
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 2  
 

Concurrency: 
Processes, Threads, and Address Spaces"

January 28, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

Lec 2.2!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Virtual Machines (Recap)"
•  Software emulation of an abstract machine!

– Give programs illusion they own the machine!
– Make it look like hardware has features you want!

•  Two types of VMs!
– System VM: supports the execution of an entire OS and its

applications (e.g., VMWare Fusion, Parallels Desktop, Xen)!
– Process VM: supports the execution of a single program; this

functionality is typically provided by OS!

Lec 2.3!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

System VMs: Layers of OSs (Recap)"
•  Useful for OS development!

– When OS crashes, restricted to one VM!
– Can aid testing programs on other OSs!

Lec 2.4!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  You will be working with Nachos!
– Simulation environment: Hardware, interrupts, I/O!
– Execution of User Programs running on this platform!
– See the “Projects and Nachos” link off the course home page!

Nachos: Virtual OS Environment (Recap)"

Page 2

Lec 2.5!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Operating System Roles (Recap)"
•  OS as a Traffic Cop:!

– Manages all resources!
–  Settles conflicting requests for resources!
–  Prevent errors and improper use of the computer!

•  OS as a facilitator (“useful” abstractions):!
–  Provides facilities/services that everyone needs!
–  Standard libraries, windowing systems!
– Make application programming easier, faster, less error-prone!

•  Some features reflect both tasks:!
–  File system is needed by everyone (Facilitator) …!
– … but File system must be protected (Traffic Cop)!

Lec 2.6!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Very Brief History of OS"
•  Several Distinct Phases:!

– Hardware Expensive, Humans Cheap !
»  Eniac, … Multics!

– Hardware Cheaper, Humans Expensive !
»  PCs, Workstations, Rise of GUIs!

– Hardware Really Cheap, Humans Really Expensive !
» Ubiquitous devices, Widespread networking!

•  Rapid Change in Hardware Leads to changing OS!
– Batch ⇒ Multiprogramming ⇒ Timesharing ⇒ Graphical UI ⇒

Ubiquitous Devices!
– Gradual Migration of Features into Smaller Machines!

•  Situation today is much like the late 60s!
– Small OS: 100K lines/Large: 10M lines (5M browser!)!
– 100-1000 people-years!

Lec 2.7!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Migration of OS Concepts and Features"

Lec 2.8!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  How do we provide multiprogramming?!
•  What are processes?!
•  How are they related to threads and address

spaces?!

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.!

Page 3

Lec 2.9!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Threads"
•  Unit (“thread”) of execution:!

–  Independent Fetch/Decode/Execute loop!
– Unit of scheduling!
– Operating in some address space"

Lec 2.10!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Fetch"
Exec"

R0"
…"

R31"
F0"
…"

F30"
PC"

…"
Data1"
Data0"

Inst237"
Inst236"

…"
Inst5"
Inst4"
Inst3"
Inst2  
Inst1"
Inst0"

Addr 0"

Addr 232-1"

Recall (61C): What happens during execution?"

•  Execution sequence:!
– Fetch Instruction at PC !
– Decode!
– Execute (possibly using registers)!
– Write results to registers/mem!
– PC = Next Instruction(PC)!
– Repeat !

PC"
PC"
PC"
PC"

Lec 2.11!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Uniprograming vs. Multiprograming"

•  Uniprogramming: one thread at a time!
– MS/DOS, early Macintosh, batch processing!
– Easier for operating system builder!
– Get rid of concurrency (only one thread accessing resources!)!
– Does this make sense for personal computers?!

•  Multiprogramming: more than one thread at a time!
– Multics, UNIX/Linux, OS/2, Windows NT – 8, Mac OS X,

Android, iOS!
– Often called “multitasking”, but multitasking has other

meanings (talk about this later)!

•  ManyCore ⇒ Multiprogramming, right?"
Lec 2.12!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Challenges of Multiprograming"

•  Each application wants to own the machine à virtual
machine abstraction"

•  Applications compete with each other for resources!
– Need to arbitrate access to shared resources à concurrency"
– Need to protect applications from each other à protection"

•  Applications need to communicate/cooperate with each
other à concurrency"

Page 4

Lec 2.13!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Processes"
•  Process: unit of resource allocation and execution!

– Owns memory (address space)!
– Owns file descriptors, file system context, …!
– Encapsulate one or more threads sharing process

resources!
! !!

•  Why processes? !
– Navigate fundamental tradeoff between protection and

efficiency!
– Processes provides memory protection while threads

donʼt (share a process memory)!
– Threads more efficient than processes (later)!

•  Application instance consists of one or more processes !
! Lec 2.14!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

The Basic Problem of Concurrency"
•  The basic problem of concurrency involves resources:!

– Hardware: single CPU, single DRAM, single I/O devices!
– Multiprogramming API: processes think they have exclusive

access to shared resources!
•  OS has to coordinate all activity!

– Multiple processes, I/O interrupts, …!
– How can it keep all these things straight?!

•  Basic Idea: Use Virtual Machine abstraction!
– Simple machine abstraction for processes!
– Multiplex these abstract machines!

•  Dijkstra did this for the “THE system”!
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)!

Lec 2.15!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

How can we give the illusion of multiple
processors?"

vCPU3"vCPU2"vCPU1"

Shared Memory"

•  Assume a single processor. How do we provide the illusion
of multiple processors?!

– Multiplex in time!!
•  Each virtual “CPU” needs a structure to hold:!

– Program Counter (PC), Stack Pointer (SP)!
– Registers (Integer, Floating point, others…?)!

•  How switch from one virtual CPU to the next?!
– Save PC, SP, and registers in current state block!
– Load PC, SP, and registers from new state block!

•  What triggers switch?!
– Timer, voluntary yield, I/O, other things!

vCPU1" vCPU2" vCPU3" vCPU1" vCPU2"

Time "

Lec 2.16!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Properties of this simple multiprogramming
technique"

•  All virtual CPUs share same non-CPU resources!
–  I/O devices the same!
– Memory the same!

•  Consequence of sharing:!
– Each thread can access the data of every other thread

(good for sharing, bad for protection)!
– Threads can share instructions 

(good for sharing, bad for protection)!
– Can threads overwrite OS functions? !

•  This (unprotected) model is common in:!
– Embedded applications!
– Windows 3.1/Early Macintosh (switch only with yield)!
– Windows 95—ME (switch with both yield and timer)!

Page 5

Lec 2.17!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Modern Technique:  
Simultaneous MultiThreading/Hyperthreading"
•  Hardware technique !

– Exploit natural properties 
of superscalar processors 
to provide illusion of  
multiple processors!

– Need to replicate registers,  
but higher utilization of  
processor resources!

•  Can schedule each thread  
as if were separate CPU!

– But, non-linear speedup!!
•  Original technique called “Simultaneous Multithreading”!

– See http://www.cs.washington.edu/research/smt/index.html !
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5!

Lec 2.18!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

How to protect threads from one
another?"

1.  Protection of memory!
–  Every thread does not have access to all memory!

2.  Protection of I/O devices!
–  Every thread does not have access to every device!

3.  Protection of access to processor: preemptive
switching from thread to thread!
–  Use of timer!
–  Must not be possible to disable timer from usercode!

Lec 2.19!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Program
 A

ddress Space"

Recall: Programʼs Address Space"
•  Address space ⇒ the set of accessible

addresses + associated states:!
– For a 32-bit processor there are 232 = 4

billion addresses!

•  What happens when you read or write
to an address?!

– Perhaps nothing!
– Perhaps acts like regular memory!
– Perhaps ignores writes!
– Perhaps causes I/O operation!

»  (Memory-mapped I/O)!
– Perhaps causes exception (fault)!

Lec 2.20!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Providing Illusion of Separate Address Space: 
Load new Translation Map on Switch"

Prog 1"
Virtual"

Address"
Space 1"

Prog 2"
Virtual"

Address"
Space 2"

Code"
Data"
Heap"
Stack"

Code"
Data"
Heap"
Stack"

Data 2"

Stack 1"

Heap 1"

OS heap & "
Stacks"

Code 1"

Stack 2"

Data 1"

Heap 2"

Code 2"

OS code"

OS data"Translation Map 1" Translation Map 2"

Physical Address Space"

Page 6

Lec 2.21!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia"
•  We are using Piazza instead of the newsgroup!

– Got to http://www.piazza.com/berkeley/spring2013/cs162!
– Make an account and join Berkeley, CS 162!
– Please ask questions on Piazza instead of emailing TAs!

•  Already registered and need an account form?!
– See a TA after class/section or email cs162@cory!
– Department will process the waitlist until Wednesday!

•  Donʼt know Java well?!
– Take CS 9G self-paced Java course!
– Read David Eckʼs free Java book!
!

•  We may have pop quizzes…!

!

Lec 2.22!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia: Project Signup"
•  Project Signup: Use “Group/Section Signup” Link!

–  4-5 members to a group, everyone must attend the same section!
»  The sections assigned to you by Telebears are temporary!!

– Only submit once per group! Due Thu (1/31) by 11:59PM!
»  Everyone in group must have logged into their cs162-xx accounts once

before you register the group, Select at least 3 potential sections!
•  New section assignments: Watch “Group/Section Assignment” Link!

–  Attend new sections NEXT week!

!
Section! Time! Location! TA!

101! Tu 10:00A-11:00A ! 6 Evans! David!
102! Tu 11:00A-12:00P ! 75 Evans! David!
103! Tu 1:00P-2:00P ! 75 Evans! Neeraja!
104! Tu 3:00P-4:00P ! 2070 VLSB! Daniel!
105! Tu 11:00A-12:00P ! 3105 Etcheverry! Daniel!
106! Tu 1:00P-2:00P! 385 LeConte! Wesley!
107! Tu 2:00P-3:00P! 71 Evans! Neeraja!
108! Tu 6:00P-7:00P! 71 Evans! Wesley!

Lec 2.23!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia: Projects"
•  First two projects are based on Nachos!

– Start reading walkthrough and code NOW!

•  Second two projects will add more OS and systems
components: in-memory key-value store!

– Project 3: single server key-value store:!
»  PUT/GET RPCs, in-memory hash-table management!

– Project 4: distributed key-value store:!
»  Two phase commit for replication, data/communication

encryption!
!
!

Lec 2.24!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia: Laptop/Smartphone Policy"

•  Discussion sections: closed-laptop/smartphone policy !

•  Lecture: !
– Closed laptops and smartphones, highly preferred!
–  If you really have to use a laptop, please stay in the back

of the class (to minimize disruption) !

Page 7

Lec 2.25!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

Lec 2.26!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Traditional UNIX Process"
•  Process: Operating system abstraction to represent

what is needed to run a single program!
– Often called a “HeavyWeight Process”!
– Formally: a single, sequential stream of execution in its

own address space!
•  Two parts:!

– Sequential program execution stream!
» Code executed as a single, sequential stream of execution

(i.e., thread)!
»  Includes State of CPU registers!

– Protected resources:!
» Main memory state (contents of Address Space)!
»  I/O state (i.e. file descriptors)!

•  Important: There is no concurrency in a heavyweight
process!

Lec 2.27!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Process  
Control"
Block"

How do we Multiplex Processes?"
•  The current state of process held in a process

control block (PCB):!
– This is a “snapshot” of the execution and

protection environment!
– Only one PCB active at a time!

•  Give out CPU time to different processes
(Scheduling):!

– Only one process “running” at a time!
– Give more time to important processes!

•  Give pieces of resources to different
processes (Protection):!

– Controlled access to non-CPU resources!
– Example mechanisms: !

» Memory Mapping: Give each process their own
address space!

»  Kernel/User duality: Arbitrary multiplexing of I/O
through system calls!

Lec 2.28!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

CPU Switch From Process to Process"

•  This is also called a “context switch”!
•  Code executed in kernel above is overhead !

– Overhead sets minimum practical switching time!
– Less overhead with SMT/Hyperthreading, but… contention

for resources instead!

Page 8

Lec 2.29!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Lifecycle of a Process"

•  As a process executes, it changes state:!
– new: The process is being created!
–  ready: The process is waiting to run!
–  running: Instructions are being executed!
– waiting: Process waiting for some event to occur!
–  terminated: The process has finished execution!

Lec 2.30!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Process Scheduling"

•  PCBs move from queue to queue as they change state!
– Decisions about which order to remove from queues are

Scheduling decisions!
– Many algorithms possible (few weeks from now)!

Lec 2.31!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

What does it take to create a process?"
•  Must construct new PCB !

–  Inexpensive!

•  Must set up new page tables for address space!
– More expensive!

•  Copy data from parent process? (Unix fork())!
– Semantics of Unix fork() are that the child process gets a

complete copy of the parent memory and I/O state!
– Originally very expensive!
– Much less expensive with “copy on write”!

•  Copy I/O state (file handles, etc)!
– Medium expense!

Lec 2.32!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Process =? Program"

•  More to a process than just a program:!
– Program is just part of the process state!
–  I run emacs on lectures.txt, you run it on homework.java –

same program, different processes!
•  Less to a process than a program:!

– A program can invoke more than one process!
– cc starts up cpp, cc1, cc2, as, and ld!

main () {"

 …;"

}"

A() {"

 …"
}"

main () {"

 …;"

}"

A() {"

 …"
}"

Heap"
"
"
"

Stack"
"
A"

main"

Program" Process"

Page 9

Lec 2.33!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Multiple Processes Collaborate on a Task"

•  Need Communication mechanism:!
– Separate address spaces isolates processes!
– Shared-Memory Mapping!

»  Accomplished by mapping addresses to common DRAM!
» Read and Write through memory!

– Message Passing!
» send() and receive() messages!
» Works across network!

Proc 1" Proc 2" Proc 3"

Lec 2.34!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Shared Memory Communication"

Prog 1"
Virtual"

Address"
Space 1"

Prog 2"
Virtual"

Address"
Space 2"

Data 2"
Stack 1"
Heap 1"
Code 1"
Stack 2"
Data 1"
Heap 2"
Code 2"
Shared"

•  Communication occurs by “simply” reading/writing to
shared address page!

– Really low overhead communication!
–  Introduces complex synchronization problems!

Code"
Data"
Heap"
Stack"

Shared"

Code"
Data"
Heap"
Stack"

Shared"

Lec 2.35!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Inter-process Communication (IPC)"
•  Mechanism for processes to communicate and to

synchronize their actions!
•  Message system – processes communicate with each

other without resorting to shared variables!
•  IPC facility provides two operations:!

– send(message) – message size fixed or variable !
– receive(message)

•  If P and Q wish to communicate, they need to:!
– establish a communication channel between them!
– exchange messages via send/receive!

•  Implementation of communication link!
– physical (e.g., shared memory, hardware bus, syscall/

trap)!
–  logical (e.g., logical properties)!

Lec 2.36!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Modern “Lightweight” Process with Threads"
•  Thread: a sequential execution stream within process

(Sometimes called a “Lightweight process”)!
– Process still contains a single Address Space!
– No protection between threads!

•  Multithreading: a single program made up of a number of
different concurrent activities !

– Sometimes called multitasking, as in Ada …!

•  Why separate the concept of a thread from that of a process?!
– Discuss the “thread” part of a process (concurrency)!
– Separate from the “address space” (protection)!
– Heavyweight Process ≡ Process with one thread!

Page 10

Lec 2.37!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Single and Multithreaded Processes"

•  Threads encapsulate concurrency: “Active” component!
•  Address spaces encapsulate protection: “Passive” part!

– Keeps buggy program from trashing the system!
•  Why have multiple threads per address space?!
! Lec 2.38!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Examples of multithreaded programs"

•  Embedded systems !
– Elevators, Planes, Medical systems, Wristwatches!
– Single Program, concurrent operations!

•  Most modern OS kernels!
–  Internally concurrent because have to deal with concurrent

requests by multiple users!
– But no protection needed within kernel!

•  Database Servers!
– Access to shared data by many concurrent users!
– Also background utility processing must be done!

Lec 2.39!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Examples of multithreaded programs (conʼt)"
•  Network Servers!

– Concurrent requests from network!
– Again, single program, multiple concurrent operations!
– File server, Web server, and airline reservation systems!

•  Parallel Programming (More than one physical CPU)!
– Split program into multiple threads for parallelism!
– This is called Multiprocessing!

•  Some multiprocessors are actually uniprogrammed:!
– Multiple threads in one address space but one program at a

time!

Lec 2.40!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Classification"

•  Real operating systems have either!
– One or many address spaces!
– One or many threads per address space!

Mach, OS/2, HP-UX,
Win NT to 8, Solaris,
OS X, Android, iOS"

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)"
JavaOS, Pilot(PC)"

Traditional UNIX"MS/DOS, early
Macintosh"

Many"

One"

threads"
Per AS:"

Many"One"

of

 a
dd

r
sp

ac
es

:"

Page 11

Lec 2.41!1/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary"
•  Processes have two parts!

– Threads (Concurrency)!
– Address Spaces (Protection)!

•  Concurrency accomplished by multiplexing CPU Time:!
– Unloading current thread (PC, registers)!
– Loading new thread (PC, registers)!
– Such context switching may be voluntary (yield(), I/O

operations) or involuntary (timer, other interrupts)!
•  Protection accomplished restricting access:!

– Memory mapping isolates processes from each other!
– Dual-mode for isolating I/O, other resources!

•  Book talks about processes !
– When this concerns concurrency, really talking about thread

portion of a process!
– When this concerns protection, talking about address space

portion of a process!

