
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 18  

Transactions"

April 4, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 18.2!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Goals for Today"
•  Transactions, concurrency control!
•  Two-phase lock!
•  Strict two-phase lock!

Note: Some slides and/or pictures in the following are"
adapted from lecture notes by Mike Franklin."

Lec 18.3!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Recap: Read/Writer Example"
Reader() {

 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okToRead.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}!

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okToWrite.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}!

Lec 18.4!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Recap: Read/Writer Example"
•  Properties:!

– Allow multiple concurrent active readers if no active
writer!

– Only one writer at a time!
–  If a writer waits, no new active readers are allowed!

•  Locking granularity: entire database!

Page 2

Lec 18.5!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Locking Granularity"
•  What granularity to lock?!

– Database!
– Tables!
– Rows!

•  Fine granularity (e.g., row)  high concurrency!
– Multiple users can update the database and same table

simultaneously!
•  Coarse granularity (e.g., database, table)  simple,

but low concurrency!

Database!
Table 1!

Row!

Table 2! Table 4!

Table 3!

Lec 18.6!4/4! Ion Stoica CS162 ©UCB Spring 2011!

From Multiprogramming to Transactions"
•  Users would like the illusion of running their programs

on the machine alone!
– Why not running the entire program in a critical section?!

•  Users want fast response time and operators want to
increase machine utilization  increase concurrency!

–  Interleave executions of multiple programs!

•  How can DBMS (database management system) help?!

Lec 18.7!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Concurrent Execution & Transactions

•  Concurrent execution essential for good performance
–  Disk slow, so need to keep the CPU busy by working on

several user programs concurrently

•  DBMS only concerned about what data is read/written from/
to the database
– Not concerned about other operations performed by program

on data

•  Transaction - DBMS’s abstract view of a user program,
i.e., a sequence of reads and writes.

Lec 18.8!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Transaction - Example

UPDATE accounts SET balance = balance -
100.00 WHERE name = 'Alice'; !

UPDATE branches SET balance = balance -
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Alice');!

UPDATE accounts SET balance = balance +
100.00 WHERE name = 'Bob'; !

UPDATE branches SET balance = balance +
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Bob');!

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Page 3

Lec 18.9!4/4! Ion Stoica CS162 ©UCB Spring 2011!

The ACID properties of Transactions"
•  Atomicity: all actions in the transaction happen, or

none happen!

•  Consistency: if each transaction is consistent, and the
DB starts consistent, it ends up consistent!

•  Isolation: execution of one transaction is isolated from
that of all others!

•  Durability: if a transaction commits, its effects persist!

Lec 18.10!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Atomicity"
•  A transaction

– might commit after completing all its operations, or
–  it could abort (or be aborted by the DBMS) after

executing some operations

•  Atomic Transactions: a user can think of a transaction
as always either executing all its operations, or not
executing any operations at all

–  DBMS logs all actions so that it can undo the actions of
aborted transactions

Lec 18.11!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Consistency"
•  Data in DBMS is accurate in modeling real world, follows

integrity constraints (ICs)

•  If DBMS is consistent before transaction, it will be after

•  System checks ICs and if they fail, the transaction rolls
back (i.e., is aborted)
– DBMS enforces some ICs, depending on the ICs declared in

CREATE TABLE statements
– Beyond this, DBMS does not understand the semantics of the

data. (e.g., it does not understand how the interest on a
bank account is computed)

Lec 18.12!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Isolation"
•  Each transaction executes as if it was running by itself

–  Concurrency is achieved by DBMS, which interleaves
operations (reads/writes of DB objects) of various
transactions

•  Techniques:
–  Pessimistic – don’t let problems arise in the first place
–  Optimistic – assume conflicts are rare, deal with them after

they happen.

Page 4

Lec 18.13!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Durability"
•  Data should survive in the presence of!

– System crash!
– Disk crash  need backups!

•  All committed updates and only those updates are reflected in the
database

–  Some care must be taken to handle the case of a crash
occurring during the recovery process!

Lec 18.14!4/4! Ion Stoica CS162 ©UCB Spring 2011!

This Lecture"
•  Deal with (I)solation, by focusing on concurrency

control

•  For (A)tomicity, (C)onsistency, and (D)urability take
cs186!

Lec 18.15!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Example"
•  Consider two transactions:!

– T1: moves $100 from account A to account B!
! ! !!

– T2: moves $50 from account B to account A!

•  Each operation consists of (1) a read, (2) an addition/
subtraction, and (3) a write !

•  Example: A = A-100!

T1:A := A-100; B := B+100; !

Read(A); // R(A)

A := A – 100;
Write(A); // W(A)

T2:A := A+50; B := B-50; !

Lec 18.16!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Example (contʼd)"
•  Database only sees reads and writes!

•  Assume initially: A = $1000 and B = $500!
•  What is the legal outcome of running T1 and T2?!

– A = $950!
– B = $550 !

T1:R(A),W(A),R(B),W(B)!T1: A:=A-100; B:=B+100; ! !

T2:R(A),W(A),R(B),W(B)!T2: A:=A+50; B:=B-50; ! !

Database View!

Page 5

Lec 18.17!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Example (contʼd)"
•  What is the outcome of the following execution?!

•  Answer: A = $950, B = $550!
•  What is the outcome of the following execution?!

•  Answer: A = $950, B = $550!

T1:R(A),W(A),R(B),W(B)

T2: R(A),W(A),R(B),W(B) !

T1: R(A),W(A),R(B),W(B)

T2:R(A),W(A),R(B),W(B) ! B=550!A=950!
B=450!A=1050!

A=900! B=600!
A=950! B=550!

Lec 18.18!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Example (contʼd)"
•  What is the outcome of the following execution?!

•  Answer: A = $950, B = $550!
•  What is the outcome of the following execution?!

•  Answer: A = $900, B = $550; lost $50 !! !

T1:R(A),W(A), R(B),W(B)

T2: R(A),W(A),R(B),W(B) !

T1:R(A), W(A),R(B),W(B)

T2: R(A),W(A),R(B),W(B) !B=550!A=900!
B=450!A=1050!

A=900!
A=950! B=450!

B=550!

Lec 18.19!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Transaction Scheduling"
•  Why not run only one transaction at a time?!

•  Answer: low system utilization!
– Two transactions cannot run simultaneously even if they

access different data!

•  Goal of transaction scheduling:!
– Maximize system utilization, i.e., concurency!

»  Interleave operations from different transactions!
– Preserve transaction semantics!

»  Logically the sequence of all operations in a transaction
are executed atomically!

»  Intermediate state of a transaction is not visible to other
tranasctions !

Lec 18.20!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Transaction Scheduling"
•  Serial schedule: A schedule that does not interleave

the operations of different transactions
– Transactions run serially (one at a time)

•  Equivalent schedules: For any database state, the
effect (on the database) and output of executing the
first schedule is identical to the effect of executing the
second schedule

•  Serializable schedule: A schedule that is equivalent
to some serial execution of the transactions
–  Intuitively: with a serializable schedule you only see

things that could happen in situations where you were
running transactions one-at-a-time.

Page 6

Lec 18.21!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Anomalies with Interleaved Execution "
•  May violate transaction semantics, e.g., some data

read by the transaction changes before committing!

•  Inconsistent database state, e.g., some updates are
lost!

•  Anomalies always involves a “write”; Why?!

Lec 18.22!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Anomalies with Interleaved Execution "
•  Read-Write conflict (Unrepeatable reads)!

•  Violates transaction semantics!
•  Example: Mary and John want to buy a TV set on

Amazon but there is only one left in stock!
–  (T1) John logs first, but waits…!
–  (T2) Mary logs second and buys the TV set right away!
–  (T1) John decides to buy, but it is too late…!

T1:R(A), R(A),W(A)

T2: R(A),W(A) !

Lec 18.23!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Anomalies with Interleaved Execution "
•  Write-read conflict (reading uncommitted data)!

•  Example: !
–  (T1) A user updates value of A in two steps!
–  (T2) Another user reads the intermediate value of A,

which can be inconsistent!
– Violates transaction semantics since T2 is not supposed

to see intermediate state of T1 !

T1:R(A),W(A), W(A)

T2: R(A),W(A) !

Lec 18.24!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Anomalies with Interleaved Execution "
•  Write-write conflict (overwriting uncommitted data)!

•  Get T1ʼs update of B and T2ʼs update of A!
•  Violates transaction serializability!
•  If transactions were serial, youʼd get either:!

– T1ʼs updates of A and B!
– T2ʼs updates of A and B!

T1:W(A), W(B)

T2: W(A),W(B) !

Page 7

Lec 18.25!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Conflict Serializable Schedules
•  Two operations conflict if they

– Belong to different transactions
– Are on the same data
– At least one of them is a write.

•  Two schedules are conflict equivalent iff:
–  Involve same operations of same transactions
– Every pair of conflicting operations is ordered the same way

•  Schedule S is conflict serializable if S is conflict equivalent
to some serial schedule

Lec 18.26!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Conflict Equivalence – Intuition"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

•  Example:!
T1:R(A),W(A), R(B),W(B)

T2: R(A),W(A), R(B),W(B) !

T1:R(A),W(A), R(B), W(B)

T2: R(A), W(A), R(B),W(B) !

T1:R(A),W(A),R(B), W(B)

T2: R(A),W(A), R(B),W(B) !

Lec 18.27!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Conflict Equivalence – Intuition (cont’d)"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

•  Example:!
T1:R(A),W(A),R(B), W(B)

T2: R(A),W(A), R(B),W(B) !

T1:R(A),W(A),R(B), W(B)

T2: R(A), W(A),R(B),W(B) !

T1:R(A),W(A),R(B),W(B)

T2: R(A), W(A),R(B),W(B) !
Lec 18.28!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Conflict Equivalence – Intuition (cont’d)"
•  If you can transform an interleaved schedule by

swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

•  Is this schedule serializable?!

T1:R(A), W(A)

T2: R(A),W(A), !

Page 8

Lec 18.29!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Dependency Graph

•  Dependency graph:
– Transactions represented as nodes
– Edge from Ti to Tj:

»  an operation of Ti conflicts with an operation of Tj
»  Ti appears earlier than Tj in the schedule

•  Theorem: Schedule is conflict serializable if and only if
its dependency graph is acyclic

Lec 18.30!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Example

•  Conflict serializable schedule:

•  No cycle!

T1 T2
A

Dependency graph!
B

T1:R(A),W(A), R(B),W(B)

T2: R(A),W(A), R(B),W(B) !

Lec 18.31!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Example

•  Conflict that is not serializable:

•  Cycle: The output of T1 depends on T2, and vice-
versa

T1:R(A),W(A), R(B),W(B)

T2: R(A),W(A),R(B),W(B) !

T1 T2
A

B

Dependency graph!

Lec 18.32!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Notes on Conflict Serializability"
•  Conflict Serializability doesn’t allow all schedules that

you would consider correct
– This is because it is strictly syntactic - it doesn’t consider

the meanings of the operations or the data

•  In practice, Conflict Serializability is what gets used,
because it can be done efficiently
– Note: in order to allow more concurrency, some special

cases do get implemented, such as for travel
reservations, …

•  Two-phase locking (2PL) is how we implement it

Page 9

Lec 18.33!4/4! Ion Stoica CS162 ©UCB Spring 2011!

5min Break"

Lec 18.34!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Locks
•  “Locks” to control access to data

•  Two types of locks:
– shared (S) lock – multiple concurrent transactions

allowed to operate on data
– exclusive (X) lock – only one transaction can operate

on data at a time

S X

S √ –

X – –

Lock"
Compatibility"
Matrix"

Lec 18.35!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Two-Phase Locking (2PL)

1) Each transaction must obtain:
–  S (shared) or X (exclusive) lock on data before reading,
–  X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks.

Thus, each transaction has a “growing phase” followed by a
“shrinking phase”

0!
1!
2!
3!
4!

1! 3! 5! 7! 9! 11! 13! 15! 17! 19!

Lo

ck
s

H
el

d!

Time"

Growing!
Phase!

Shrinking!
Phase!

Lock Point!!

Lec 18.36!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Two-Phase Locking (2PL)"
•  2PL guarantees conflict serializability

•  Doesn’t allow dependency cycles; Why?
•  Answer: a cyclic dependency cycle leads to deadlock

–  Edge from Ti to Tj means that Ti acquires lock first and
Tj needs to wait

–  Edge from Ti to Tj means that Ti acquires lock first and
Tj needs to wait

–  Thus, both T1 and Tj wait for each other  deadlock

•  Schedule of conflicting transactions is conflict
equivalent to a serial schedule ordered by “lock point”

Page 10

Lec 18.37!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Lock Management
•  Lock Manager (LM) handles all lock and unlock requests

–  LM contains an entry for each currently held lock

•  Lock table entry:
–  Pointer to list of transactions currently holding the lock
–  Type of lock held (shared or exclusive)
–  Pointer to queue of lock requests

•  When lock request arrives see if anyone else holds a conflicting lock
–  If not, create an entry and grant the lock
–  Else, put the requestor on the wait queue

•  Locking and unlocking are atomic operations

•  Lock upgrade: shared lock can be upgraded to exclusive lock

Lec 18.38!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Deadlock"
•  Cycles of transactions waiting for each other to release

locks!

•  Recall: two ways to deal with deadlocks!
– Deadlock detection!
– Deadlock prevention!

•  Many systems punt problem by using timeouts instead!
– Associate a timeout with each lock!
–  If timeout expires release the lock!
– What is the problem with this solution?!

Lec 18.39!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Deadlock Prevention

•  Assign priorities based on timestamps. Assume Ti
wants a lock that Tj holds. Two policies are possible:

–  Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti
aborts

–  Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits

•  If a transaction re-starts, make sure it gets its original
timestamp
– Why?

Lec 18.40!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Example"
•  T1 transfers $50 from account A to account B!

•  T2 outputs the total of accounts A and B!

•  Initially, A = $1000 and B = $2000!

•  What are the possible output values?!

T1:Read(A),A:=A-50,Write(A),Read(B),B:=B+50,Write(B)!

T2:Read(A),Read(B),PRINT(A+B)!

Page 11

Lec 18.41!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Is this a 2PL Schedule?"
Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Unlock(A) <granted>

Read(A)

Unlock(A)

Lock_S(B) <granted>

Lock_X(B)

Read(B)

 <granted> Unlock(B)

PRINT(A+B)

Read(B)

B := B +50

Write(B)

Unlock(B)

No, and it is not serializable
Lec 18.42!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Is this a 2PL Schedule?"
Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Unlock(A) <granted>

Read(A)

Lock_S(B)

Read(B)

B := B +50

Write(B)

Unlock(B) <granted>

Unlock(A)

Read(B)

Unlock(B)

PRINT(A+B)

Yes, so it is serializable

Lec 18.43!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Cascading Aborts"
•  Example: T1 aborts!

– Note: this is a 2PL schedule!

•  Rollback of T1 requires rollback of T2, since T2 reads
a value written by T1!

•  Solution: Strict Two-phase Locking (Strict 2PL):
same as 2PL except
– All locks held by a transaction are released only when

the transaction completes !

T1:R(A),W(A), R(B),W(B), Abort

T2: R(A),W(A) !

Lec 18.44!4/4! Ion Stoica CS162 ©UCB Spring 2011!

 Strict 2PL (cont’d)

•  All locks held by a transaction are released only when
the transaction completes

•  In effect, “shrinking phase” is delayed until:
a)  Transaction has committed (commit log record on

disk), or
b)  Decision has been made to abort the transaction

(then locks can be released after rollback).

Page 12

Lec 18.45!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Is this a Strict 2PL schedule?"
Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Unlock(A) <granted>

Read(A)

Lock_S(B)

Read(B)

B := B +50

Write(B)

Unlock(B) <granted>

Unlock(A)

Read(B)

Unlock(B)

PRINT(A+B)

No: Cascading Abort Possible Lec 18.46!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Is this a Strict 2PL schedule?"
Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Read(B)

B := B +50

Write(B)

Unlock(A)

Unlock(B) <granted>

Read(A)

Lock_S(B) <granted>

Read(B)

PRINT(A+B)

Unlock(A)

Unlock(B)

Lec 18.47!4/4! Ion Stoica CS162 ©UCB Spring 2011!

Summary"
•  Correctness criterion for transactions is “serializability”.

–  In practice, we use “conflict serializability”, which is somewhat more
restrictive but easy to enforce.

•  Two Phase Locking, and Strict 2PL: Locks directly implement the notions
of conflict

–  The lock manager keeps track of the locks issued. Deadlocks can
either be prevented or detected.

•  Much more about transactions in cs186

