CS162
Operating Systems and
Systems Programming

Lecture 24

DHTs and Cloud Computing

April 25, 2011
lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Distributed Hash Tables (DHTs) (cont’d)

+ Just need a lookup service, i.e., given a key (ID), map it to
machine n

n = lookup(key);
+ Invoking put() and get() at node m

m.put(key, data) {
n = lookup(key); // get node “n” mapping “key”
n.store(key, data); / store data at node “n”

}

data = m.get(key) {
n = lookup(key); // get node “n” storing data associated to “key”

return n.retrieve(key); // get data stored at “n” associated to “key”

}

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.3

Page 1

Distributed Hash Tables (DHTSs)

« Distribute (partition) a hash table data structure across a
large number of servers ko value

— Also called, key-value store
// { H

+ Two operations
— put(key, data); // insert “data” identified by “key”
— data = get(key); // get data associated to “key”

[

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.2

Distributed Hash Tables (DHTs) (cont’d)

« Many lookup proposals: CAN, Chord, Pastry, Tapestry,
Kademlia, ...

» Used in practice:
— p2p: eDonkey (based on Kademlia)
— Dynamo (Amazon)
— Cassandra (Facebook)

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.4

Challenges

+ System churn: machines can fail or exit the system any

% %%

+ Scalability: need to scale to 10s or 100s of thousands
machines

* Heterogeneity:
— Latency: 1ms to 1000ms
— Bandwidth: 32Kb/s to 100Mb/s
— Nodes stay in system from 10s to a year

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.5

Identifier to Node Mapping Example
(Consistent hashing)

e

IS

Node 8 maps [5,8]
Node 15 maps [9,15]
Node 20 maps [16, 20]

Node 4 maps [59, 4]

Each node maintainsa
pointer to its successor E

4/25 lon Stoica CS162 ©UCB Spring 2011] Lec 24.7

Page 2

Chord Lookup Service

+ Associate to each node and item a unique id/key in an
uni-dimensional space 0..2™-1

— Partition this space across N machines

— Each id is mapped to the node with the smallest largest ID
(consistent hashing)

+ Key design decision
— Decouple correctness from efficiency

+ Properties

— Routing table size O(log(N)) , where N is the total number
of nodes

— Guarantees that a file is found in O(log(N)) steps

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.6

i 1ookup3n)

Each node maintains E
pointer to its successor

Route packet (ID, data)
to the node responsible
for ID using successor
pointers

node=44 is

responsible ﬁ
for ID=37

E.g., node=4 lookups
for node responsible for
ID=37 E

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.8

Stabilization Procedure

+ Periodic operation performed by each node n to maintain
its successor when new nodes join the system

n.stabilize()
X = succ.pred;
if (x e (n, succ))
succ =x; // if x better successor, update
succ.notify(n); // n tells successor about itself

n.notify(n’)
if (pred = nil or n’e (pred, n))
pred =n’; /! if n’ is better predecessor, update

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.9

Joining Operation

succ=4 | E

« n=50 sends join(50) pred=44

to node 15
= n=44 returns node 58

n=50 updates its
successor to 58

58

Join(50)
succ=hi

pred=nil
succ=58
pred=
4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.11

Page 3

Joining Operation

succ=4 . E

- Node with id=50 pred=44

joins the ring

- Node 50 needs to
know at least one
node already in the

system .
- Assume known sucg—_nllll S
node is 15 pred=ni
50
succ=58 [
pred=35
4/25 lon Stoica CS162 ©UCB Spring 2011

Lec 24.10

Joining Operation

B &

= n=50 executes

stabilize()
« n’s successor (58) s
returns x = 44 X
suctc:‘=5~8I
pred=nil ‘5o
succ=58 [
pred=35¥
n.stabilize()

=» X =succ.pred;

if (xe(n, succ))
succ = x;

succ.notify(n);

£ §

4/25 lon Stoica CS162 ©UCB Spring 2011

Lec 24.12

Joining Operation

= n=50 executes :::3:24 ﬁ
stabilize() :
= x=44
= succ =58
succ=58
pred=nil
succ=58
pred=35
n.stabilize()

X = succ.pred;
=» if (xe(n, succ))

succ.notify(n);

4/25 lon Stoica CS162 ©UCB Spring 2011

Succ = X; E E

Lec 24.13

Joining Operation

= n=58 processes SUCCf4 -
notify(50) Pfd—M B
—)
= pred =44 &@
= n’'=50 R
N
suct::‘=_5_8I ‘;
pred=nil &
succ=58 L
pred=35¥L
n.notify(n’)
=»> if (pred = nil or n’E (pred, n))
pred =n’ E
4125 lon Stoica CS162 ©UCB Spring 2011

Lec 24.15

Page 4

Joining Operation

succ=4 E

= n=50 executes
stabilize() P'”:d=44 B
. x=44 &
« succ =58 &
= n=50 sends to it’'s N
successor (58)
notify(50) succ=58 -
pred=nil 50 15 @
succ=58 |L ~
pred=35 ﬁ
n.stabilize()

X = succ.pred;
if (xe(n, succ))

succ = X; E E

= succ.notify(n);

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.14

Joining Operation

= n=58 processes

notify(50) Pf:d s f§
— O
= pred=44 o
= n’=50 s':(\
= setpred =50 <
succ=58 | -
pred=nil 50 15 ﬁ
succ=58 [& =
pred=35¥ E

n.notify(n’)
if (pred = nil or n’E (pred, n))
=P pred =n’ E

4/25 lon Stoica CS162 ©UCB Spring 2011

Lec 24.16

n=44 runs
stabilize()

n’s successor (58)
returns x = 50

Joining Operation

succ=4
pred=50 [

succ=58 -

pred=nil 15 ﬁ
succ=58 L -
pred=35 @

|

n.stabilize()
X = succ.pred;
if (xe (n, succ))
succ =Xx;
succ.notify(n);

4/25

lon Stoica CS162 ©UCB Spring 2011 Lec 24.17

Joining Operation

—

succ=4
Srabiize) pred=50 [
= x=50
= succ =58
n=44 sets
succ=50 -
succ=58 -
pred=nil 50 15 @
pred=35@ ﬁ
n.stabilize()

X = succ.pred;

if (xe (n, succ))
succ =X;

succ.notify(n);

4/25

lon Stoica CS162 ©UCB Spring 2011 Lec 24.19

Page 5

Joining Operation

succ=4
= n=44runs d=50 |
stabilize() pred=50
= x=50
= succ =58
succ=58 i -
pred=nil 50 15 ﬁ
succ=58 |L -
pred=35 ﬁ
n.stabilize()
X = succ.pred; 3
=» if (xe(n, succ))
succ = X; E E
succ.notify(n);
4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.18
Joining Operation
. 9
= n=44runs suc§=50
stabilize() pre E
= n=44 sends
notify(44) to its
successor
succ=58 |l -
pred=nil 50 15 ﬁ
noﬁfy(44x
suce=50 [& =
pred=35¥ E
n.stabilize()
X = succ.pred;
if (xe(n, succ)) - 32
succ = X; E E
= succ.notify(n);

4/25

lon Stoica CS162 ©UCB Spring 2011 Lec 24.20

Joining Operation

— succ=4
n=50 processes pred=50 @

notify(44)
pred = nil
succ=58 i
pred=nil 50
notify(44')\
succ=50
pred=35
n.notify(n’)
= if (pred = nil or n’E (pred, n))
pred =n’ E
4/25 lon Stoica CS162 ©UCB Spring 2011

Lec 24.21

Joining Operation (cont’d)

This completes the joining

operation! pred=50 ﬁ

4/25 lon Stoica CS162 ©UCB Spring 2011

Lec 24.23

Page 6

Joining Operation

succ=4 E

n=50 processes pred=50 E

notify(44)
pred = nil
n=50 sets pred=44

noﬁfy(44x

succ=50 [E =
pred=35¥ E
n.notify(n’)
if (pred = nil or n’E (pred, n))
=P pred =n’ E
4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.22

Achieving Efficiency: finger tables

Finger Table at 80 0 Say m=7
i fifi] ’
96
96
96
96 80 + 24 E
96 80 +23

112 °
20

SOEZG) mod 27 =16

NN B W= O

ith entry at peer with id # is first peer with id >= 7 +2'(mod2") ‘

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.24

4/25

Achieving Robustness

+ To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor

» Successor S of a node N can send its K-1 successors
to N during N’s stabilize() procedure

lon Stoica CS162 ©UCB Spring 2011 Lec 24.25

4/25

What is Cloud Computing?

+ “Cloud” refers to large Internet services running on
10,000s of machines (Google, Facebook, etc)

+ “Cloud computing” refers to services by these
companies that let external customers rent cycles

— Amazon EC2: virtual machines at 8.5¢/hour, billed hourly
— Amazon S3: storage at 10-15¢/GB/month
— Windows Azure: applications using Azure API

+ Attractive features:
— Scale: 100s of nodes available in minutes
— Fine-grained billing: pay only for what you use
— Ease of use: sign up with credit card, get root access

lon Stoica CS162 ©UCB Spring 2011 Lec 24.27

Page 7

4/25

Administrivia

» Project 4 design due tomorrow: Tuesday, April 26
» Project 3 code available

+ Final exam: Friday, May 13, 8-11am (2060 VLSB)
— Provide some exam question examples next lecture

lon Stoica CS162 ©UCB Spring 2011 Lec 24.26

4/25

What Can You Run in Cloud Computing?

+ Almost everything!
+ Virtual Machine instances
« Storage services
— Simple Storage Service (S3)
— Elastic Block Storage (RBS)
+ Databases:
— Database instances (e.g., mySQL, SQL Server, ...)
— SimpleDB
+ Content Distribution Network: CloudFront
+ MapReduce: Amazon Elastic MapReduce

lon Stoica CS162 ©UCB Spring 2011 Lec 24.28

What is MapReduce?

+ Data-parallel programming model for clusters of
commodity machines

+ Pioneered by Google
— Processes 20 PB of data per day

» Popularized by Apache Hadoop project
— Used by Yahoo!, Facebook, Amazon, ...

4/25 lon Stoica CS162 ©UCB Spring 2011

What is MapReduce Used For?

+ At Google:
—Index building for Google Search
— Article clustering for Google News
— Statistical machine translation
+ At Yahoo!:
— Index building for Yahoo! Search
— Spam detection for Yahoo! Mail
+ At Facebook:
— Data mining
— Ad optimization
— Spam detection

Lec 24.29 4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.30

Example: Facebook Lexicon
(discontinued, February 2010)

Suggestions: skiing, beach | hiphop, techno | happy birthday | eid
B party tonight

Example: Facebook Lexicon
(discontinued, February 2010)

Search: | hola, salut, ciao Q Lexicon
0X0, X0X0X0 midterm, final ight, hangover

Suggestions: vacation |

B4 hola B ciao

ep ct Nov Dec Tlan 1
2007 2008

] (w - —]

(w 1]

www.facebook.com/lexicon
4/25 lon Stoica CS162 ©UCB Spring 2011

www.facebook.com/lexicon
Lec 24.31 4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.32

Page 8

MapReduce Goals

+ Scalability to large data volumes:
—Scan 100 TB on 1 node @ 50 MB/s = 24 days
— Scan on 1000-node cluster = 35 minutes

» Cost-efficiency:
— Commodity nodes (cheap, but unreliable)
— Commodity network (low bandwidth)
— Automatic fault-tolerance (fewer admins)
— Easy to use (fewer programmers)

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.34

Hadoop Cluster

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.36

Page 9

Typical Hadoop Cluster

Aggregation switch

Zans TN

Node Node Node Node Node Node
—

 E) e =
oiocloloEoBe

<—> 8 gigabit
<—» 1 gigabit

* 40 nodes/rack, 1000-4000 nodes in cluster
» 1 Gbps bandwidth in rack, 8 Gbps out of rack

* Node specs (Facebook):
8-16 cores, 32-48 GB RAM, 10x2TB disks

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.35

Challenges of Cloud
Environment

+ Cheap nodes fail, especially when you have many
—Mean time between failures for 1 node = 3 years
—MTBF for 1000 nodes = 1 day
— Solution: Build fault-tolerance into system

« Commodity network = low bandwidth
— Solution: Push computation to the data

* Programming distributed systems is hard

— Solution: Restricted programming model: users write
data-parallel “map” and “reduce” functions, system
handles work distribution and failures

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.37

Hadoop Components

+ Distributed file system (HDFS)
— Single namespace for entire cluster
— Replicates data 3x for fault-tolerance

+ MapReduce framework
— Runs jobs submitted by users
— Manages work distribution & fault-tolerance
— Colocated with file system

& ERbED

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.38

MapReduce Programming Model

+ Data type: key-value records

+ Map function:
(Kinv Vin) > IiSt(Kinter! Vinter)

+ Reduce function:
(Kinterf IiSt(Vinter)) > IiSt(Kouv Vout)

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.40

Page 10

Hadoop Distributed File System
(HDFS)

+ Files split into 128MB blocks

+ Blocks replicated across
several datanodes (often 3)

+ Namenode stores metadata
(file names, locations, etc)

+ Optimized for large files,
sequential reads

+ Files are append-only

Namenode

4/25 lon Stoica CS162 ©UCB Spring 2011

Lec 24.39

Example: Word Count

def mapper(line):
foreach word in line.split():
output(word, 1)

def reducer(key, values):
output(key, sum(values))

4/25 lon Stoica CS162 ©UCB Spring 2011

Lec 24.41

Word Count Execution

Input Map Shuffle & Sort Reduce Output
1 the, 1 B
the brown, 1 brown,
quick fox, 1 2
brown fox, 2
fox how, 1
now, 1
the fox the, 3
ate the
mouse ate, 1
cow, 1
how mouse,
now .1
brown quick, 1
cow
4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.42
Word Count with Combiner
Input Map Shuffle & Sort Reduce Output
N the, 1 B
the brown, 1 brown,
quick fox, 1 2
brown fox, 2
fox how, 1
now, 1
the fox Y
ate the
mouse
ate, 1
cow, 1
how mouse, 1 mouse,
now 1
brown quick, 1
cow
4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.44

Page 11

An Optimization: The Combiner

+ Local reduce function for repeated keys produced by
same map

+ For associative ops. like sum, count, max
+ Decreases amount of intermediate data

+ Example: local counting for Word Count:

def combiner(key, values):
output(key, sum(values))

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.43

MapReduce Execution Details

+ Mappers preferentially scheduled on same node or same
rack as their input block

— Minimize network use to improve performance

+ Mappers save outputs to local disk before serving to
reducers

— Allows recovery if a reducer crashes
— Allows running more reducers than # of nodes

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.45

Fault Tolerance in MapReduce

1. If a task crashes:
— Retry on another node
» OK for a map because it had no dependencies
» OK for reduce because map outputs are on disk

— If the same task repeatedly fails, fail the job or ignore
that input block

> Note: For the fault tolerance to work, user tasks
must be deterministic and side-effect-free

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.46

4/25

Fault Tolerance in MapReduce

2. If a node crashes:
— Relaunch its current tasks on other nodes
— Relaunch any maps the node previously ran

» Necessary because their output files were lost along with
the crashed node

lon Stoica CS162 ©UCB Spring 2011 Lec 24.47

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):
— Launch second copy of task on another node

— Take the output of whichever copy finishes first, and kill
the other one

«Critical for performance in large clusters (many possible
causes of stragglers)

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.48

4/25

Takeaways

+ By providing a restricted data-parallel programming
model, MapReduce can control job execution in useful
ways:

— Automatic division of job into tasks
— Placement of computation near data
— Load balancing

— Recovery from failures & stragglers

lon Stoica CS162 ©UCB Spring 2011 Lec 24.49

Conclusions

+ The key challenge of building wide area P2P systems is a
scalable and robust directory/lookup service

— Naptser: centralized location service
— Gnutella: broadcast-based decentralized location service

— CAN, Chord, Tapestry, Pastry: efficient-routing decentralized
solution

+ Cloud computing
— Pay-as-you go services
— Rapidly scale up the service
— Commodity hardware, large scale: failures become the norm

— MapReduce: Data-parallel programming model for clusters of
commodity machines

4/25 lon Stoica CS162 ©UCB Spring 2011 Lec 24.50

Page 13

