
CS162  
Operating Systems and 
Systems Programming 

Lecture 23  

HTTP and Peer-to-Peer Networks"

April 20, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 23.2!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Recap: RPC Server Crashes"

•  Three cases!
– Crash after execution!
– Crash before execution!
– Crash during the execution!

•  Three possible semantics!
– At least once semantics!

» Client keeps trying until it gets a reply!
– At most once semantics!

» Client gives up on failure!
– Exactly once semantics!

» Can this be correctly implemented?!

Lec 23.3!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Why Not Use Logging?"
•  Assume!

– Server can log either before starting or after executing the
operation!

– Server restarts after crashing!

•  First case:!
– Server execute operation first, then logs “done”!
– What semantics does this implement?!

•  Second case:!
– Server logs “start”, and then execute operation!
– What semantics does this implement?!

•  So, can you ensure “exactly once” semantics?!

Lec 23.4!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Todayʼs Lecture"
•  Web!

– Hypertext Transport Protocol!

•  Peer-to-Peer networks!
– Distributed Hash Tables (DHTs)!

Lec 23.5!4/20! Ion Stoica CS162 ©UCB Spring 2011!

The Web"
•  Core components:!

– Servers: store files and execute remote commands!
– Browsers: retrieve and display “pages” !
– Uniform Resource Locators (URLs): way to refer to

pages!

•  A protocol to transfer information between clients and
servers!

– HTTP !

Lec 23.6!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Uniform Record Locator (URL)"

protocol://host-name:port/directory-path/resource!

•  E.g., http://www-inst.eecs.berkeley.edu/~cs162/sp11/!

•  Extend to program executions as well…!
–  http://www.google.com/

#sclient=psy&hl=en&source=hp&q=cs162+berkeley&aq=0&aqi=g5&aq
l=&oq=&pbx=1&bav=on.2,or.r_gc.r_pw.&fp=1ef120049c3f5a29!

Lec 23.7!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Hyper Text Transfer Protocol (HTTP)"

•  Client-server architecture!

•  Synchronous request/reply protocol !
– Runs over TCP, Port 80!

•  Stateless!
– Server does not keep state about client across requests,

i.e., after each request the web server forgets about
client!

– Why is this good?!

Lec 23.8!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Big Picture"

Client" Server"
TCP Syn"

TCP syn + ack "

TCP ack + HTTP GET"

."."."

Establish"
connection"

Request"
response"

Client "
request"

Close"
connection"

Lec 23.9!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Hyper Text Transfer Protocol Commands"

•  GET – transfer resource from given URL!

•  HEAD – GET resource metadata (headers) only!

•  PUT – store/modify resource under given URL!

•  DELETE – remove resource!

•  POST – provide input for a process identified by the
given URL (usually used to post CGI parameters)!

Lec 23.10!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Client Request"

•  Steps to get the resource:  

http://www-inst.eecs.berkeley.edu/~cs162/sp11/ !

1.  Use DNS to obtain the IP address of
www-inst.eecs.berkeley.edu!

2.  Send an HTTP request to IP address and port
80:!
GET /~cs162/sp11 HTTP/1.0

Lec 23.11!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Server Response"

HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1234
Last-Modified: Mon, 19 Nov
2010 15:31:20 GMT
<HTML>
<HEAD>
<TITLE>EECS Home Page</TITLE>
</HEAD>
…
</BODY>
</HTML>

Lec 23.12!4/20! Ion Stoica CS162 ©UCB Spring 2011!

HTTP/1.0 Example"

Client" Server"
Request image 1"

Transfer image 1"

Request image 2"

Transfer image 2"

Request text"

Transfer text"
Finish display"
page "

Lec 23.13!4/20! Ion Stoica CS162 ©UCB Spring 2011!

HTTP/1.0 Performance"

•  Create a new TCP connection for each resource!
– Large number of embedded objects in a web page!
– Many short lived connections!

•  TCP transfer!
– Too slow for small object!
–  It takes time to establish a connection and ramp-up (i.e.,

exit slow-start phase)!

•  Connections may be set up in parallel (5 is default in
most browsers)!

Lec 23.14!4/20! Ion Stoica CS162 ©UCB Spring 2011!

HTTP/1.0 Caching Support"
•  A modifier to the GET request:!

–  If-modified-since – return a “not modified” response if resource was not
modified since specified time !

•  A response header:!
–  Expires – specify to the client for how long it is safe to cache the resource!

•  A request directive: !
– No-cache – ignore all caches and get resource directly from server!

•  These features can be best taken advantage of with HTTP
proxies!

–  Locality of reference increases if many clients share a proxy!

Lec 23.15!4/20! Ion Stoica CS162 ©UCB Spring 2011!

HTTP/1.1 (1996)"
•  Performance: !

– Persistent connections !
– Pipelined requests/responses!
– …!

•  Efficient caching support!
– Network Cache assumed more explicitly in the design!
– Gives more control to the server on how it wants data

cached!

•  Support for virtual hosting!
– Allows to run multiple web servers on the same machine !

Lec 23.16!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Persistent Connections"

•  Allow multiple transfers over one connection!

•  Avoid multiple TCP connection setups!

•  Avoid multiple TCP slow starts (i.e., TCP ramp ups)!

Lec 23.17!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Pipelined Requests/Responses"

•  Buffer requests and responses to
reduce the number of packets!

•  Multiple requests can be contained
in one TCP segment!

•  Note: order of responses has to be
maintained!

Client" Server"

Request 1"Request 2"Request 3"

Transfer 1"

Transfer 2"

Transfer 3"

Lec 23.18!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Achieving Scale and Availability"

•  Problem: You are a web content provider !
– How do you handle millions of web clients?!
– How do you ensure that all clients experience good

performance?!
– How do you maintain availability in the presence of

server and network failures?!

•  Solutions:!
– Add more servers at different locations If you are

CNN this might work!!
– Caching!
– Content Distribution Networks (Replication)!

Lec 23.19!4/20! Ion Stoica CS162 ©UCB Spring 2011!

“Base-line”"

•  Many clients transfer same information !
– Generate unnecessary server and network load!
– Clients experience unnecessary latency!

Server"

Clients"

Backbone ISP"
ISP-1" ISP-2"

Lec 23.20!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Reverse Caches"

•  Cache documents close to server decrease server load!
•  Typically done by content providers!

Clients"

Backbone ISP"

ISP-1" ISP-2"

Server"

Reverse caches"

Lec 23.21!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Forward Proxies"
•  Cache documents close to clients reduce network traffic

and decrease latency!
•  Typically done by ISPs or corporate LANs!

Clients"

Backbone ISP"

ISP-1" ISP-2"

Server"

Reverse caches"

Forward caches"

Lec 23.22!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Content Distribution Networks
(CDNs)"

•  Integrate forward and reverse caching functionalities
into one overlay network (usually) administrated by one
entity!

– Example: Akamai!

•  Documents are cached both !
– As a result of clientsʼ requests (pull)!
– Pushed in the expectation of a high access rate!

•  Beside caching do processing, e.g.,!
– Handle dynamic web pages!
– Transcoding !
! ! !!

Lec 23.23!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Example: Akamai"

•  Akamai creates new domain names for each client
content provider!

– e.g., a128.g.akamai.net!

•  The CDNʼs DNS servers are authoritative for the
new domains!

•  The client content provider modifies its content so
that embedded URLs reference the new domains.!

–  “Akamaize” content, e.g.: http://www.cnn.com/image-of-the-
day.gif becomes http://a128.g.akamai.net/image-of-the-day.gif.!

Lec 23.24!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Example: Akamai"

get
http://www.cnn.com

a

DNS server for
cnn.com

b

c

local
DNS server

www.cnn.com
“Akamaizes” its

content.

“Akamaized” response object has inline
URLs for secondary content at
a128.g.akamai.net and other Akamai-
managed DNS names.

akamai.net
DNS servers

lookup
a128.g.akamai.net

Akamai servers store/
cache secondary

content for
“Akamaized” services.

Lec 23.25!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Peer-to-Peer Networks &
Distributed Hash Tables"

Lec 23.26!4/20! Ion Stoica CS162 ©UCB Spring 2011!

How Did it Start?"

•  A killer application: Naptser!
– Free music over the Internet!

•  Key idea: share the storage and bandwidth of
individual (home) users!

Internet"

Lec 23.27!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Model"
•  Each user stores a subset of files!

•  Each user has access (can download) files from all
users in the system!

Lec 23.28!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Main Challenge"

•  Find where a particular file is stored!
– Note: problem similar to finding a particular page in web

caching (what are the differences?)!

A
B

C

D

E
F

E?

Lec 23.29!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Other Challenges"
•  Scale: up to hundred of thousands or millions of

machines !
•  Dynamicity: machines can come and go any time!

Lec 23.30!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Napster"

•  Assume a centralized index system that maps files (songs)
to machines that are alive!

•  How to find a file (song)!
– Query the index system return a machine that stores the

required file!
»  Ideally this is the closest/least-loaded machine!

–  ftp the file!
•  Advantages: !

– Simplicity, easy to implement sophisticated search engines on
top of the index system!

•  Disadvantages:!
– Robustness, scalability (?)!

Lec 23.31!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Napster: Example"

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

A m1
B m2
C m3
D m4
E m5
F m6

E?
m5

E? E

Lec 23.32!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Gnutella"

•  Distribute file location!
•  Idea: broadcast the request!
•  How to find a file?!

– Send request to all neighbors!
– Neighbors recursively multicast the request!
– Eventually a machine that has the file receives the request, and it

sends back the answer!
•  Advantages:!

– Totally decentralized, highly robust!
•  Disadvantages:!

– Not scalable; the entire network can be swamped with requests
(to alleviate this problem, each request has a TTL) !

Lec 23.33!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Gnutella: Example"

•  Assume: m1ʼs neighbors are m2 and m3; m3ʼs
neighbors are m4 and m5;…!

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

E?

E?

E?
E?

E

Lec 23.34!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Two-Level Hierarchy"

•  Current Gnutella implementation,
KaZaa!

•  Leaf nodes are connected to a small
number of ultrapeers (suppernodes)!

•  Query!
– A leaf sends query to its ultrapeers!
–  If ultrapeers donʼt know the answer,

they flood the query to other ultrapeers!
•  More scalable:!

– Flooding only among ultrapeers!

Ultrapeer
nodes Leaf nodes

Oct 2003
Crawl on
Gnutella

Lec 23.35!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Skype"

•  Peer-to-peer Internet
Telephony!

•  Two-level hierarchy like
KaZaa!

– Ultrapeers used mainly to
route traffic between
NATed end-hosts (see next
slide)…!

– … plus a login server to !
»  authenticate users!
»  ensure that names are

unique across network!

login server

A

B

Messages!
exchanged!
to login server!
Data traffic!

(Note*: probable protocol; Skype
protocol is not published)

Lec 23.36!4/20! Ion Stoica CS162 ©UCB Spring 2011!

Conclusions"
•  Hypertext Transport Protocol: request-response!

–  Use DNS to locate web server!
– HTTP 1.1 vs. 1.0: added support for persistent connections

and pipeline to improve performance!
– Caching: key to increase scalability!

•  The key challenge of building wide area P2P systems is a
scalable and robust directory service!

•  Solutions covered in this lecture!
– Naptser: centralized location service!
– Gnutella: broadcast-based decentralized location service!

