CS162
Operating Systems and
Systems Programming

Lecture 18

Transactions

April 4, 2011
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Recap: Read/Writer Example

Reader () { Write}() {
/ check into system // check into system

lock.Acquire () ; lock.Acquire () ;

while ((aW + W) > 0) { "Bige ((AW + AR) > 0) {
WR++;) okToWrite.wait (&lock) ;
okToRead.wait (&lock); WW--;
WR--; }

} AW++;

AR++; lock.release();

lock.release();

// read/write access
AccessDbase (ReadWrite) ;
// read-only access
AccessDbase (ReadOnly) ;
/ check out of system
ock.Acquire () ;

// check out of system ??“Iﬁw >0

lock.Acquire(); okToWrit)e{.signal(;
AR--; } else if (WR > 0)
if (AR == 0 && WwW > 0) okToRead.broadcast () ;

okToWrite.signal();

lock.Release() ; lock.Release();

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.3

Page 1

Goals for Today

» Transactions, concurrency control
» Two-phase lock
» Strict two-phase lock

Note: Some slides and/or pictures in the following are
adapted from lecture notes by Mike Franklin.

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.2

Recap: Read/Writer Example

+ Properties:

— Allow multiple concurrent active readers if no active
writer

— Only one writer at a time
— If a writer waits, no new active readers are allowed

+ Locking granularity: entire database

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.4

Locking Granularity

Database
+ What granularity to lock? Table 1 Table 3
— Database ﬁ
— Tables
— Rows Table 2 Table 4

+ Fine granularity (e.g., row) = high concurrency

— Multiple users can update the database and same table
simultaneously

+ Coarse granularity (e.g., database, table) > simple,
but low concurrency

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.5

Concurrent Execution & Transactions

¢ Concurrent execution essential for good performance

- Disk slow, so need to keep the CPU busy by working on
several user programs concurrently

¢ DBMS only concerned about what data is read/written from/
to the database

— Not concerned about other operations performed by program
on data

e Transaction - DBMS’ s abstract view of a user program,
i.e., a sequence of reads and writes.

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.7

Page 2

4/4

From Multiprogramming to Transactions

Users would like the illusion of running their programs
on the machine alone
— Why not running the entire program in a critical section?

Users want fast response time and operators want to
increase machine utilization - increase concurrency

— Interleave executions of multiple programs

+ How can DBMS (database management system) help?

lon Stoica CS162 ©UCB Spring 2011 Lec 18.6

4/4

BEGIN;
UPDATE accounts SET balance = balance -

COMMIT;

Transaction - Example
—--BEGIN TRANSACTION

100.00 WHERE name = 'Alice';

UPDATE branches SET balance = balance -

100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Alice');

UPDATE accounts SET balance = balance +

100.00 WHERE name = 'Bob';

UPDATE branches SET balance = balance +

100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Bob');

--COMMIT WORK

lon Stoica CS162 ©UCB Spring 2011 Lec 18.8

4/4

The ACID properties of Transactions

- Atomicity: all actions in the transaction happen, or
none happen

- Consistency: if each transaction is consistent, and the
DB starts consistent, it ends up consistent

- Isolation: execution of one transaction is isolated from
that of all others

« Durability: if a transaction commits, its effects persist

lon Stoica CS162 ©UCB Spring 2011 Lec 18.9

4/4

Consistency

Data in DBMS is accurate in modeling real world, follows
integrity constraints (ICs)

If DBMS is consistent before transaction, it will be after

System checks ICs and if they fail, the transaction rolls
back (i.e., is aborted)
— DBMS enforces some ICs, depending on the ICs declared in
CREATE TABLE statements

— Beyond this, DBMS does not understand the semantics of the
data. (e.g., it does not understand how the interest on a
bank account is computed)

lon Stoica CS162 ©UCB Spring 2011 Lec 18.11

Page 3

Atomicity

¢ A transaction
— might commit after completing all its operations, or

— it could abort (or be aborted by the DBMS) after
executing some operations

¢ Atomic Transactions: a user can think of a transaction
as always either executing all its operations, or not
executing any operations at all

- DBMS Jogs all actions so that it can undo the actions of
aborted transactions

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.10

Isolation

¢ Each transaction executes as if it was running by itself

- Concurrency is achieved by DBMS, which interleaves
operations (reads/writes of DB objects) of various
transactions

« Techniques:
- Pessimistic — don’ t let problems arise in the first place

- Optimistic — assume conflicts are rare, deal with them after
they happen.

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.12

Durability

+ Data should survive in the presence of
— System crash
— Disk crash - need backups

« All committed updates and only those updates are reflected in the
database
- Some care must be taken to handle the case of a crash
occurring during the recovery process!

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.13

Example

« Consider two transactions:
—T1: moves $100 from account A to account B

’TI:A := A-100; B := B+100;

—T2: moves $50 from account B to account A

’TZ:A := A+50; B := B-50; ‘

+ Each operation consists of (1) a read, (2) an addition/
subtraction, and (3) a write

+ Example: A = A-100
Read(d); // R(B)
A := A - 100;
Write(RA); // W(R)

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.15

Page 4

This Lecture

¢ Deal with (I)solation, by focusing on concurrency
control

¢ For (A)tomicity, (C)onsistency, and (D)urability take
cs186!

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.14

Example (cont’d)

» Database only sees reads and writes
Database View

’Tl: A:=A-100; B:=B+100;

EN ’Tl:R(A) ,W(A),R(B),W(B) ‘

’TZ: A:=A+50; B:=B-50;

e]T2:R(A),W(A),R(B),W(B) \

+ Assume initially: A = $1000 and B = $500

+ What is the legal outcome of running T1 and T2?
— A =$950
—B =$550

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.16

Example (cont’d)

» What is the outcome of the following execution?

T1:R(A),W(A),R(B),W(B)

T2: ["A=900 |B=GSNR<A),W(A>,R<B),W<B)
| A=950 | | B=550]

« Answer: A = $950, B = $550
+ What is the outcome of the following execution?

T1: R(B),W(2) ,R(B), W (B)
T2:R(A),W(A),R(B),W(B) [Ass0] [Bo550]

[A=1050] | B=450]

« Answer: A = $950, B = $550

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.17

Transaction Scheduling

* Why not run only one transaction at a time?

+ Answer: low system utilization

— Two transactions cannot run simultaneously even if they
access different data

+ Goal of transaction scheduling:
— Maximize system utilization, i.e., concurency
» Interleave operations from different transactions
— Preserve transaction semantics

» Logically the sequence of all operations in a transaction
are executed atomically

» Intermediate state of a transaction is not visible to other
tranasctions

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.19

Page 5

Example (cont’d)

* What is the outcome of the following execution?

T1:R(A),W(R), R(B),W(B)
T2: A=900 [R(A),W(A),R(B),W(B) B=550

| A=950 | | B=450]

« Answer: A = $950, B = $550
+ What is the outcome of the following execution?

T1:R(A), W(A),R(B),W(B)

T2: R(A),W(A),R(B),W(B)| A=900 B=550

| A=1050] [B=450 |

« Answer: A = $900, B = $550; lost $50 !!

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.18

Transaction Scheduling

¢ Serial schedule: A schedule that does not interleave
the operations of different transactions

— Transactions run serially (one at a time)

¢ Equivalent schedules: For any database state, the
effect (on the database) and output of executing the
first schedule is identical to the effect of executing the
second schedule

¢ Serializable schedule: A schedule that is equivalent
to some serial execution of the transactions
— Intuitively: with a serializable schedule you only see
things that could happen in situations where you were
running transactions one-at-a-time.

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.20

Anomalies with Interleaved Execution

» May violate transaction semantics, e.g., some data
read by the transaction changes before committing

+ Inconsistent database state, e.g., some updates are
lost

+ Anomalies always involves a “write”; Why?

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.21

Anomalies with Interleaved Execution

+ Write-read conflict (reading uncommitted data)

T1:R(A),W(A),
T2: R(A),W(A)

W (A)

+ Example:
—(T1) A user updates value of A in two steps

— (T2) Another user reads the intermediate value of A,
which can be inconsistent

— Violates transaction semantics since T2 is not supposed
to see intermediate state of T1

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.23

Page 6

4/4

Anomalies with Interleaved Execution

« Read-Write conflict (Unrepeatable reads)

T1:R(B),
T2: R(A) ,W(A)

» Violates transaction semantics

+ Example: Mary and John want to buy a TV set on
Amazon but there is only one left in stock

—(T1) John logs first, but waits...
—(T2) Mary logs second and buys the TV set right away
—(T1) John decides to buy, but it is too late...

lon Stoica CS162 ©UCB Spring 2011 Lec 18.22

4/4

Anomalies with Interleaved Execution

+ Write-write conflict (overwriting uncommitted data)

T1:W(R),
T2: W(A),W(B)

« Get T1’s update of B and T2’s update of A
+ Violates transaction serializability
« If transactions were serial, you’d get either:
— T1’s updates of A and B
— T2’s updates of A and B

lon Stoica CS162 ©UCB Spring 2011 Lec 18.24

Conflict Serializable Schedules

e Two operations conflict if they
— Belong to different transactions
— Are on the same data
— At least one of them is a write.

e Two schedules are conflict equivalent iff:
— Involve same operations of same transactions
— Every pair of conflicting operations is ordered the same way

¢ Schedule S is conflict serializable if S is conflict equivalent
to some serial schedule

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.25

Conflict Equivalence — Intuition (cont'd)

¢ If you can transform an interleaved schedule by
swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

e Example:

T1:R(A),W(A),R(B), W(B)

T2: R(A),W(R), R(B) ,W(B)
J

T1:R(A),W(A),R(B), W(B)

T2 R(A), W(A),R(B),W(B)

T2: R(A), W(A),R(B),W(B)

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.27

Page 7

Conflict Equivalence — Intuition

e If you can transform an interleaved schedule by
swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

e Example:

T1:R(A),W(R), R(B),W(B)

T2: R(R),W(A), R(B),W(B)
{4

T1:R(A),W(R), R(B), W (B)

T2: R(RD), W(Rn), R(B),W(B)
13

T1:R(A),W(A),R(B), W (B)

T2: R(A),W(A), R(B),W(B)

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.26

Conflict Equivalence — Intuition (cont'd)

e If you can transform an interleaved schedule by
swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

e Is this schedule serializable?

T1:R(B), W(R)
T2: R(A)[W(A)I
4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.28

Dependency Graph

* Dependency graph:
— Transactions represented as nodes

— Edge from Ti to Tj:
» an operation of Ti conflicts with an operation of Tj

» Ti appears earlier than Tj in the schedule

¢ Theorem: Schedule is conflict serializable if and only if
its dependency graph is acyclic

4/4

Example

¢ Conflict serializable schedule:

T1:R(A),W(A), R (B),W(B)
T2: R(RA),W(R), R(B) ,W(B)
A B
Dependency graph
* No cycle!

lon Stoica CS162 ©UCB Spring 2011 Lec 18.30

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.29
Example
o Conflict that is not serializable:
R(B) ,W(B)

T1:R(A),W(A),

T2:
A
Dependency graph

B

e Cycle: The output of T1 depends on T2, and vice-

Versa
4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.31

Notes on Conflict Serializability

o Conflict Serializability doesn’ t allow all schedules that

you would consider correct
— This is because it is strictly syntactic - it doesn’ t consider

the meanings of the operations or the data

« In practice, Conflict Serializability is what gets used,

because it can be done efficiently
— Note: in order to allow more concurrency, some special
cases do get implemented, such as for travel

reservations, ...

e Two-phase locking (2PL) is how we implement it

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.32

5min Break

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.33

Two-Phase Locking (2PL)

1) Each transaction must obtain:
- S (shared) or X (exclusive) lock on data before reading,
- X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks.

Thus, each transaction has a “growing phase” followed by a

“shrinking phase” |, Lock Point!
4’.7 :%
o . | Growing . Shrinking
= z | Phase ! Phase
*H
04
1 3 5 7 9 11 13]15 17 19 Time

1
4/4 lon Stoica CS162 ©UCB Spring 2011 | Lec 18.35

Page 9

4/4

Locks
e “Locks” to control access to data

¢ Two types of locks:

—shared (S) lock — multiple concurrent transactions
allowed to operate on data

— exclusive (X) lock — only one transaction can operate
on data at a time

S |X
Lock
Compatibility |S |/ |~
Matrix X =12

lon Stoica CS162 ©UCB Spring 2011 Lec 18.34

4/4

Two-Phase Locking (2PL)

¢ 2PL guarantees conflict serializability

- Doesn’ t allow dependency cycles; Why?
- Answer: a cyclic dependency cycle leads to deadlock

- Edge from Ti to Tj means that Ti acquires lock first and
Tj needs to wait

- Edge from Ti to Tj means that Ti acquires lock first and
Tj needs to wait

- Thus, both T1 and Tj wait for each other - deadlock

« Schedule of conflicting transactions is conflict
equivalent to a serial schedule ordered by “lock point”

lon Stoica CS162 ©UCB Spring 2011 Lec 18.36

Lock Management

Lock Manager (LM) handles all lock and unlock requests
— LM contains an entry for each currently held lock

e Lock table entry:
- Pointer to list of transactions currently holding the lock
- Type of lock held (shared or exclusive)
- Pointer to queue of lock requests

When lock request arrives see if anyone else holds a conflicting lock
- If not, create an entry and grant the lock
- Else, put the requestor on the wait queue

Locking and unlocking are atomic operations

Lock upgrade: shared lock can be upgraded to exclusive lock

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.37

4/4

Deadlock

« Cycles of transactions waiting for each other to release
locks

+ Recall: two ways to deal with deadlocks
— Deadlock detection
— Deadlock prevention

+ Many systems punt problem by using timeouts instead
— Associate a timeout with each lock
— If timeout expires release the lock
— What is the problem with this solution?

lon Stoica CS162 ©UCB Spring 2011 Lec 18.38

Deadlock Prevention

¢ Assign priorities based on timestamps. Assume Ti
wants a lock that Tj holds. Two policies are possible:

- Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti
aborts

- Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits

o If a transaction re-starts, make sure it gets its original
timestamp

- Why?

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.39

Example

« T1 transfers $50 from account A to account B

’Tl :Read (A) ,A:=A-50,Write (A),Read (B),B:=B+50, Write (B)

+ T2 outputs the total of accounts A and B

’ T2:Read (A) ,Read (B), PRINT (A+B)

4/4

« Initially, A = $1000 and B = $2000

+ What are the possible output values?

lon Stoica CS162 ©UCB Spring 2011 Lec 18.40

Is this a 2PL Schedule?
Lock_X(A) <granted>
Read(A) Lock_S(A)
A: = A-50
Write(A)
Unlock(A) <granted>
Read(A)
Unlock(A)
Lock_S(B) <granted>
Lock_X(B)
Read(B)
<granted> Unlock(B)
PRINT(A+B)
Read(B)
B:=B +50
Write(B)
Unlock(B)
No, and it is not serializable
4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.41

Cascading Aborts

+ Example: T1 aborts
— Note: this is a 2PL schedule

T1:R(A),W(A),
T2: R(A) ,W(A)

» Rollback of T1 requires rollback of T2, since T2 reads

a value written by T1

+ Solution: Strict Two-phase Locking (Strict 2PL):

same as 2PL except

— All locks held by a transaction are released only when

the transaction completes

4/4 lon Stoica CS162 ©UCB Spring 2011

Lec 18.43

Page 11

4/4

Is this a 2PL Schedule?

Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Unlock(A) <granted>
Read(A)
Lock_S(B)

Read(B)

B:=B +50

Write(B)

Unlock(B) <granted>
Unlock(A)
Read(B)
Unlock(B)
PRINT(A+B)

Yes, so it is serializable
lon Stoica CS162 ©UCB Spring 2011

Lec 18.42

4/4

Strict 2PL (cont'd)

All locks held by a transaction are released only when
the transaction completes

In effect, “shrinking phase” is delayed until:
a) Transaction has committed (commit log record on

disk), or

b) Decision has been made to abort the transaction

(then locks can be released after rollback).

lon Stoica CS162 ©UCB Spring 2011

Lec 18.44

Is this a Strict 2PL schedule?

Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Unlock(A) <granted>
Read(A)
Lock_S(B)

Read(B)

B:=B +50

Write(B)

Unlock(B) <granted>
Unlock(A)
Read(B)
Unlock(B)
PRINT(A+B)

44 No: Cascading Abort Possible Lec 18.45
Summary

« Correctness criterion for transactions is “serializability”.

— In practice, we use “conflict serializability”, which is somewhat more
restrictive but easy to enforce.

¢ Two Phase Locking, and Strict 2PL: Locks directly implement the notions
of conflict

— The lock manager keeps track of the locks issued. Deadlocks can
either be prevented or detected.

e Much more about transactions in cs186

4/4 lon Stoica CS162 ©UCB Spring 2011 Lec 18.47

Page 12

4/4

Is this a Strict 2PL schedule?

Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Read(B)

B:=B +50

Write(B)

Unlock(A)

Unlock(B) <granted>
Read(A)
Lock_S(B) <granted>
Read(B)
PRINT(A+B)
Unlock(A)
Unlock(B)

lon Stoica CS162 ©UCB Spring 2011 Lec 18.46

