
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 16  

Flow Control, DNS"

March 28, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 16.2!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"
•  TCP: stream oriented protocol!

– Sender sends a stream of bytes, not packets (e.g., no
need to tell TCP how much you send)!

– Receiver reads a stream of bytes!

•  TCP flow control:!
– Sliding window protocol at byte (not packet) level!

» Go-back-N: TCP Tahoe, Reno, New Reno!
»  Selective acknowledgement: TCP Sack !

– Receiver tells sender how many more bytes it can receive
without overflowing its buffer (i.e., AdvertisedWindow)!

– The ack(nowledgement) contains sequence number N of
next byte the receiver expects, i.e., receiver has received
all bytes in sequence up to and including N-1!

Lec 16.3!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

•  TCP/IP implemented by OS (Kernel)!
– TCP and application run in different processes!
– Cannot do context switching on sending/receiving every packet!

»  At 1Gbps, it takes 12 usec to send an 1500 bytes, and 0.8usec to
send an 100 byte packet !

•  Need buffers to match !
– Sending app with sending TCP!
– Receiving TCP with receiving app!

Sending Application" Receiving Application"

TCP layer! TCP layer!

IP layer! IP layer!
OS!

Lec 16.4!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

•  Three pairs of producer-consumerʼs!
– sending app  sending TCP!
– sending TCP  receiving TCP!
–  receiving TCP  receiving app!

•  How is mutual exclusion implemented?!

Sending Application" Receiving Application"

TCP layer! TCP layer!

IP layer! IP layer!
OS!

Page 2

Lec 16.5!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

•  Example assumptions: !
– Maximum IP packet size = 100 bytes!
– Size of the receiving buffer (MaxRcvBuf) = 500bytes!

•  Use circular buffers, i.e., Nʼs byte is stored at (N mod
MaxRcvBuf) in the buffer!

•  Recall, ack indicates the next expected byte in-sequence, not
the last received byte !

Sending Application" Receiving Application"

TCP layer! TCP layer!

IP layer! IP layer!

500 bytes!

OS!

Lec 16.6!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

•  LastByteWritten: last byte written by the sending app !
•  LastByteSent: last byte sent by the sender!
•  LastByteAcked: last byte acked at the sender!
•  LastByteRcvd: last byte received at receiver!
•  NextByteExpected: last in-sequence byte expected by receiver!
•  LastByteRead: last byte read by the receiving app!

LastByteAcked(-1)"LastByteSent(-1)"

Sending Application"

NextByteExpected(0)"LastByteRcvd(-1)"

LastByteRead(-1)"

Receiving Application"

LastByteWritten(-1)"

Lec 16.7!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

•  Sending app sends 350 bytes!
•  Recall: we assume IP only accepts packets no larger than

100 bytes!

LastByteAcked(-1)"LastByteSent(-1)"

Sending Application"

NextByteExpected(0)"LastByteRcvd(-1)"

LastByteRead(-1)"

Receiving Application"

LastByteWritten(349)"
0, 349!

Lec 16.8!3/28! Ion Stoica CS162 ©UCB Spring 2011!

0, 349!

TCP Flow Control"

LastByteAcked(0)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(349)"
100, 349!

LastByteSent(99)"

0,!
99!

NextByteExpected(100)"LastByteRcvd(99)"

0,
99!

Sender sends first packet (i.e., first 100
bytes) and receiver gets the packet!

Data[0,99]!{[0,99]}!
{[0,99]}!

Page 3

Lec 16.9!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

LastByteSent(99)"

Sending Application"

NextByteExpected(100)"LastByteRcvd(99)"

LastByteRead(0)"

Receiving Application"

LastByteAcked(99)"

LastByteWritten(349)"
100, 349!

Data[0,99]!

0,
99!

{[0,100]}!
Ack=100!

{}!

0,!
99!

• Receiver gets first ack (note: ack indicates next
byte expected by receiver)!
• Receiver no longer needs to keep first 100 bytes !

{[0,99]}!

Lec 16.10!3/28! Ion Stoica CS162 ©UCB Spring 2011!

100, 349!

TCP Flow Control"

LastByteAcked(99)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(349)"

NextByteExpected(200)"LastByteRcvd(199)"

300,
349!

LastByteSent(299)"

Data[0,99]!
Ack=100!

0,
99!

{[0,99]}!

100,!
299!

100,
199!

• Send next two packets!
• 3rd packet is lost!

{[100,199]}! Data[100,199]!
{[100,299]}! Data[200,299]! {[100,199]}!

Lec 16.11!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

LastByteAcked(199)"

Sending Application"

LastByteRead(0)"

Receiving Application"

LastByteWritten(349)"

NextByteExpected(200)"LastByteRcvd(199)"

300,
349!

LastByteSent(299)"

Data[0,99]!
Ack=100!

0, 199!

{[0,99]}!

{[100,199]}! Data[100,199]!
{[100,299]}! Data[200,299]! {[100,199]}!

Ack=200!
{[200,299]}!

200,!
299!

Ack for 2nd packet! Lec 16.12!3/28! Ion Stoica CS162 ©UCB Spring 2011!

LastByteRead(0)"
0, 199! 300,

349!

TCP Flow Control"

LastByteAcked(199)"

Sending Application" Receiving Application"

LastByteWritten(349)"

NextByteExpected(200)"LastByteRcvd(349)"

300,
349!

LastByteSent(349)"

Data[0,99]!
Ack=100!

{[0,99]}!

{[100,199]}! Data[100,199]!
{[100,299]}! Data[200,299]! {[100,199]}!

Ack=200!{[200,299]}!

200,!
299!

•  Send 4th packet [200,349!
•  Still ack 2nd packet !!

Data[300,349]!
{[100,199], [300,349]}!

{[200,349]}!

200, 349!

Ack=200!
{[200,349]}!

Page 4

Lec 16.13!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

LastByteAcked(199)"

Sending Application" Receiving Application"

LastByteWritten(349)"

LastByteSent(349)"

Data[0,99]!
Ack=100!

{[0,99]}!

{[100,199]}! Data[100,199]!
{[100,299]}! Data[200,299]! {[100,199]}!

Ack=200!{[200,299]}!

200, 349!

Data[300,349]!
{[100,199], [300,349]}!

{[300,349]}!
Ack=200!

{[300,349]}!

NextByteExpected(200)" LastByteRcvd(349)"

300,
349!

LastByteRead(0)"
0, 199!

Lec 16.14!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

LastByteAcked(199)"

Sending Application" Receiving Application"

LastByteWritten(349)"

LastByteSent(349)"

Data[0,99]!
Ack=100!

{[0,99]}!

{[100,199]}! Data[100,199]!
{[100,299]}! Data[200,299]! {[100,199]}!

Ack=200!{[200,299]}!

200, 349!

Data[300,349]!
{[100,199], [300,349]}!

{[300,349]}!
Ack=200!

{[300,349]}!

NextByteExpected(200)" LastByteRcvd(349)"

LastByteRead(199)"

0, 199!

300,
349!

Lec 16.15!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Flow Control"

LastByteAcked(199)"

Sending Application" Receiving Application"

LastByteWritten(349)"

LastByteSent(349)"

200, 349!

NextByteExpected(200)" LastByteRcvd(349)"

LastByteRead(199)"
300,
349!

•  AdvertisedWindow: number of bytes the receiver can receive!

•  Sender window: number of bytes the sender can send!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)"

Sender window = AdvertisedWindow – (LastByteSent – LastByteAcked)"
MaxSendBuffer >= LastByteWritten - LastByteAcked"

Lec 16.16!3/28! Ion Stoica CS162 ©UCB Spring 2011!

What if Receiving App Stops Receiving Data?"

•  LastByteRead stops advancing  receiving buffer eventually
fills with undelivered data, i.e.,!

LastByteRcvd = MaxRcvBuffer + LastByteRead !
AdvertisedWindow = 0!

•  Sending TCP stops sending data (as AdvertisedWindow = 0) 
LastByteSent and LastByteAcked stop advancing!

•  Sending TCP buffer fills in when!
LastByteWritten = LastByteAcked + MaxSendBuffer!

•  Sending app stops sending data when sending TCP buffer fills
in !

Page 5

Lec 16.17!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Retransmission Timeout"
•  If havenʼt received ack by timeout, retransmit packet

after last acked packet!

•  How to set timeout?!

Lec 16.18!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Timing Illustration"

1"

1"

Timeout too long 
inefficiency

1"

1"

Timeout too short 
duplicate packets

RTT"

Timeout"

Timeout"
RTT"

Lec 16.19!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Retransmission Timeout (contʼd)"
•  If havenʼt received ack by timeout, retransmit packet

after last acked packet!

•  How to set timeout?!
– Too long: connection has low throughput!
– Too short: retransmit packet that was just delayed!

»  Packet was probably delayed because of congestion!
»  Sending another packet too soon just makes congestion

worse!

•  Solution: make timeout proportional to RTT!

Lec 16.20!3/28! Ion Stoica CS162 ©UCB Spring 2011!

RTT Estimation"

•  Use exponential averaging:!

Es
tim

at
ed

RT
T

Time

SampleRTT

Page 6

Lec 16.21!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Exponential Averaging Example"

RTT"

time"

EstimatedRTT = α*EstimatedRTT + (1 – α)*SampleRTT
Assume RTT is constant  SampleRTT = RTT

0" 1" 2" 3" 4" 5" 6" 7" 8" 9"

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)

Lec 16.22!3/28! Ion Stoica CS162 ©UCB Spring 2011! 22

Problem"

•  How to differentiate between the real ACK, and
ACK of the retransmitted packet?!

ACK"

Retransmission"

Original Transmission"

Sa
m

pl
eR

TT
"

Sender" Receiver"

ACK"Retransmission"

Original Transmission"

Sa
m

pl
eR

TT
"

Sender" Receiver"

Lec 16.23!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Karn/Partridge Algorithm"

•  Measure SampleRTT only for original transmissions!

•  Exponential backoff  for each retransmission, double
EstimatedRTT

Lec 16.24!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Jacobson/Karels Algorithm"

•  Problem: exponential average is not enough!
–  One solution: use standard deviation (requires expensive

square root computation)!
–  Use mean deviation instead!

€

Difference = SampleRTT − EstimatedRTT
EstimatedRTT= EstimatedRTT+δ × Difference
Deviation = Deviation +δ × (|Difference | −Deviation)
TimeOut = µ × EstimatedRTT + φ × Deviation
0 < δ ≤1
µ =1
φ = 4

Page 7

Lec 16.25!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TCP Header"

•  Sequence number, acknowledgement, and advertised window – used by
sliding-window based flow control!

•  HdrLen: TCP header length in 4-byte words!
•  Checksum: checksum of TCP header + payload!

Source port! Destination port!

Options (variable)!

Sequence number!
Acknowledgement!

Advertised window!
Checksum! Urgent pointer!

Flags!HdrLen!

0! 4! 10! 16! 31!

Payload (variable)!

Lec 16.26!3/28! Ion Stoica CS162 ©UCB Spring 2011!

What did We Learn so Far?"
•  Packet switching (vs. circuit switching)!

– Store & forwarding: a packet is stored before being forwarded!
– Each packet is independently forwarded!

•  Statistical multiplexing: !
– Un-correlated bursty traffic  aggregate average is close to

the peak aggregate bandwidth!

•  Layering: network organization!

•  E2E argument:!
– Think twice before in adding functionality at a lower layer

unless that functionality can be fully implemented at that layer!

Lec 16.27!3/28! Ion Stoica CS162 ©UCB Spring 2011!

What did We Learn so Far? (contʼd)"
•  Opening & closing a connection!

•  Flow control!

•  Reliability!
– Stop & wait!
– Sliding window (Go-back-n, selective repeat)!
– Retransmission timeout!

Lec 16.28!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Administrivia"
•  Project 2 due:!

– Code: Thursday, March 31st!
– Final document, peer evaluation: Friday, April 1st !

•  Project 3 starts after you are done with Project 2!

•  This Wednesday (March 30th), invited lecture!
– Sam Madden (MIT): Introduction in Databases!

•  Please answer class survey:!
– http://www.surveymonkey.com/s/MBF7TCK!

Page 8

Lec 16.29!3/28! Ion Stoica CS162 ©UCB Spring 2011!

5min Break"

Lec 16.30!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Domain Name System (DNS)"
•  Concepts & principles underlying the Domain Name

System (DNS)!
–  Indirection: names in place of addresses!
– Hierarchy: in names, addresses, and servers!
– Caching: of mappings from names to/from addresses!

Lec 16.31!3/28! Ion Stoica CS162 ©UCB Spring 2011! 31

IP Addresses (IPv4)"

•  A unique 32-bit number!
•  Identifies an interface (on a host, on a router, …)!
•  Represented in dotted-quad notation. E.g, 12.34.158.5:!

00001100 00100010 10011110 00000101

12 34 158 5

Lec 16.32!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Host Names vs. IP addresses"
•  Host names!

– Mnemonic name appreciated by humans!
– Variable length, full alphabet of characters!
– Provide little (if any) information about location!
– Examples: www.cnn.com and bbc.co.uk!

•  IP addresses!
– Numerical address appreciated by routers!
– Fixed length, binary number!
– Hierarchical, related to host location!
– Examples: 64.236.16.20 and 212.58.224.131!

Page 9

Lec 16.33!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Separating Naming and Addressing"

•  Names are easier to remember!
– www.cnn.com vs. 64.236.16.20!

•  Addresses can change underneath!
– Move www.cnn.com to 64.125.91.21!
– E.g., renumbering when changing providers!

•  Name could map to multiple IP addresses!
– www.cnn.com to multiple (8) replicas of the Web site!
– Enables!

»  Load-balancing!
» Reducing latency by picking nearby servers!
»  Tailoring content based on requesterʼs location/identity!

•  Multiple names for the same address!
– E.g., aliases like www.cnn.com and cnn.com!

Lec 16.34!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Scalable (Name ↔ Address) Mappings"

•  Originally: per-host file!
– Flat namespace!
– /etc/hosts (what is this on your computer today?)!
– SRI (Menlo Park) kept master copy!
– Downloaded regularly!

•  Single server doesnʼt scale!
– Traffic implosion (lookups & updates)!
– Single point of failure!
– Amazing politics!

Need a distributed, hierarchical collection of servers"

Lec 16.35!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Domain Name System (DNS)"
•  Properties of DNS!

– Hierarchical name space divided into zones!
– Zones distributed over collection of DNS servers!

•  Hierarchy of DNS servers!
– Root (hardwired into other servers)!
– Top-level domain (TLD) servers!
– Authoritative DNS servers!

•  Performing the translations!
– Local DNS servers!
– Resolver software!

Lec 16.36!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Distributed Hierarchical Database"

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

Top-Level Domains (TLDs)

Page 10

Lec 16.37!3/28! Ion Stoica CS162 ©UCB Spring 2011!

DNS Root"

•  Located in Virginia, USA!
•  How do we make the root scale?!

 Verisign, Dulles, VA

Lec 16.38!3/28! Ion Stoica CS162 ©UCB Spring 2011!

DNS Root Servers"

•  13 root servers (see http://www.root-servers.org/)!
–  Labeled A through M!

•  Does this scale?!

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium
 Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign

Lec 16.39!3/28! Ion Stoica CS162 ©UCB Spring 2011!

DNS Root Servers"

•  13 root servers (see http://www.root-servers.org/)!
–  Labeled A through M!

•  Replication via any-casting (localized routing for
addresses)!

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software
 Consortium,
 Palo Alto, CA
 (and 37 other locations)

I Autonomica, Stockholm
(plus 29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo
 plus Seoul, Paris,
 San Francisco

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign (21 locations)

Lec 16.40!3/28! Ion Stoica CS162 ©UCB Spring 2011!

TLD and Authoritative DNS Servers"

•  Top-level domain (TLD) servers!
– Generic domains (e.g., com, org, edu)!
– Country domains (e.g., uk, fr, cn, jp)!
–  Special domains (e.g., arpa)!
–  Typically managed professionally!

» Network Solutions maintains servers for “com”!
»  Educause maintains servers for “edu”!

•  Authoritative DNS servers!
–  Provide public records for hosts at an organization!

»  Private records may differ, though not part of original
designʼs intent!

–  For the organizationʼs servers (e.g., Web and mail)!
– Can be maintained locally or by a service provider!

Page 11

Lec 16.41!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Using DNS"
•  Local DNS server (“default name server”)!

– Usually near the endhosts that use it!
– Local hosts configured with local server (e.g., /etc/
resolv.conf) or learn server via DHCP!

•  Client application!
– Extract server name (e.g., from the URL)!
– Do gethostbyname() to trigger resolver code!

•  Server application!
– Extract client IP address from socket!
– Optional gethostbyaddr() to translate into name!

Lec 16.42!3/28! Ion Stoica CS162 ©UCB Spring 2011!

requesting host
cis.poly.edu gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server
 .edu

Example"

Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu!

Lec 16.43!3/28! Ion Stoica CS162 ©UCB Spring 2011!

How did it know the root server IP?"
•  Hard-coded!
•  What if it changes?!

Lec 16.44!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Recursive vs. Iterative Queries"

•  Recursive query!
– Ask server to get

answer for you!
– E.g., request 1 and

response 8!

requesting host
cis.poly.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4
5

6

authoritative DNS server
dns.cs.umass.edu

7 8

TLD DNS server

Page 12

Lec 16.45!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Recursive vs. Iterative Queries"

•  Iterative query!
– Ask server who  

to ask next!
– E.g., all other request-

response pairs!

requesting host
cis.poly.edu

root DNS server

local DNS server
dns.poly.edu

1

3 4
5

6

authoritative DNS server
dns.cs.umass.edu

7

2

TLD DNS server

8

Lec 16.46!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Reverse Mapping (Address → Host)"
•  How do we go the other direction, from an IP address

to the corresponding hostname?!
•  Addresses already have natural “quad” hierarchy:!

– 12.34.56.78!
•  But: quad notation has most-sig. hierarchy element on

left, while www.cnn.com has it on the right!
•  Idea: reverse the quads = 78.56.34.12 …!

– … and look that up in the DNS!
•  Under what TLD?!

– Convention: in-addr.arpa!
– So lookup is for 78.56.34.12.in-addr.arpa!

Lec 16.47!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Distributed Hierarchical Database"

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

12

34

56
12.34.56.0/24

Lec 16.48!3/28! Ion Stoica CS162 ©UCB Spring 2011!

DNS Caching"
•  Performing all these queries takes time!

– And all this before actual communication takes place!
– E.g., 1-second latency before starting Web download!

•  Caching can greatly reduce overhead!
– The top-level servers very rarely change!
– Popular sites (e.g., www.cnn.com) visited often!
– Local DNS server often has the information cached!

•  How DNS caching works!
– DNS servers cache responses to queries!
– Responses include a “time to live” (TTL) field!
– Server deletes cached entry after TTL expires!

Page 13

Lec 16.49!3/28! Ion Stoica CS162 ©UCB Spring 2011!

Negative Caching"

•  Remember things that donʼt work!
– Misspellings like www.cnn.comm and www.cnnn.com!
– These can take a long time to fail the first time!
– Good to remember that they donʼt work!
– … so the failure takes less time the next time around!

•  But: negative caching is optional!
– And not widely implemented!

Lec 16.50!3/28! Ion Stoica CS162 ©UCB Spring 2011!

DNS Summary"

•  Distributed, hierarchical database!

•  Indirection gets us human-readable names, ability to change
address, etc.!

•  Caching to improve performance!

