









| Transaction - Example                                                                                                      |          |
|----------------------------------------------------------------------------------------------------------------------------|----------|
| EGIN;BEGIN TRANSACTION                                                                                                     |          |
| JPDATE accounts SET balance = balance -<br>100.00 WHERE name = 'Alice';                                                    |          |
| JPDATE branches SET balance = balance -<br>100.00 WHERE name = (SELECT branch_name<br>FROM accounts WHERE name = 'Alice'); | me       |
| <pre>JPDATE accounts SET balance = balance + 100.00 WHERE name = 'Bob';</pre>                                              |          |
| JPDATE branches SET balance = balance +<br>100.00 WHERE name = (SELECT branch_name<br>FROM accounts WHERE name = 'Bob');   | me       |
| OMMIT;COMMIT WORK                                                                                                          |          |
| Ion Stoica CS162 ©UCB Spring 2011                                                                                          | Lec 18.8 |
|                                                                                                                            |          |





| Consistency                                                                                                                                                                                                                                                                                                                                             | Isolation                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Data in DBMS is accurate in modeling real world, follows<br/>integrity constraints (ICs)</li> </ul>                                                                                                                                                                                                                                            | <ul> <li>Each transaction executes as if it was running by itself</li> <li>Concurrency is achieved by DBMS, which interleaves operations (reads/writes of DB objects) of various</li> </ul>               |
| • If DBMS is consistent before transaction, it will be after                                                                                                                                                                                                                                                                                            | transactions                                                                                                                                                                                              |
| <ul> <li>System checks ICs and if they fail, the transaction rolls back (i.e., is aborted)</li> <li>DBMS enforces some ICs, depending on the ICs declared in CREATE TABLE statements</li> <li>Beyond this, DBMS does not understand the semantics of the data. (e.g., it does not understand how the interest on a bank account is computed)</li> </ul> | <ul> <li>Techniques:         <ul> <li>Pessimistic – don't let problems arise in the first place</li> <li>Optimistic – assume conflicts are rare, deal with them after they happen.</li> </ul> </li> </ul> |
| 4/4 Ion Stoica CS162 ©UCB Spring 2011 Lec 18.11                                                                                                                                                                                                                                                                                                         | 4/4 Ion Stoica CS162 ©UCB Spring 2011 Lec 18.12                                                                                                                                                           |

















Lec 18.24





## **Conflict Equivalence – Intuition**

 If you can transform an interleaved schedule by swapping consecutive non-conflicting operations of different transactions into a serial schedule, then the original schedule is conflict serializable

• Example:

























| Lock_X(A) <granted></granted>   |                                 |
|---------------------------------|---------------------------------|
| Read(A)                         | Lock_S(A)                       |
| A: = A-50                       |                                 |
| Write(A)                        |                                 |
| Unlock(A)                       | <pre> <granted></granted></pre> |
|                                 | Read(A)                         |
|                                 | Unlock(A)                       |
|                                 | Lock_S(B) <granted></granted>   |
| Lock_X(B)                       |                                 |
|                                 | Read(B)                         |
| <pre> <granted></granted></pre> | Unlock(B)                       |
|                                 | PRINT(A+B)                      |
| Read(B)                         |                                 |
| B := B +50                      |                                 |
| Write(B)                        |                                 |
| Unlock(B)                       |                                 |

| Lock_X(A) <granted></granted> |                       |
|-------------------------------|-----------------------|
| Read(A)                       | Lock_S(A)             |
| A: = A-50                     |                       |
| Write(A)                      |                       |
| Lock_X(B) <granted></granted> |                       |
| Unlock(A)                     | ✓ <granted></granted> |
|                               | Read(A)               |
|                               | Lock_S(B)             |
| Read(B)                       |                       |
| B := B +50                    |                       |
| Write(B)                      |                       |
| Unlock(B)                     | ✓ <granted></granted> |
|                               | Unlock(A)             |
|                               | Read(B)               |
|                               | Unlock(B)             |
|                               | PRINT(A+B)            |



4/

| Lock_X(A) <granted></granted> |                       |
|-------------------------------|-----------------------|
| Read(A)                       | Lock_S(A)             |
| A: = A-50                     |                       |
| Write(A)                      |                       |
| Lock_X(B) <granted></granted> |                       |
| Unlock(A)                     | ✓ <granted></granted> |
|                               | Read(A)               |
|                               | Lock_S(B)             |
| Read(B)                       |                       |
| B := B +50                    |                       |
| Write(B)                      |                       |
| Unlock(B)                     | ✓ <granted></granted> |
|                               | Unlock(A)             |
|                               | Read(B)               |
|                               | Unlock(B)             |
|                               | PRINT(A+B)            |

| Lock_X(A) <granted></granted> |                               |
|-------------------------------|-------------------------------|
| Read(A)                       | Lock_S(A)                     |
| A: = A-50                     |                               |
| Write(A)                      |                               |
| Lock_X(B) <granted></granted> |                               |
| Read(B)                       |                               |
| B := B +50                    |                               |
| Write(B)                      |                               |
| Unlock(A)                     |                               |
| Unlock(B)                     | ✓ <granted></granted>         |
|                               | Read(A)                       |
|                               | Lock_S(B) <granted></granted> |
|                               | Read(B)                       |
|                               | PRINT(A+B)                    |
|                               | Unlock(A)                     |
|                               | Unlock(B)                     |

## <section-header><section-header><list-item><list-item><list-item><list-item><list-item><table-container>