
_ Link: Src/Dest _

Common case: 20 bytes TCP header + 20 bytes IP header
+ 14 bytes Ethernet header = 54 bytes overhead
3/14 lon Stoica CS162 ©UCB Spring 2011

Lec 14.27

Page 7

IP Suite: End Hosts vs. Routers

host host

HTTP message

HTTR¢-~~-""""""7""77""7-7"7°"777777°7°°=°-°- HTT

TCP segmen
| TCper-onnnnn oo S --m-mmmeeoooo 1 1cp|

ﬂ«'ﬁi—“—“—“‘-‘ <H|H,{ P }‘_“:uﬂﬁl_.){ Iﬂ

[]

Ethernet Ethernet SONET SONET Ethernet Ethernet
interface : | interface interface | : : | interface interface interface
i I I i] I |
l | |
3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.26

The Internet Hourglass

The Hourglass Model

| Fiber | | Rado |

There is just one network-layer protocol, IP.
The “narrow waist” facilitates interoperability.

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.28

Implications of Hourglass

Single Internet-layer module (IP):
+ Allows arbitrary networks to interoperate

— Any network technology that supports IP can exchange
packets

+ Allows applications to function on all networks
— Applications that can run on IP can use any network

+ Supports simultaneous innovations above and below IP
— But changing IP itself, i.e., IPv6, very involved

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.29

Placing Network Functionality

* Hugely influential paper: “End-to-End Arguments in
System Design” by Saltzer, Reed, and Clark (‘84)

+ “Sacred Text” of the Internet
— Endless disputes about what it means
— Everyone cites it as supporting their position

3/14 lon Stoica CS162 ©UCB Spring 2011 Lec 14.31

Page 8

3/14

Drawbacks of Layering

+ Layer N may duplicate layer N-1 functionality
— E.g., error recovery to retransmit lost data
» Layers may need same information
— E.g., timestamps, maximum transmission unit size
+ Layering can hurt performance
— E.g., hiding details about what is really going on
+ Some layers are not always cleanly separated
— Inter-layer dependencies for performance reasons
— Some dependencies in standards (header checksums)
+ Headers start to get really big
— Sometimes header bytes >> actual content

lon Stoica CS162 ©UCB Spring 2011 Lec 14.30

3/14

Basic Observation

+ Some types of network functionality can only be
correctly implemented end-to-end

— Reliability, security, etc

+ Because of this, end hosts:
— Can satisfy the requirement without network’s help
— Will/must do so, since can’t rely on network’s help

+ Therefore don’t go out of your way to implement them
in the network

lon Stoica CS162 ©UCB Spring 2011 Lec 14.32

3/14

Example: Reliable File Transfer

B
+ Solution 1: make each step reliable, and then
concatenate them

+ Solution 2: end-to-end check and try again if
necessary

lon Stoica CS162 ©UCB Spring 2011 Lec 14.33

3/14

Summary of End-to-End Principle

Implementing this functionality in the network:
* Doesn’t reduce host implementation complexity
* Does increase network complexity

» Probably imposes delay and overhead on all
applications, even if they don’t need functionality

+ However, implementing in network can enhance
performance in some cases

—E.g., very losy link

lon Stoica CS162 ©UCB Spring 2011 Lec 14.35

Page 9

3/14

Discussion

+ Solution 1 is incomplete
— What happens if memory is corrupted?
— Receiver has to do the check anyway!

+ Solution 2 is complete

— Full functionality can be entirely implemented at
application layer with no need for reliability from lower
layers

+ Is there any need to implement reliability at lower
layers?
— Well, it could be more efficient

lon Stoica CS162 ©UCB Spring 2011 Lec 14.34

3/14

Conservative Interpretation of E2E

+ Don’t implement a function at the lower levels of the
system unless it can be completely implemented at this
level

+ Unless you can relieve the burden from hosts, don’t
bother

lon Stoica CS162 ©UCB Spring 2011 Lec 14.36

3/14

Moderate Interpretation

« Think twice before implementing functionality in the
network

+ If hosts can implement functionality correctly,
implement it in a lower layer only as a performance
enhancement

+ But do so only if it does not impose burden on
applications that do not require that functionality

lon Stoica CS162 ©UCB Spring 2011 Lec 14.37

3/14

Summary

Roles of
— Standardization
— Clients, servers, peer-to-peer

Layered architecture as a powerful means for organizing
complex networks

— Though layering has its drawbacks too

Unified Internet layering (Application/Transport/
Internetwork/Link/Physical) decouples apps from
networking technologies

E2E argument encourages us to keep IP simple

— Commercial realities (need to control the network) can
greatly stress this

lon Stoica CS162 ©UCB Spring 2011 Lec 14.39

Page 10

3/14

Related Notion of Fate-Sharing

+ Idea: when storing state in a distributed system, keep it
co-located with the entities that ultimately rely on the
state

+ Fate-sharing is a technique for dealing with failure

— Only way that failure can cause loss of the critical state is if the
entity that cares about it also fails ...

— ... in which case it doesn’t matter

« Often argues for keeping network state at end hosts
rather than inside routers

— In keeping with End-to-End principle
— E.g., packet-switching rather than circuit-switching
— E.g., NFS file handles, HTTP “cookies”

lon Stoica CS162 ©UCB Spring 2011 Lec 14.38

