
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 24  

DHTs and Cloud Computing"

April 25, 2011!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 24.2!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Distributed Hash Tables (DHTs)"
•  Distribute (partition) a hash table data structure across a

large number of servers!
– Also called, key-value store!

•  Two operations!
– put(key, data); // insert “data” identified by “key”!
– data = get(key); // get data associated to “key” !

key, value

…"

Lec 24.3!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Distributed Hash Tables (DHTs) (contʼd)"
•  Just need a lookup service, i.e., given a key (ID), map it to

machine n!
n = lookup(key);!

•  Invoking put() and get() at node m!

!m.put(key, data) { !
!n = lookup(key); // get node “n” mapping “key”!
!n.store(key, data); // store data at node “n”!

!}!

!data = m.get(key) { !
!n = lookup(key); // get node “n” storing data associated to “key” !
!return n.retrieve(key); // get data stored at “n” associated to “key” !

!}!
Lec 24.4!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Distributed Hash Tables (DHTs) (contʼd)"
•  Many lookup proposals: CAN, Chord, Pastry, Tapestry,

Kademlia, …!

•  Used in practice:!
– p2p: eDonkey (based on Kademlia)!
– Dynamo (Amazon)!
– Cassandra (Facebook)!
– … !

Page 2

Lec 24.5!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Challenges"
•  System churn: machines can fail or exit the system any

time!

•  Scalability: need to scale to 10s or 100s of thousands
machines !

•  Heterogeneity:!
– Latency: 1ms to 1000ms!
– Bandwidth: 32Kb/s to 100Mb/s!
– Nodes stay in system from 10s to a year!

…"

Lec 24.6!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Chord Lookup Service"

•  Associate to each node and item a unique id/key in an
uni-dimensional space 0..2m-1!

– Partition this space across N machines!
– Each id is mapped to the node with the smallest largest ID

(consistent hashing)!

•  Key design decision!
– Decouple correctness from efficiency!

•  Properties !
– Routing table size O(log(N)) , where N is the total number

of nodes!
– Guarantees that a file is found in O(log(N)) steps!

Lec 24.7!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Identifier to Node Mapping Example
(Consistent hashing)"

•  Node 8 maps [5,8]!
•  Node 15 maps [9,15]!
•  Node 20 maps [16, 20]!
•  …!
•  Node 4 maps [59, 4]!

•  Each node maintains a
pointer to its successor!

4

20

32 35

8

15

44

58

Lec 24.8!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Lookup"

•  Each node maintains
pointer to its successor !

•  Route packet (ID, data)
to the node responsible
for ID using successor
pointers!

•  E.g., node=4 lookups
for node responsible for
ID=37 !

4

20

32 35

8

15

44

58

lookup(37)

node=44 is
responsible
for ID=37

Page 3

Lec 24.9!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Stabilization Procedure"
•  Periodic operation performed by each node n to maintain

its successor when new nodes join the system!

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x; // if x better successor, update !
 succ.notify(n); // n tells successor about itself "

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ; // if nʼ is better predecessor, update!

€

∈

€

∈

Lec 24.10!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  Node with id=50
joins the ring!

  Node 50 needs to
know at least one
node already in the
system!
-  Assume known

node is 15!
! !

succ=4
pred=44

succ=nil
pred=nil

succ=58"
pred=35"

Lec 24.11!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=50 sends join(50)
to node 15 !

  n=44 returns node 58 !
  n=50 updates its

successor to 58!
join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58

Lec 24.12!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=50 executes
stabilize()!

  nʼs successor (58)
returns x = 44!

pred=nil

succ=58
pred=35

x=
44

succ=4
pred=44

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

€

∈

succ=58

Page 4

Lec 24.13!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=50 executes
stabilize()!
  x = 44!
  succ = 58!

pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

€

∈

succ=58

Lec 24.14!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=50 executes
stabilize()!
  x = 44!
  succ = 58!

  n=50 sends to itʼs
successor (58)
notify(50)!

pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

€

∈

succ=58

no
tif

y(
50

)

Lec 24.15!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=58 processes
notify(50)!
  pred = 44!
  nʼ = 50!

pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"

€

∈

succ=58

no
tif

y(
50

)

Lec 24.16!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=58 processes
notify(50)!
  pred = 44!
  nʼ = 50!

  set pred = 50!

pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"

€

∈

succ=58

no
tif

y(
50

)

pred=50

Page 5

Lec 24.17!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=44 runs
stabilize()!

  nʼs successor (58)
returns x = 50!

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

€

∈

succ=58

x=50

Lec 24.18!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=44 runs
stabilize()!
  x = 50!
  succ = 58!

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

€

∈

succ=58

Lec 24.19!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=44 runs
stabilize()!
  x = 50!
  succ = 58!

  n=44 sets
succ=50!

pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

€

∈

succ=58

succ=50

Lec 24.20!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=44 runs
stabilize()!

  n=44 sends
notify(44) to its
successor !

pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

€

∈

succ=58

notify(44)

Page 6

Lec 24.21!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=50 processes
notify(44)!
  pred = nil!

pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"

€

∈

succ=58

notify(44)

Lec 24.22!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation"

4

20

32 35

8

15

44

58

50

  n=50 processes
notify(44)!
  pred = nil!

  n=50 sets pred=44!

pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"

€

∈

succ=58

notify(44)

pred=44

Lec 24.23!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Joining Operation (contʼd)"

4

20

32 35

8

15

44

58

50

  This completes the joining
operation!!

succ=58

succ=50

pred=44

pred=50

Lec 24.24!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Achieving Efficiency: finger tables!

80 + 20"
80 + 21"

80 + 22"
80 + 23"

80 + 24"

80 + 25"
(80 + 26) mod 27 = 16"

0
Say m=7

ith entry at peer with id n is first peer with id >=

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

45 80

20
112

96

Page 7

Lec 24.25!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Achieving Robustness"
•  To improve robustness each node maintains the k (> 1)

immediate successors instead of only one successor!

•  Successor S of a node N can send its K-1 successors
to N during Nʼs stabilize() procedure!

Lec 24.26!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Administrivia"
•  Project 4 design due tomorrow: Tuesday, April 26!

•  Project 3 code available!

•  Final exam: Friday, May 13, 8-11am (2060 VLSB)!
– Provide some exam question examples next lecture!

Lec 24.27!4/25! Ion Stoica CS162 ©UCB Spring 2011!

What is Cloud Computing?"
•  “Cloud” refers to large Internet services running on

10,000s of machines (Google, Facebook, etc)!

•  “Cloud computing” refers to services by these
companies that let external customers rent cycles!

– Amazon EC2: virtual machines at 8.5¢/hour, billed hourly!
– Amazon S3: storage at 10-15¢/GB/month!
– Windows Azure: applications using Azure API!

•  Attractive features:!
– Scale: 100s of nodes available in minutes!
– Fine-grained billing: pay only for what you use!
– Ease of use: sign up with credit card, get root access!

Lec 24.28!4/25! Ion Stoica CS162 ©UCB Spring 2011!

What Can You Run in Cloud Computing?"
•  Almost everything!!
•  Virtual Machine instances!
•  Storage services!

– Simple Storage Service (S3)!
– Elastic Block Storage (RBS) !

•  Databases:!
– Database instances (e.g., mySQL, SQL Server, …)!
– SimpleDB!

•  Content Distribution Network: CloudFront!
•  MapReduce: Amazon Elastic MapReduce!
•  …!

Page 8

Lec 24.29!4/25! Ion Stoica CS162 ©UCB Spring 2011!

What is MapReduce?"
•  Data-parallel programming model for clusters of

commodity machines!

•  Pioneered by Google!
– Processes 20 PB of data per day!

•  Popularized by Apache Hadoop project!
– Used by Yahoo!, Facebook, Amazon, …!

Lec 24.30!4/25! Ion Stoica CS162 ©UCB Spring 2011!

What is MapReduce Used For?"
•  At Google:!

– Index building for Google Search!
– Article clustering for Google News!
– Statistical machine translation!

•  At Yahoo!:!
– Index building for Yahoo! Search!
– Spam detection for Yahoo! Mail!

•  At Facebook:!
– Data mining!
– Ad optimization!
– Spam detection!

Lec 24.31!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Example: Facebook Lexicon
(discontinued, February 2010)"

www.facebook.com/lexicon
Lec 24.32!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Example: Facebook Lexicon 
(discontinued, February 2010)"

www.facebook.com/lexicon

Page 9

Lec 24.34!4/25! Ion Stoica CS162 ©UCB Spring 2011!

MapReduce Goals"
•  Scalability to large data volumes:!

– Scan 100 TB on 1 node @ 50 MB/s = 24 days!
– Scan on 1000-node cluster = 35 minutes!

•  Cost-efficiency:"
– Commodity nodes (cheap, but unreliable)!
– Commodity network (low bandwidth)!
– Automatic fault-tolerance (fewer admins)!
– Easy to use (fewer programmers)!

Lec 24.35!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Typical Hadoop Cluster"

•  40 nodes/rack, 1000-4000 nodes in cluster!
•  1 Gbps bandwidth in rack, 8 Gbps out of rack!
•  Node specs (Facebook): 

8-16 cores, 32-48 GB RAM, 10×2TB disks!

Aggregation switch

Rack switch

Lec 24.36!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Hadoop Cluster"

Lec 24.37!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Challenges of Cloud
Environment"

•  Cheap nodes fail, especially when you have many!
– Mean time between failures for 1 node = 3 years!
– MTBF for 1000 nodes = 1 day!
– Solution: Build fault-tolerance into system!

•  Commodity network = low bandwidth!
– Solution: Push computation to the data!

•  Programming distributed systems is hard!
– Solution: Restricted programming model: users write

data-parallel “map” and “reduce” functions, system
handles work distribution and failures!

Page 10

Lec 24.38!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Hadoop Components"

•  Distributed file system (HDFS)!
– Single namespace for entire cluster!
– Replicates data 3x for fault-tolerance!

•  MapReduce framework!
– Runs jobs submitted by users!
– Manages work distribution & fault-tolerance!
– Colocated with file system!

Lec 24.39!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Hadoop Distributed File System
(HDFS)"

•  Files split into 128MB blocks!
•  Blocks replicated across

several datanodes (often 3)!
•  Namenode stores metadata

(file names, locations, etc)!
•  Optimized for large files,

sequential reads!
•  Files are append-only!

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

Lec 24.40!4/25! Ion Stoica CS162 ©UCB Spring 2011!

MapReduce Programming Model"
•  Data type: key-value records!

•  Map function:!
(Kin, Vin) list(Kinter, Vinter)!

•  Reduce function:!
(Kinter, list(Vinter)) list(Kout, Vout)!

Lec 24.41!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Example: Word Count"

def	 mapper(line):	
	 	 	 	 foreach	 word	 in	 line.split():	
	 	 	 	 	 	 	 	 output(word,	 1)	

def	 reducer(key,	 values):	
	 	 	 	 output(key,	 sum(values))	

Page 11

Lec 24.42!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Word Count Execution"

the
quick"
brown

fox"

the fox
ate the
mouse"

how
now"

brown
cow"

Map"

Map"

Map"

Reduce"

Reduce"

brown,
2"

fox, 2"
how, 1"
now, 1"
the, 3"

ate, 1"
cow, 1"
mouse,

1"
quick, 1"

the, 1"
brown, 1"

fox, 1"

quick, 1"

the, 1"
fox, 1"
the, 1"

how, 1"
now, 1"

brown, 1"
ate, 1"

mouse, 1"

cow, 1"

Input" Map" Shuffle & Sort" Reduce" Output"

Lec 24.43!4/25! Ion Stoica CS162 ©UCB Spring 2011!

An Optimization: The Combiner"
•  Local reduce function for repeated keys produced by

same map!
•  For associative ops. like sum, count, max!
•  Decreases amount of intermediate data!

•  Example: local counting for Word Count:!

def	 combiner(key,	 values):	
	 	 	 	 output(key,	 sum(values))	

Lec 24.44!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Word Count with Combiner"

the
quick"
brown

fox"

the fox
ate the
mouse"

how
now"

brown
cow"

Map"

Map"

Map"

Reduce"

Reduce"

brown,
2"

fox, 2"
how, 1"
now, 1"
the, 3"

ate, 1"
cow, 1"
mouse,

1"
quick, 1"

the, 1"
brown, 1"

fox, 1"

quick, 1"

the, 2"
fox, 1"

how, 1"
now, 1"

brown, 1"
ate, 1"

mouse, 1"

cow, 1"

Input" Map" Shuffle & Sort" Reduce" Output"

Lec 24.45!4/25! Ion Stoica CS162 ©UCB Spring 2011!

MapReduce Execution Details"

•  Mappers preferentially scheduled on same node or same
rack as their input block!

– Minimize network use to improve performance!

•  Mappers save outputs to local disk before serving to
reducers!

– Allows recovery if a reducer crashes!
– Allows running more reducers than # of nodes!

Page 12

Lec 24.46!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Fault Tolerance in MapReduce"
1. If a task crashes:!

– Retry on another node!
» OK for a map because it had no dependencies!
» OK for reduce because map outputs are on disk!

–  If the same task repeatedly fails, fail the job or ignore
that input block!

 Note: For the fault tolerance to work, user tasks
must be deterministic and side-effect-free!

Lec 24.47!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Fault Tolerance in MapReduce"
2. If a node crashes:!

– Relaunch its current tasks on other nodes!
– Relaunch any maps the node previously ran!

» Necessary because their output files were lost along with
the crashed node!

Lec 24.48!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Fault Tolerance in MapReduce"
3. If a task is going slowly (straggler):!

– Launch second copy of task on another node!
– Take the output of whichever copy finishes first, and kill

the other one!

• Critical for performance in large clusters (many possible
causes of stragglers)!

Lec 24.49!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Takeaways"
•  By providing a restricted data-parallel programming

model, MapReduce can control job execution in useful
ways:!

– Automatic division of job into tasks!
– Placement of computation near data!
– Load balancing!
– Recovery from failures & stragglers!

Page 13

Lec 24.50!4/25! Ion Stoica CS162 ©UCB Spring 2011!

Conclusions"
•  The key challenge of building wide area P2P systems is a

scalable and robust directory/lookup service!
– Naptser: centralized location service!
– Gnutella: broadcast-based decentralized location service!
– CAN, Chord, Tapestry, Pastry: efficient-routing decentralized

solution !

•  Cloud computing!
– Pay-as-you go services!
– Rapidly scale up the service!
– Commodity hardware, large scale: failures become the norm!
– MapReduce: Data-parallel programming model for clusters of

commodity machines!

