CS162 Spring 2012 - Projects 3 and 4
EC2 Access Guide

(Specification Version 1.0)

EC2

Amazon EC2 is a cloud service that lets users start and stop virtual servers on demand,
termed “instances”. These instances are based off a virtual machine image that can be
specified, termed an Amazon Machine Image (AMI). You are given full and complete access
to your instance (meaning root access), but since it is a virtualized platform, you might still
be sharing physical resources with other EC2 users. We are using “small” EC2 instances,
which means that the level of hardware multiplexing is pretty high, but enough for the minimal
requirements of our projects.

CS162 has been granted a single “master” EC2 account, from which we are spinning
off “subaccounts” for each student. To make this work, we’ve written a number of scripts that
reside on stella.cs.berkeley.edu, which allow you to start, stop, and otherwise manage your own
instances through this master EC2 account. These scripts will also provide you with SSH keys
that will allow you to log into instances that you start. You must use this SSH key to login to your
EC?2 instances. Password SSH access is not enabled. A more detailed description of how to use
these scripts follows under “Using Our EC2 Scripts”.

All of the CS162 instances that are started will be based off of a slightly customized AMI,
which has important packages like svn, javac, vim, and screen installed. Some familiarity with
command line tools is necessary to interact with your machines. You need to be able to run
Java programs on the command line. You are also given root access through sudo on your
own instances, so you can install additional packages and otherwise configure your instance
however you wish.

Email cs162 if you have any suggestions for other packages that would be nice to have included
in the base AMI. Student subaccounts cannot roll their own AMIs, but we are definitely open to
suggestions on how the base one can be improved.

Operational notes

Another word on EC2 terminology. Instances can be launched, started, stopped, and
terminated. Here is a summary of what these operations mean:

e Launch: start a brand new instance based on an AMI

e Stop: pause a running instance, shutting it down but saving local changes

e Start: unpause a previously stopped instance, recovering the saved state

e Terminate: stop an instance and throw away local changes. Have to launch a new AMI.

This means that if you copy your code over, work on it a bit, stop it when you’re done, then start
it back up again later, your code will still be there on the instance. However, if you terminate the
instance, this completely wipes the instance, and you cannot recover any changes you have
made. Terminating an old instance and launching a fresh instance based on the base AMI is a
good way of resetting everything, if you have really messed up the instance somehow.

Using our EC2 scripts

To run our scripts, you must be SSH-ed into stella.cs.berkeley.edu

Follow these steps to set up your account to run EC2 instances:

1. SSH into stella.cs.berkeley.edu using your class login account.

2. Run /share/b/cs162/bin/ec2_monitor --init. This command will create an SSH key pair for
you and add a .pem file to your home directory. You should only need to run --init once
per class login account, but if you accidentally delete your .pem file, you can run --init
again to restore it.

Once you have taken these steps, you are now ready to manage EC2 instances using your
account. Each member of your group can register and manage instances independently. All

management will be done using the /share/b/cs162/bin/ec2_monitor script.!

The --help command will show you how to use the script. Options are:

-h, --help Show this help message and exit.

-i, --init Initialize your class EC2 account. Run once.
-1, --1list List instances that you have access to.

-a, --launch Launch a new instance.

-s STOP, --stop=STOP Stop a running instance.

-S, --stop-all Stop all running instances.

-r RESUME, --resume=RESUME Resume a stopped instance.
-R, --resume-all Resume all stopped instances.

-t TERMINATE, -- Terminate a running or stopped instance.
terminate=TERMINATE

-T, --terminate-all Terminate all of your instances.

TYou may want to edit your $PATH in .bash_profile to include /share/b/cs162/bin/, but only do this if you
are sure of what you are doing.

The --list option will only show instances that you have launched and not yet terminated. Any
stopped instances appearing in this list may be resumed using the --resume= option with the
Instance ID of the instance you wish to resume. Options for stopping and terminating instances
follow a similar pattern.

To manage a particular running instance, obtain the instance’s hostname by using the --list
option. You can then SSH into that instance by running the following command:

ssh -i <keyfile> ec2-user@<hostname>

where <keyfile> is the filename of the .pem file created when you ran --init, and <hostname> is
the instance’s hostname.

Also note that it can take a minute or two to do these operations. Give the instance a minute or
two to boot before deciding you can’t SSH in.

Here is a a short example sequence of commands to ec2_monitor, in which we list instances,
resume a stopped instance, and login to it.

stella [501] ~ # /share/b/cs162/bin/ec2_monitor -1
Instance ID State Uptime Hostname
i-9d840efe stopped 45:26

In this example, instance i-9d840efe is stopped, so we first resume it.

stella [508] ~ # /share/b/cs162/bin/ec2_monitor -r i-9d840efe
Attempting to resume instance i-9d840efe...
Done

We allow a minute or two after seeing this output for Amazon Web Services to actually get the
instance back up. We then verify that it is running.

stella [510] ~ # /share/b/cs162/bin/ec2_monitor -1

Instance ID State Uptime Hostname

i-9d840efe running 00:00 ec2-107-22-0-156.compute-
1.amazonaws.com

Its hostname is ec2-107-22-0-156.compute-1.amazonaws.com. We proceed to login to it.

stella [511] ~ # ssh -i cs162-kl-default.pem ec2-user@ec2-107-22-0-
156.compute-1.amazonaws.com

EC2 billing

Using EC2 costs money. We have been allocated enough EC2 credit that this should not be a

problem, but we are depending on all of you to be responsible with your usage. This basically
boils down to not starting a large number of instances and then leaving them on overnight when
you’re not using them, but let us break it down a little further

Instances are charged at an hourly rate while they are started. The minimum charge per
instance is also a single hour. Instances incur negligible cost when they are stopped, and zero
cost after they have been terminated. This means a few simple rules can keep our costs in line
and everyone happy:

e Do not start a large number of instances. 2-5 is okay, 20 is not. We will not be testing
with 20 instances, and it is rather unnecessary.

e Do not leave instances on when you are not using them. Stop them if you care about
state, or just terminate and blow them away.

e Make sure your instances are stopped or terminated before logging off. It takes
some time.

e Do not start and stop instances frequently in a short timespan. Every time you start
an instance, it charges a minimum of 1 hour of usage, so this behavior can become
expensive quickly.

We are also considering providing accounting scripts to help you monitor your own usage, or
configuring instances to automatically stop themselves after a few hours to prevent any “| forgot
and left for the weekend” type situations. However, strict enforcement and budgeting should not
be necessary as long as everyone is careful about their usage.

Hints

Using EC2 Effectively

e When working remotely, at some point you will probably want to start a session, run
some commands, log out, and resume the same session again later. screen is a useful
tool for this purpose, and we recommend that you learn how to use it for this project.
Here is a very simple tutorial on how to use screen and which commands are most

important to know: http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/

Specification Changelog

Version 1.0
e Initial release

http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/
http://www.mattcutts.com/blog/a-quick-tutorial-on-screen/

