
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 21  

Security (II)"

April 13, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 21.2!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Recap: Security Requirements in
Distributed Systems"

•  Authentication !
–  Ensures that a user is who is claiming to be!

•  Data integrity !
–  Ensure that data is not changed from source to destination or after

being written on a storage device !

•  Confidentiality !
–  Ensures that data is read only by authorized users!

•  Non-repudiation!
–  Sender/client canʼt later claim didnʼt send/write data!
– Receiver/server canʼt claim didnʼt receive/write data!

Lec 21.3!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Recap:  
Confidentiality: Symmetric Key Cryptography"

•  K, secret key shared by both sender and recipient!
•  Assumption: to decrypt chipertext you need K !

m (plaintext)! m!

Ciphertext!

Encryption!K! Decryption! K!

Lec 21.4!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Recap: (Trivial) Example"
•  Use XOR for encryption/decryption!
•  K = 11011001!

11011001 11011001 11011001 11011001 11011001 11011001 !
X ! X ! X ! X ! X ! X !

=! =! =! =! =! =!
10101110 10111100 10111010 11101011 10111100 10101101!

K!
chipertext!

11011001 11011001 11011001 11011001 11011001 11011001 !
X ! X ! X ! X ! X ! X !

01110011 01100101 01100011 01110010 01100101 01110100!
=! =! =! =! =! =!

K!
plaintext!

10101110 10111100 10111010 11101011 10111100 10101101!chipertext!

“s e c r e t”!

01110011 01100101 01100011 01110010 01100101 01110100!plaintext!

Page 2

Lec 21.5!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Recap: 
Confidentiality: Public Key Cryptography"
•  Two keys!

– Kpublic: public key, known by everyone 
Kprivate: private key, known only by recipient!

•  Cannot infer private key by knowing public key!
•  No need to securely distribute key, but slower than

symmetric key cryptography!

m (plaintext)! m!

Ciphertext!

Encryption!Kpublic! Decryption! Kprivate!

Lec 21.6!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Recap:  
Authentication via Secret Key"

•  Main idea: entity proves identity by decrypting a secret
encrypted with its own key!

•  K – secret key share only by A and B!
•  A can asks B to authenticate itself by decrypting a

nonce, i.e., random value, x!
–  Ignore man-in-the middle attack!

E(x, K)

x

A B

Lec 21.7!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Recap:  
Authentication via Public Key"

•  Main idea: entity proves identity by decrypting a secret
encrypted with its public key!

•  A asks B to authenticate itself by decrypting a nonce x
that A has encrypted with Bʼs public key!

E(x, PublicB)

x

A B

Lec 21.8!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Recap: Non-Repudiation"
•  Sender cannot deny she has sent a message!
•  Idea: !

– Sender signs (encrypts) message with its private key!
– Anyone can use senderʼs public key to check that sender

has signed the message!
»  A message encrypted with private key can be decrypted

by public key!
– Once sender signs the message, cannot deny it! !

Page 3

Lec 21.9!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Recap: Example"

Lec 21.10!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Recap: Integrity"
•  Compute a hash (i.e., digest) on the message!
•  Hash cannot be easily inverted!

– Very difficult for someone to modify the message without
modifying the digest!

Digest!
H(m)!

Internet!

plaintext (m)!

digest!

=!
NO!

corrupted msg! m!

Digest!
H(m)!

digestʼ!

Lec 21.11!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Digital Certificates"

Alice!

Certificate!
Authority!

{Alice, } !

(offline) identity verification!

E({ , Alice}, Kverisign_private)!
Digital certificate!

D(E({ , Alice}, Kverisign_private), Kverisign_public) = !{Alice, } !

•  How do you know is Aliceʼs public key?!
•  Main idea: trusted authority signing binding between Alice and

its private key!

Bob!

Lec 21.12!4/13! Ion Stoica CS162 ©UCB Spring 2011!

This Lecture"
•  More authentication!

•  Host Compromise!
– Attacker gains control of a host!

•  Denial-of-Service!
– Attacker prevents legitimate users from gaining service!

•  Attack can be both!
– E.g., host compromise that provides resources for

denial-of-service!

Page 4

Lec 21.13!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Authentication: Passwords"
•  Shared secret between two parties!

•  Since only user knows password, someone types
correct password ⇒ must be user typing it!

•  Very common technique!

•  System must keep copy of secret to  
check against passwords!

– What if malicious user gains access to list  
of passwords?!

» Need to obscure information somehow!
– Mechanism: utilize a transformation that is difficult to

reverse without the right key (e.g. encryption)!

Lec 21.14!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Passwords: Secrecy"

•  Example: UNIX /etc/passwd file!
– passwd→one way transform(hash)→encrypted passwd!
– System stores only encrypted version, so OK even if

someone reads the file!!
– When you type in your password, system compares

encrypted version!

“eggplant”

Lec 21.15!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Passwords: How easy to guess?"
•  Ways of Compromising Passwords!

– Password Guessing: !
» Often people use obvious information like birthday, favorite color,

girlfriendʼs name, etc…!
»  Trivia question 1: what is the most popular password?!
»  Trivia question 2: what is the next most popular password?!
»  Answer: http://www.nytimes.com/2010/01/21/technology/

21password.html!

– Dictionary Attack: !
» Work way through dictionary and compare encrypted version of

dictionary words with entries in /etc/passwd!

– Dumpster Diving:!
»  Find pieces of paper with passwords written on them!
»  (Also used to get social-security numbers, etc)!

Lec 21.16!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Passwords: How easy to guess? (contʼd)"

•  Paradox: !
– Short passwords are easy to crack!
– Long ones, people write down!!

•  Technology means we have to use longer passwords!
– UNIX initially required lowercase, 5-letter passwords: total of

265=10million passwords!
»  In 1975, 10ms to check a password→1 day to crack!
»  In 2005, .01μs to check a password→0.1 seconds to crack!

– Takes less time to check for all words in the dictionary!!

Page 5

Lec 21.17!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Passwords: Making harder to crack"
•  How can we make passwords harder to crack?!

– Canʼt make it impossible, but can help!

•  Technique 1: Extend everyoneʼs password with a unique
number (stored in password file)!

– Called “salt”. UNIX uses 12-bit “salt”, making dictionary attacks
4096 times harder!

– Without salt, would be possible to pre-compute all the words in
the dictionary hashed with the UNIX algorithm: would make
comparing with /etc/passwd easy!!

•  Technique 2: Require more complex passwords!
– Make people use at least 8-character passwords with upper-

case, lower-case, and numbers!
»  708=6x1014=6million seconds=69 days@0.01μs/check!

– Unfortunately, people still pick common patterns!
»  e.g. Capitalize first letter of common word, add one digit!

Lec 21.18!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Passwords: Making harder to crack (conʼt)"
•  Technique 3: Delay checking of passwords!

–  If attacker doesnʼt have access to /etc/passwd, delay every
remote login attempt by 1 second!

– Makes it infeasible for rapid-fire dictionary attack!
•  Technique 4: Assign very long passwords!

– Long passwords or pass-phrases can have more entropy
(randomness→harder to crack)!

– Embed password in a smart card (or ATM card)!
» Requires physical theft to steal password!
» Can require PIN from user before authenticates self!

– Better: have smartcard generate pseudorandom number!
» Client and server share initial seed!
»  Each second/login attempt advances to next random number!

•  Technique 5: “Zero-Knowledge Proof”!
– Require a series of challenge-response questions!

» Distribute secret algorithm to user!
»  Server presents a number, say “5”; user computes something from

the number and returns answer to server!
»  Server never asks same “question” twice!

– Often performed by smartcard plugged into system!

Lec 21.20!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Host Compromise"
•  One of earliest major Internet security incidents!

–  Internet Worm (1988): compromised almost every BSD-
derived machine on Internet!

•  Today: estimated that a single worm could compromise
10M hosts in < 5 min!

•  Attacker gains control of a host!
– Reads data!
– Erases data!
– Compromises another host!
– Launches denial-of-service attack on another host!

Lec 21.21!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Definitions"
•  Worm!

– Replicates itself!
– Usually relies on stack overflow attack!

•  Virus!
– Program that attaches itself to another (usually trusted)

program!
•  Trojan horse!

– Program that allows a hacker a back door to
compromised machine!

•  Botnet!
– A collection of programs running autonomously and

controlled remotely!
– Can be used to spread out worms, mounting DDoS

attacks !

Page 6

Lec 21.22!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Buffer Overflow"
•  Part of the request

sent by the attacker too
large to fit into buffer
server uses to hold it!

•  Spills over into
memory beyond the
buffer!

•  Allows remote attacker
to inject executable
code!

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

Lec 21.23!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

Stack
X + 200

Lec 21.24!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

Stack

X

get_cookie()’s
stack frame

X + 200

Lec 21.25!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

Stack

X

X - 4

get_cookie()’s
stack frame

X + 200

Page 7

Lec 21.26!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Normal Execution"

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

cookie

n

Stack

X

X - 4

X - 8

X - 520

get_cookie()’s
stack frame

X + 200

Lec 21.27!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

cookie

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back
to munch()

strcpy()’s stack …

get_cookie()’s
stack frame

X + 200

Lec 21.28!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back
to munch()

get_cookie()’s
stack frame

X + 200

cookie value read
from packet

Lec 21.29!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

cookie value read
from packet

n

Stack

X

X - 4

X - 8

X - 520

get_cookie()’s
stack frame

X + 200

Page 8

Lec 21.30!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

Stack

X

X - 4

get_cookie()’s
stack frame

X + 200

Lec 21.31!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

Stack

X

get_cookie()’s
stack frame

X + 200

Lec 21.32!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Buffer Overflow"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

cookie

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back
to munch()

strcpy()’s stack …

get_cookie()’s
stack frame

X + 200

Lec 21.33!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Example: Buffer Overflow"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back
to munch()

get_cookie()’s
stack frame

X + 200 cookie
value
read
from
packet

Page 9

Lec 21.34!4/13! Ion Stoica CS162 ©UCB Spring 2011!

get_cookie()’s
stack frame

return address back
to get_cookie()

Example: Buffer Overflow"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

<Doesn’t Matter>

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back
to munch()

X + 200

<Doesn’t Matter>

X

Executable
Code

Lec 21.35!4/13! Ion Stoica CS162 ©UCB Spring 2011!

get_cookie()’s
stack frame

return address back
to get_cookie()

Example: Buffer Overflow"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

<Doesn’t Matter>

Stack

X

X - 4

X - 8

X - 520

X + 200

<Doesn’t Matter>

X

Executable
Code

Lec 21.36!4/13! Ion Stoica CS162 ©UCB Spring 2011!

get_cookie()’s
stack frame

return address back
to get_cookie()

Example: Buffer Overflow"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;

 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

Stack

X

X - 4

X + 200

X

Executable
Code Now branches to code read in from

the network

From here on, machine falls
under the attacker’s control

Lec 21.37!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Buffer Overflows: Potential Solutions"

•  Donʼt write buggy software!
–  Itʼs not like people try to write buggy software!

•  Type-safe Languages!
– Unrestricted memory access of C/C++ contributes to problem!
– Use Java, Perl, Python instead!

•  OS architecture!
– Compartmentalize programs better, so one compromise

doesnʼt compromise the entire system!
– E.g., DNS server doesnʼt need total system access!

•  Firewalls - restrict remote access to services!
•  Intrusion detection: recognize attack & block it!

Page 10

Lec 21.38!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Automated Compromise: Worms"
•  When attacker compromises a host, they can instruct it

to do whatever they want!

•  Instructing it to find more vulnerable hosts to repeat the
process creates a worm: a program that self-replicates
across a network!
•  Often spread by picking 32-bit Internet addresses at

random to probe …!
•  … but this isnʼt fundamental!

•  As the worm repeatedly replicates, it grows exponentially
fast because each copy of the worm works in parallel to
find more victims!

Lec 21.39!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Worm Spreading"
f = (e K(t-T) – 1) / (1+ e K(t-T))

•  f – fraction of hosts infected
•  K – rate at which one host

can compromise others
•  T – start time of the attack

T

f

t

1

Lec 21.40!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Worm Examples"
•  Morris worm (1988)!

•  Code Red (2001)!
– 369K hosts in 10 hours!

•  MS Slammer (January 2003)!

•  Theoretical worms!
•  1M hosts in 1.3 sec!
•  $50B+ damage!

! !!
Lec 21.41!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Morris Worm (1988)"

•  Infect multiple types of machines (Sun 3 and VAX)!
– Was supposed to be benign: estimate size of Internet !
– Spread using a Sendmail bug!

•  Attack multiple security holes including !
– Buffer overflow in fingerd!
– Debugging routines in Sendmail!
– Password cracking!

•  Intend to be benign but it had a bug!
– Fixed chance the worm wouldnʼt quit when reinfecting a

machine number of worm on a host built up
rendering the machine unusable!

Page 11

Lec 21.42!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Code Red Worm (2001)"

•  Attempts to connect to TCP port 80 (i.e., HTTP port) on a
randomly chosen host!

•  If successful, the attacking host sends a crafted HTTP GET
request to the victim, attempting to exploit a buffer overflow !

•  Worm “bug”: all copies of the worm use the same random
generator to scan new hosts!

– DoS attack on those hosts!
– Slow to infect new hosts !

•  2nd generation of Code Red fixed the bug!!
–  It spread much faster!

Lec 21.43!4/13! Ion Stoica CS162 ©UCB Spring 2011!

MS SQL Slammer (January 2003)"
•  Uses UDP port 1434 to exploit a buffer overflow in MS

SQL server !

•  Effect!
– Generate massive amounts of network packets !
– Brought down as many as 5 of the 13 internet root name

servers!

•  Others!
– The worm only spreads as an in-memory process: it

never writes itself to the hard drive !
»  Solution: close UDP port on fairewall and reboot !

Lec 21.44!4/13! Ion Stoica CS162 ©UCB Spring 2011!

MS SQL Slammer (January 2003)"
•  xx!

(From http://www.f-secure.com/v-descs/mssqlm.shtml)!
Lec 21.45!4/13! Ion Stoica CS162 ©UCB Spring 2011!

MS SQL Slammer (January 2003)"

(From http://www.f-secure.com/v-descs/mssqlm.shtml)!

Page 12

Lec 21.46!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Hall of Shame"

•  Software that have had many stack overflow bugs:!
– BIND (most popular DNS server)!

– RPC (Remote Procedure Call, used for NFS)!
» NFS (Network File System), widely used at UCB!

– Sendmail (most popular UNIX mail delivery software)!

–  IIS (Windows web server)!

– SNMP (Simple Network Management Protocol, used to
manage routers and other network devices)!

Lec 21.47!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Potential Solutions"
•  Donʼt write buggy software!

–  Itʼs not like people try to write buggy software!

•  Type-safe Languages!
– Unrestricted memory access of C/C++ contributes to

problem!
– Use Java, Perl, or Python instead!

•  OS architecture!
– Compartmentalize programs better, so one compromise

doesnʼt compromise the entire system!
– E.g., DNS server doesnʼt need total system access!

•  Firewalls!

Lec 21.48!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Firewall"

•  Security device whose goal is to
prevent computers from outside to
gain control to inside machines!

•  Hardware or software!

Firewall"

Internet"

Attacker"

Lec 21.49!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Firewall (contʼd)"
•  Restrict traffic between Internet and devices

(machines) behind it based on!
– Source address and port number!
– Payload !
– Stateful analysis of data !

•  Examples of rules!
– Block any external packets not for port 80!
– Block any email with an attachment!
– Block any external packets with an internal IP address!

»  Ingress filtering!

Page 13

Lec 21.50!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Firewalls: Properties"

•  Easier to deploy firewall than secure all internal hosts!

•  Doesnʼt prevent user exploitation!

•  Tradeoff between availability of services (firewall passes
more ports on more machines) and security!

–  If firewall is too restrictive, users will find way around it, thus
compromising security!

– E.g., have all services use port 80!

Lec 21.51!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Denial of Service"

•  Huge problem in current Internet !
– Major sites attacked: Yahoo!, Amazon, eBay, CNN,

Microsoft !
– 12,000 attacks on 2,000 organizations in 3 weeks!
– Some more that 600,000 packets/second!

» More than 192Mb/s!
– Almost all attacks launched from compromised hosts!

•  General Form!
– Prevent legitimate users from gaining service by

overloading or crashing a server!
– E.g., SYN attack!

Lec 21.52!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Affect on Victim"
•  Buggy implementations allow unfinished connections

to eat all memory, leading to crash!

•  Better implementations limit the number of unfinished
connections!

– Once limit reached, new SYNs are dropped!

•  Affect on victimʼs users!
– Users canʼt access the targeted service on the victim

because the unfinished connection queue is full DoS!

Lec 21.53!4/13! Ion Stoica CS162 ©UCB Spring 2011!

SYN Attack  
(Recap: 3-Way Handshaking)"

•  Goal: agree on a set of parameters: the start
sequence number for each side!

– Starting sequence numbers are random.!

Client (initiator)" Server"

SYN, SeqNum = x"

SYN and ACK, SeqNum = y and Ack = x + 1"

ACK, Ack = y + 1"

Page 14

Lec 21.54!4/13! Ion Stoica CS162 ©UCB Spring 2011!

SYN Attack"

•  Attacker: send at max rate TCP SYN with random
spoofed source address to victim!

– Spoofing: use a different source IP address than own!
– Random spoofing allows one host to pretend to be many!

•  Victim receives many SYN packets!
– Send SYN+ACK back to spoofed IP addresses!
– Holds some memory until 3-way handshake completes!

» Usually never, so victim times out after long period (e.g., 3
minutes)!

Lec 21.55!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Solution: SYN Cookies"

•  Server: send SYN-ACK with sequence number y, where !
– y = H(client_IP_addr, client_port)!
– H(): one-way hash function!

•  Client: send ACK containing y+1!

•  Sever: !
– verify if y = H(client_IP_addr, client_port)!
–  If verification passes, allocate memory!

•  Note: server doesnʼt allocate any memory if the clientʼs
address is spoofed!

Lec 21.56!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Other Denial-of-Service Attacks"
•  Reflection!

– Cause one non-compromised host to attack another!
– E.g., host A sends DNS request or TCP SYN with source

V to server R. R sends reply to V!

Reflector (R)!

Internet!

Attacker (A)!
R!V!

Victim (V)!

Lec 21.57!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Other Denial-of-Service Attacks"
•  Reflection!

– Cause one non-compromised host to attack another!
– E.g., host A sends DNS request or TCP SYN with source

V to server R. R sends reply to V!

Reflector (R)!

Internet"

Attacker (A)!

V!R!

Victim (V)!

Page 15

Lec 21.58!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Other Denial-of-Service Attacks"

•  DNS!
– Ping flooding attack on DNS root servers (October

2002)!
– 9 out of 13 root servers brought down!
– Relatively small impact (why?)!

Lec 21.59!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Identifying and Stop Attacking Machines"

•  Defeat spoofed source addresses!

•  Does not stop or slow attack!

•  Egress filtering!
– A domainʼs border router drop outgoing packets which

do not have a valid source address for that domain!
–  If universal, could abolish spoofing!

•  IP Traceback!
– Routers probabilistically tag packets with an identifier!
– Destination can infer path to true source after receiving

enough packets!

Lec 21.60!4/13! Ion Stoica CS162 ©UCB Spring 2011!

Summary"
•  Security is one of the biggest problem today!

•  Host Compromise!
– Poorly written software!
– Partial solutions: better OS security architecture, type-

safe languages, firewalls!

•  Denial-of-Service!
– No easy solution: DoS can happen at many levels!

