
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 15  

Reliability, Transport Protocols"

March 16, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 15.2!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Goals for Today"
•  Finish e2e argument & fate sharing!
•  Transport: TCP/UDP!

– Reliability!
– Flow control!

Lec 15.3!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Placing Network Functionality"

•  Hugely influential paper: “End-to-End Arguments in
System Design” by Saltzer, Reed, and Clark (ʻ84)!

•  “Sacred Text” of the Internet!
– Endless disputes about what it means!
– Everyone cites it as supporting their position!

Lec 15.4!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Basic Observation"
•  Some types of network functionality can only be

correctly implemented end-to-end!
– Reliability, security, etc!

•  Because of this, end hosts:!
– Can satisfy the requirement without networkʼs help!
– Will/must do so, since canʼt rely on networkʼs help!

•  Therefore donʼt go out of your way to implement them
in the network!

Page 2

Lec 15.5!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Example: Reliable File Transfer"

•  Solution 1: make each step reliable, and then
concatenate them!

•  Solution 2: end-to-end check and try again if
necessary!

OS

Appl.

OS

Appl.

Host A Host B

OK

Lec 15.6!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Discussion"

•  Solution 1 is incomplete!
– What happens if memory is corrupted?!
– Receiver has to do the check anyway!!

•  Solution 2 is complete!
– Full functionality can be entirely implemented at

application layer with no need for reliability from lower
layers!

•  Is there any need to implement reliability at lower
layers?!

– Well, it could be more efficient!

Lec 15.7!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Summary of End-to-End Principle"

Implementing this functionality in the network:!
•  Doesnʼt reduce host implementation complexity!
•  Does increase network complexity!
•  Probably imposes delay and overhead on all

applications, even if they donʼt need functionality!

•  However, implementing in network can enhance
performance in some cases!

– E.g., very losy link!

Lec 15.8!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Conservative Interpretation of E2E"

•  Donʼt implement a function at the lower levels of the
system unless it can be completely implemented at this
level!

•  Unless you can relieve the burden from hosts, donʼt
bother!

Page 3

Lec 15.9!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Moderate Interpretation"

•  Think twice before implementing functionality in the
network!

•  If hosts can implement functionality correctly,
implement it in a lower layer only as a performance
enhancement!

•  But do so only if it does not impose burden on
applications that do not require that functionality!

Lec 15.10!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Related Notion of Fate-Sharing!
•  Idea: when storing state in a distributed system, keep it

co-located with the entities that ultimately rely on the
state!

•  Fate-sharing is a technique for dealing with failure!
– Only way that failure can cause loss of the critical state is if the

entity that cares about it also fails ...!
– … in which case it doesnʼt matter!

•  Often argues for keeping network state at end hosts
rather than inside routers!

–  In keeping with End-to-End principle!
–  E.g., packet-switching rather than circuit-switching!
–  E.g., NFS file handles, HTTP “cookies”!

Lec 15.11!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Reliable Transfer"

•  Retransmit missing packets!
– Numbering of packets and ACKs!

•  Do this efficiently!
– Keep transmitting whenever possible!
– Detect missing ACKs and retransmit quickly!

•  Two schemes!
– Stop & Wait!
– Sliding Window (Go-back-n and Selective Repeat)!

Lec 15.12!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Stop & Wait "

ACK

DATA

Time

Sender

Receiver

RTT

•  Send; wait for ack!
•  If timeout, retransmit; else repeat!

Inefficient if
TRANS << RTT

TRANS

Page 4

Lec 15.13!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Sliding Window"
•  window = set of adjacent sequence numbers!

•  The size of the set is the window size!

•  Assume window size is n!

•  Let A be the last ackʼd packet of sender without gap; then window
of sender = {A+1, A+2, …, A+n} 

•  Sender can send packets in its window  

•  Let B be the last received packet without gap by receiver, then
window of receiver = {B+1,…, B+n} 

•  Receiver can accept out of sequence, if in window!

Lec 15.14!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Go-Back-n (GBN)"

•  Transmit up to n unacknowledged packets!

•  If timeout for ACK(k), retransmit k, k+1, …!

Lec 15.15!3/16! Ion Stoica CS162 ©UCB Spring 2011!

GBN Example w/o Errors"

Time!

Window size = 3 packets!

Sender! Receiver!

1!{1}!
2!{1, 2}!
3!{1, 2, 3}!
4!{2, 3, 4}!
5!{3, 4, 5}!

Sender Window! Receiver Window!

{}!

6!{4, 5, 6}!
.!
.!
.!

.!

.!

.!

{}!
{}!

Lec 15.16!3/16! Ion Stoica CS162 ©UCB Spring 2011!

GBN Example with Errors"

Window size = 3 packets!

Sender! Receiver!

1!
2!
3!
4!
5!

{}!
{}!
{}!

6!
{5}!
{5,6}!

4 is !
missing!Timeout!

Packet 4!

4!
5!
6! {}!

Page 5

Lec 15.17!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Selective Repeat (SR)"
•  Sender: transmit up to n unacknowledged packets;

assume packet k is lost!

•  Receiver: indicate packet k is missing!

•  Sender: retransmit packet k !

Lec 15.18!3/16! Ion Stoica CS162 ©UCB Spring 2011!

SR Example with Errors"

Time"

Sender" Receiver"

1"
2"
3"
4"
5"
6"

4"

7"

Nack = 4"

Window size = 3 packets"{1}"
{1, 2}"

{1, 2, 3}"
{2, 3, 4}"
{3, 4, 5}"
{4, 5, 6}"

{4,5,6}"

{7}"

Lec 15.19!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Observations"

•  With sliding windows, it is possible to fully utilize a
link, provided the window size is large enough.
Throughput is ~ (n/RTT)!

– Stop & Wait is like n = 1.!

•  Sender has to buffer all unacknowledged packets,
because they may require retransmission!

•  Receiver may be able to accept out-of-order packets,
but only up to its buffer limits!

Lec 15.20!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Motivation for Transport Protocols"
•  IP provides a weak, but efficient service model (best-effort)!

–  Packets can be delayed, dropped, reordered, duplicated!
–  Packets have limited size (why?)!

•  IP packets are addressed to a host!
–  How to decide which application gets which packets?!

•  How should hosts send packets into the network?!
–  Too fast may overwhelm the network!
–  Too slow is not efficient!

Page 6

Lec 15.21!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Transport Layer"

•  Provide a way to decide which packets go to which
applications (multiplexing/demultiplexing)!

•  Can !
– Provide reliability, in order delivery, at most once delivery!
– Support messages of arbitrary length!
– Govern when hosts should send data can implement

congestion and flow control!

Lec 15.22!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Congestion vs. Flow Control"

•  Flow Control – avoid overflowing the receiver!
•  Congestion Control – avoid congesting the network!

•  What is network congestion?!

Lec 15.23!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Transport Layer (contʼd)"

IP

Transport

A B C

[A | B | p1 | p2 | …]

p1 p2 p1 p2 p3 p1 p2

ports
Application

HTTP DNS SSH

UDP: Not reliable
TCP: Ordered, reliable, well-paced

Lec 15.24!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Ports"
•  Need to decide which application gets which packets!

•  Solution: map each socket to a port!

•  Client must know serverʼs port!

•  Separate 16-bit port address space for UDP and TCP!
–  (src_IP, src_port, dst_IP, dst_port) uniquely identifies TCP connection!

•  Well known ports (0-1023): everyone agrees which services run on these
ports!

–  e.g., ssh:22, http:80!
–  On UNIX, must be root to gain access to these ports (why?)!

•  Ephemeral ports (most 1024-65535): given to clients!
–  e.g. chat clients, p2p networks!

Page 7

Lec 15.25!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Headers"

•  IP header used for IP routing, fragmentation, error detection!
•  UDP header used for multiplexing/demultiplexing, error

detection!
•  TCP header used for multiplexing/demultiplexing, flow and

congestion control !

IP"
TCP UDP"data"TCP/UDP"

data"TCP/UDP"IP"

Application"
Sender"

data"

IP"
TCP UDP"

Application"
Receiver"

data"TCP/UDP"
data"TCP/UDP"IP"

data"

Lec 15.26!3/16! Ion Stoica CS162 ©UCB Spring 2011!

UDP: User (Unreliable) Data Protocol"

•  Minimalist transport protocol!

•  Same best-effort service model as IP!

•  Messages up to 64KB!

•  Provides multiplexing/demultiplexing to IP!

•  Does not provide flow and congestion control!

•  Application examples: video/audio streaming !

Lec 15.27!3/16! Ion Stoica CS162 ©UCB Spring 2011!

UDP Service & Header"

•  Service:!
– Send datagram from (IPa, Port1) to (IPb, Port2)!
– Service is unreliable, but error detection possible!

•  Header:!

Source port" Destination port"
0" 16" 31"

UDP length" UDP checksum"
Payload (variable)"

• UDP length is UDP packet length !
(including UDP header and payload, but not IP header)!
• Optional UDP checksum is over UDP packet!

Lec 15.28!3/16! Ion Stoica CS162 ©UCB Spring 2011!

TCP: Transport Control Protocol"

•  Reliable, in-order, and at most once delivery!

•  Stream oriented: messages can be of arbitrary length!

•  Provides multiplexing/demultiplexing to IP!

•  Provides congestion control and avoidance!

•  Application examples: file transfer, chat!

Page 8

Lec 15.29!3/16! Ion Stoica CS162 ©UCB Spring 2011!

TCP Service"

1)  Open connection: 3-way handshaking!

2)  Reliable byte stream transfer from (IPa,
TCP_Port1) to (IPb, TCP_Port2)!
•  Indication if connection fails: Reset!

3)  Close (tear-down) connection!

Lec 15.30!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Open Connection: 3-Way Handshaking"

•  Goal: agree on a set of parameters: the start
sequence number for each side!

– Starting sequence numbers are random!

Client (initiator)" Server"

SYN, SeqNum = x"

SYN and ACK, SeqNum = y and Ack = x + 1"

ACK, Ack = y + 1"

Active  
Open!

Passive  
Open!

connect()" listen()"

accept()"

allocate  
buffer space"

Lec 15.31!3/16! Ion Stoica CS162 ©UCB Spring 2011!

3-Way Handshaking (contʼd) "

•  Three-way handshake adds 1 RTT delay !

•  Why?!
– Congestion control: SYN (40 byte) acts as cheap probe!
– Protects against delayed packets from other connection

(would confuse receiver)!

Lec 15.32!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Close Connection (Two-Army Problem) "

•  Goal: both sides agree to close the connection!
•  Two-army problem: !

–  “Two blue armies need to simultaneously attack the white army to win;
otherwise they will be defeated. The blue army can communicate only across
the area controlled by the white army which can intercept the messengers.” !

•  What is the solution?!

Page 9

Lec 15.33!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Close Connection"

•  4-ways tear down connection!

FIN"
FIN ACK"

FIN"
FIN ACK"

Host 1" Host 2"

tim
eo

ut
"

  Avoid reincarnation"
  Can retransmit FIN ACK  
 if it is lost"

closed"

close"

close"

Lec 15.34!3/16! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"
•  Each byte has a sequence number!

•  Initial sequence numbers negotiated via SYN/SYN-
ACK packets!

•  ACK contains the sequence number of the next byte
expected by the receiver!

Lec 15.35!3/16! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

•  Receiver window (MaxRcvBuf – maximum buffer size at receiver)!

•  Sender window (MaxSendBuf – maximum buffer size at sender)!

LastByteAcked" LastByteSent"

LastByteWritten"

Sending Application"

NextByteExpected" LastByteRcvd"

LastByteRead"

Receiving Application"

sequence number increases" sequence number increases"

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)"

SenderWindow = AdvertisedWindow – (LastByteSent – LastByteAcked)"
MaxSendBuffer >= LastByteWritten - LastByteAcked"

Lec 15.36!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Retransmission Timeout"
•  If havenʼt received ack by timeout, retransmit packet

after last acked packet!

•  How to set timeout?!

Page 10

Lec 15.37!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Timing Illustration"

1"

1"

Timeout too long
inefficiency

1"

1"

Timeout too short
duplicate packets

RTT"

Timeout"

Timeout"
RTT"

Lec 15.38!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Retransmission Timeout (contʼd)"
•  If havenʼt received ack by timeout, retransmit packet

after last acked packet!

•  How to set timeout?!
– Too long: connection has low throughput!
– Too short: retransmit packet that was just delayed!

»  Packet was probably delayed because of congestion!
»  Sending another packet too soon just makes congestion

worse!

•  Solution: make timeout proportional to RTT!

Lec 15.39!3/16! Ion Stoica CS162 ©UCB Spring 2011!

RTT Estimation"

•  Use exponential averaging:!

Es
tim

at
ed

RT
T

Time

SampleRTT

Lec 15.40!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Exponential Averaging Example"

RTT"

time"

EstimatedRTT = α*EstimatedRTT + (1 – α)*SampleRTT
Assume RTT is constant SampleRTT = RTT

0" 1" 2" 3" 4" 5" 6" 7" 8" 9"

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)

Page 11

Lec 15.41!3/16! Ion Stoica CS162 ©UCB Spring 2011! 41

Problem"

•  How to differentiate between the real ACK, and
ACK of the retransmitted packet?!

ACK"

Retransmission"

Original Transmission"

Sa
m

pl
eR

TT
"

Sender" Receiver"

ACK"Retransmission"

Original Transmission"

Sa
m

pl
eR

TT
"

Sender" Receiver"

Lec 15.42!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Karn/Partridge Algorithm"

•  Measure SampleRTT only for original transmissions!

•  Exponential backoff for each retransmission, double
EstimatedRTT

Lec 15.43!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Jacobson/Karels Algorithm"

•  Problem: exponential average is not enough!
–  One solution: use standard deviation (requires expensive

square root computation)!
–  Use mean deviation instead!

€

Difference = SampleRTT − EstimatedRTT
EstimatedRTT= EstimatedRTT+δ × Difference
Deviation = Deviation +δ × (|Difference | −Deviation)
TimeOut = µ × EstimatedRTT + φ × Deviation
0 < δ ≤1
µ =1
φ = 4

Lec 15.44!3/16! Ion Stoica CS162 ©UCB Spring 2011!

TCP Header"

•  Sequence number, acknowledgement, and advertised window – used by
sliding-window based flow control!

•  HdrLen: TCP header length in 4-byte words!
•  Checksum: checksum of TCP header + payload!

Source port! Destination port!

Options (variable)!

Sequence number!
Acknowledgement!

Advertised window!
Checksum! Urgent pointer!

Flags!HdrLen!

0! 4! 10! 16! 31!

Payload (variable)!

Page 12

Lec 15.45!3/16! Ion Stoica CS162 ©UCB Spring 2011!

Summary"
•  Reliable transmission!

– S&W not efficient Go-Back-n!
– What to ACK? (cumulative, …)!

•  UDP: Multiplex, detect errors!
•  TCP: Reliable Byte Stream!

– 3-way handshaking!
– Flow control!
– Timer Value: based on measured RTT 

