
Page 1 

CS162  
Operating Systems and 
Systems Programming 

Lecture 3  
 

Concurrency and Thread Dispatching "

January 30, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

Lec 3.2!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  Review: Processes and Threads!
•  Thread Dispatching!
•  Cooperating Threads!
•  Concurrency examples!
!

Note: Some slides and/or pictures in the following are adapted from slides 
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D. 
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric 
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.!

Lec 3.3!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Why Processes & Threads?"

•  Multiprogramming: Run multiple applications concurrently!
•  Protection: Donʼt want a bad application to crash system!!

Goals:"

Process: unit of execution and allocation!
•  Virtual Machine abstraction: give process illusion it owns 

machine (i.e., CPU, Memory, and IO device multiplexing)!

Solution:"

•  Process creation & switching expensive!
•  Need concurrency within same app (e.g., web server)  !

Challenge:"

Thread: Decouple allocation and execution!
•  Run multiple threads within same process!

Solution:"

Lec 3.4!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Putting it together: Process"

Memory!

I/O State!
(e.g., file, 
socket 
contexts)!

CPU state 
(PC, SP, 
registers..)!

Sequential 
stream of 
instructions!

A(int tmp) {"
  if (tmp<2)"
    B();"
  printf(tmp);"
}"
B() {"
  C();"
}"
C() {"
  A(2);"
}"
A(1);"
…"

(Unix) Process"

Resources!
Stack!

Stored in OS"



Page 2 

Lec 3.5!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Putting it together: Processes"

…"

Process 1! Process 2! Process N!

CPU 
sched.! OS!

CPU!
(1 core)!

1 process 
at a time!

CPU!
state!

IO!
state!

Mem.!

CPU!
state!

IO!
state!

Mem.!

CPU!
state!

IO!
state!

Mem.!
•  Switch overhead: high!

– CPU state: low"
– Memory/IO state: high!

•  Process creation: high!
•  Protection!

– CPU: yes"
– Memory/IO: yes"

•  Sharing overhead: high 
(involves at least a 
context switch)!

Lec 3.6!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Putting it together: Threads"
Process 1!

CPU 
sched.! OS!

CPU!
(1 core)!

1 thread 
at a time!

IO!
state!

Mem.!

…!

threads!
Process N!

IO!
state!

Mem.!

…!

threads!

…"

•  Switch overhead: low 
(only CPU state)!

•  Thread creation: low"
•  Protection!

– CPU: yes"
– Memory/IO: No!

•  Sharing overhead: 
low (thread switch 
overhead low)!

CPU 
state 

CPU 
state 

CPU 
state 

CPU 
state 

Lec 3.7!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Putting it together: Multi-Cores"
Process 1!

CPU 
sched.! OS!

IO!
state!

Mem.!

…!

threads!
Process N!

IO!
state!

Mem.!

…!

threads!

…"

•  Switch overhead: low 
(only CPU state)!

•  Thread creation: low"
•  Protection!

– CPU: yes"
– Memory/IO: No!

•  Sharing overhead: 
low (thread switch 
overhead low)!

core 1! Core 2! Core 3! Core 4! CPU!

4 threads at 
a time!

CPU 
state 

CPU 
state 

CPU 
state 

CPU 
state 

Lec 3.8!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Putting it together: Hyper-Threading"
Process 1!

CPU 
sched.! OS!

IO!
state!

Mem.!

…!

threads!
Process N!

IO!
state!

Mem.!

…!

threads!

…"

•  Switch overhead 
between hardware-
threads: very-low 
(done in hardware)!

•  Contention for ALUs/
FPUs may hurt 
performance!

!
!

core 1!

CPU!!
!

core 2!

!
!

core 3!

!
!

core 4!

8 threads at 
a time!

hardware-threads!
(hyperthreading)!

CPU 
state 

CPU 
state 

CPU 
state 

CPU 
state 



Page 3 

Lec 3.9!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Classification"

•  Real operating systems have either!
– One or many address spaces!
– One or many threads per address space!

Mach, OS/2, Linux"
Win NT to 8, Solaris, 

HP-UX, OS X"

Embedded systems 
(Geoworks, VxWorks, 

JavaOS,etc)"
JavaOS, Pilot(PC)"

Traditional UNIX"MS/DOS, early 
Macintosh"

Many"

One"

# threads"
per AS:"

Many"One"

# 
of

 a
dd

r 
sp

ac
es

:"

Lec 3.10!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Thread State"
•  State shared by all threads in process/addr space!

– Content of memory (global variables, heap)!
–  I/O state (file system, network connections, etc)!

•  State “private” to each thread !
– Kept in TCB ≡ Thread Control Block!
– CPU registers (including, program counter)!
– Execution stack – what is this?!

•  Execution Stack!
– Parameters, temporary variables!
– Return PCs are kept while called procedures are executing!

Lec 3.11!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.12!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."



Page 4 

Lec 3.13!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.14!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.15!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"

B: ret=addrY"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.16!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"

B: ret=addrY"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."



Page 5 

Lec 3.17!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.18!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.19!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

A: tmp=2"
   ret=addrV"Stack"

Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.20!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

A: tmp=2"
   ret=addrV"Stack"

Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."



Page 6 

Lec 3.21!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

A: tmp=2"
   ret=addrV"Stack"

Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"
2"

Lec 3.22!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"
2"

Lec 3.23!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"

B: ret=addrY"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"
2"

Lec 3.24!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
   ret=addrZ"addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"
2"
1"



Page 7 

Lec 3.25!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Execution Stack Example"

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"
2"
1"

Lec 3.26!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Single-Threaded Example"
•  Imagine the following C program: 
!
 main() { 
    ComputePI(“pi.txt”); 

    PrintClassList(“clist.text”); 
 } 

!
•  What is the behavior here?!

– Program would never print out class list!
– Why? ComputePI would never finish!

Lec 3.27!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Use of Threads"
•  Version of program with Threads: 
!
 main() { 
    CreateThread(ComputePI(“pi.txt”)); 
    CreateThread(PrintClassList(“clist.text”)); 
 } 
!
•  What does “CreateThread” do?!

– Start independent thread running given procedure!
•  What is the behavior here?!

– Now, you would actually see the class list!
– This should behave as if there are two separate CPUs!

CPU1" CPU2" CPU1" CPU2"

Time "

CPU1" CPU2"

Lec 3.28!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Memory Footprint of Two-Thread 
Example"

•  If we stopped this program and examined it with a 
debugger, we would see!

– Two sets of CPU registers!
– Two sets of Stacks!

•  Questions: !
– How do we position stacks relative to  

each other?!
– What maximum size should we choose  

for the stacks?!
– What happens if threads violate this?!
– How might you catch violations?!

Code"

Global Data"

Heap"

Stack 1"

Stack 2"

A
ddress Space"



Page 8 

Lec 3.29!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Per Thread State"
•  Each Thread has a Thread Control Block (TCB)!

– Execution State: CPU registers, program counter (PC), pointer 
to stack (SP)!

– Scheduling info: state, priority, CPU time!
– Various Pointers (for implementing scheduling queues)!
– Pointer to enclosing process (PCB)!
– Etc (add stuff as you find a need)!

•  OS Keeps track of TCBs in protected memory!
–  In Array, or Linked List, or …!

Lec 3.30!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Lifecycle of a Thread (or Process)"

•  As a thread executes, it changes state:!
– new:  The thread is being created!
–  ready:  The thread is waiting to run!
–  running:  Instructions are being executed!
– waiting:  Thread waiting for some event to occur!
–  terminated:  The thread has finished execution!

•  “Active” threads are represented by their TCBs!
– TCBs organized into queues based on their state!

Lec 3.31!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Ready Queue And Various I/O Device Queues"
•  Thread not running ⇒ TCB is in some scheduler queue!

–  Separate queue for each device/signal/condition !
–  Each queue can have a different scheduler policy!



Other 
State 
TCB9 

Link 
Registers 



Other 
State 
TCB6 

Link 
Registers 



Other 
State 
TCB16 

Link 
Registers 



Other 
State 
TCB8 

Link 
Registers 



Other 
State 
TCB2 

Link 
Registers 



Other 
State 
TCB3 

Link 
Registers 

Head 
Tail 

Head 
Tail 

Head 
Tail 

Head 
Tail 

Head 
Tail 

Ready 
Queue 

SSD 
Unit 0 

Disk 
Unit 0 

Disk 
Unit 2 

Ether 
Netwk 0 

Lec 3.32!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia: Project Signup"
•  Project Signup: Use “Group/Section Signup” Link!

–  4-5 members to a group, everyone must attend the same section!
»  Use Piazza pinned teammate search thread (please close when done!)!

– Only submit once per group! Due Thu (1/31) by 11:59PM!
»  Everyone in group must have logged into their cs162-xx accounts once 

before you register the group, Select at least 3 potential sections!
•  New section assignments: Watch “Group/Section Assignment” Link!

–  Attend new sections NEXT week!

!
Section! Time! Location! TA!

101! Tu 10:00A-11:00A ! 6 Evans! David!
102! Tu 11:00A-12:00P ! 75 Evans! David!
103! Tu 1:00P-2:00P ! 75 Evans! Neeraja!
104! Tu 3:00P-4:00P ! 2070 VLSB! Daniel!
105! Tu 11:00A-12:00P ! 3105 Etcheverry! Daniel!
106! Tu 1:00P-2:00P! 385 LeConte! Wesley!
107! Tu 2:00P-3:00P! 71 Evans! Neeraja!
108! Tu 6:00P-7:00P! 71 Evans! Wesley!



Page 9 

Lec 3.33!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

Lec 3.34!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Dispatch Loop"
•  Conceptually, the dispatching loop of the operating system looks 

as follows: 
!
  Loop { 

     RunThread();  

     ChooseNextThread(); 

     SaveStateOfCPU(curTCB); 

     LoadStateOfCPU(newTCB); 

  } 

 

•  This is an infinite loop!
– One could argue that this is all that the OS does!

Lec 3.35!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Running a thread"
Consider first portion:   RunThread()!

•  How do I run a thread?!
– Load its state (registers, stack pointer) into CPU!
– Load environment (virtual memory space, etc)!
– Jump to the PC!

•  How does the dispatcher get control back?!
–  Internal events: thread returns control voluntarily!
– External events: thread gets preempted!
!

Lec 3.36!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Yielding through Internal Events"
•  Blocking on I/O!

– The act of requesting I/O implicitly yields the CPU!
•  Waiting on a “signal” from other thread!

– Thread asks to wait and thus yields the CPU!
•  Thread executes a yield() 

– Thread volunteers to give up CPU!
  computePI() { 
      while(TRUE) { 
         ComputeNextDigit(); 
         yield(); 
      } 
   } 
– Note that yield() must be called by programmer frequently 

enough!!



Page 10 

Lec 3.37!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Stack for Yielding Thread"

•  How do we run a new thread?!
  run_new_thread() { 
     newThread = PickNewThread(); 
     switch(curThread, newThread); 
     ThreadHouseKeeping(); /* deallocates finished threads */ 
  } 

•  Finished thread not killed right away. Why?!
– Move them in “exit/terminated” state!
–  ThreadHouseKeeping() deallocates finished threads!

yield"

ComputePI" Stack grow
th"run_new_thread"

kernel_yield"
Trap to OS"

switch"

Lec 3.38!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Stack for Yielding Thread"

•  How do we run a new thread?!
  run_new_thread() { 
     newThread = PickNewThread(); 
     switch(curThread, newThread); 
     ThreadHouseKeeping(); /* deallocates finished threads */ 
  } 

•  How does dispatcher switch to a new thread?!
– Save anything next thread may trash: PC, regs, SP!
– Maintain isolation for each thread!

yield"

ComputePI" Stack grow
th"run_new_thread"

kernel_yield"
Trap to OS"

switch"

Lec 3.39!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Two Thread Yield Example"
•  Consider the following 

code blocks:!
!     proc A() {   

     B();  
  

  } 

  proc B() { 

     while(TRUE) { 

        yield(); 

     } 
  } 

•  Suppose we have two 
threads:!

– Threads S and T!

Thread S"

St
ac

k 
gr

ow
th
"

A"

B(while)"

yield"

run_new_thread"

switch"

kernel_yield"

Thread T"

A"

B(while)"

yield"

run_new_thread"

switch"

kernel_yield"

Lec 3.40!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Detour: Interrupt Controller"

•  Interrupts invoked with interrupt lines from devices!
•  Interrupt controller chooses interrupt request to honor!

– Mask enables/disables interrupts!
–  Priority encoder picks highest enabled interrupt !
–  Software Interrupt Set/Cleared by Software!
–  Interrupt identity specified with ID line!

•  CPU can disable all interrupts with internal flag!
•  Non-maskable interrupt line (NMI) canʼt be disabled!

Network"

IntID"

Interrupt"

Interrupt M
ask"

Control"Software"
Interrupt" NMI"

CPU"

Priority Encoder"

Tim
er"

Int Disable"



Page 11 

Lec 3.41!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Preemptive Multithreading"
•  Use the timer interrupt to force scheduling decisions!

•  Timer Interrupt routine: 
!TimerInterrupt() { 
    DoPeriodicHouseKeeping();  
    run_new_thread(); 
 } 

•  This is often called preemptive multithreading, since threads 
are preempted for better scheduling!

– Solves problem of user who doesnʼt insert yield();!

Some Routine"

run_new_thread"

TimerInterrupt"
Interrupt"

switch"

Stack grow
th"

Lec 3.42!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Why allow cooperating threads?"
•  People cooperate; computers help/enhance peopleʼs lives, so 

computers must cooperate!
– By analogy, the non-reproducibility/non-determinism of people is 

a notable problem for “carefully laid plans”!
•  Advantage 1: Share resources!

– One computer, many users!
– One bank balance, many ATMs!

» What if ATMs were only updated at night?!
– Embedded systems (robot control: coordinate arm & hand)!

•  Advantage 2: Speedup!
– Overlap I/O and computation!
– Multiprocessors – chop up program into parallel pieces!

•  Advantage 3: Modularity !
– Chop large problem up into simpler pieces!

»  To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld!
» Makes system easier to extend!

Lec 3.43!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Threaded Web Server"

•  Multithreaded version:!
serverLoop() { 
    connection = AcceptCon(); 
    ThreadCreate(ServiceWebPage(),connection); 
 } 

•  Advantages of threaded version:!
– Can share file caches kept in memory, results of CGI scripts, 

other things!
– Threads are much cheaper to create than processes, so this 

has a lower per-request overhead!
•  What if too many requests come in at once?!

Lec 3.44!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Thread Pools"
•  Problem with previous version: Unbounded Threads!

– When web-site becomes too popular – throughput sinks!
•  Instead, allocate a bounded “pool” of threads, representing 

the maximum level of multiprogramming!
   

master() { 
   allocThreads(slave,queue); 
   while(TRUE) { 
      con=AcceptCon(); 
      Enqueue(queue,con); 
      wakeUp(queue); 
   } 
} 

slave(queue) { 
   while(TRUE) { 
      con=Dequeue(queue); 
      if (con==null) 
         sleepOn(queue); 
      else 
         ServiceWebPage(con); 
   } 
} 

Master 
Thread 

Thread Pool 

qu
eu

e 



Page 12 

Lec 3.45!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

ATM Bank Server"

•  ATM server problem:!
– Service a set of requests!
– Do so without corrupting database!
– Donʼt hand out too much money!

Lec 3.46!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

ATM bank server example"
•  Suppose we wanted to implement a server process to 

handle requests from an ATM network:!
!BankServer() { 
   while (TRUE) { 
      ReceiveRequest(&op, &acctId, &amount); 
      ProcessRequest(op, acctId, amount); 
   } 
} 
 ProcessRequest(op, acctId, amount) { 
   if (op == deposit) Deposit(acctId, amount); 
   else if … 
} 
 Deposit(acctId, amount) { 
   acct = GetAccount(acctId); /* may use disk I/O */ 
   acct->balance += amount; 
   StoreAccount(acct); /* Involves disk I/O */ 
} 

•  How could we speed this up?!
– More than one request being processed at once!
– Multiple threads (multi-proc, or overlap comp and I/O)!

Lec 3.47!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Can Threads Help?"
•  One thread per request!!

•  Requests proceeds to completion, blocking as required:!
  Deposit(acctId, amount) { 
   acct = GetAccount(actId); /* May use disk I/O */ 
   acct->balance += amount; 
   StoreAccount(acct);   /* Involves disk I/O */ 
 }!

•  Unfortunately, shared state can get corrupted: 
! !Thread 1 ! !Thread 2  
!!load r1, acct->balance 
   load r1, acct->balance 
   add r1, amount2 
   store r1, acct->balance 
 add r1, amount1 
 store r1, acct->balance 
 

Lec 3.48!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so 

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! !    x = y+1; !   y = y*2;!

– What are the possible values of x?   !
!                     Thread A !Thread B!
! !x = 1; !!
! !    x = y+1; !!

                                                             y = 2;!
                                                             y = y*2!

x=13"



Page 13 

Lec 3.49!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so 

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! !    x = y+1; !   y = y*2;!

– What are the possible values of x?   !
!                     Thread A !Thread B!
!!                                                                      y = 2; !!
!!                                                                      y = y*2; !!

               x = 1;!
               x = y+1;!

x=5"

Lec 3.50!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so 

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! !    x = y+1; !   y = y*2;!

– What are the possible values of x?   !
!                     Thread A !Thread B!
!!                                                                      y = 2; !!
! !  x = 1; !!

               x = y+1;!
                                                             y= y*2;!

x=3"

Lec 3.51!1/30/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary"

•  Concurrent threads are a very useful abstraction!
– Allow transparent overlapping of computation and I/O!
– Allow use of parallel processing when available!

•  Concurrent threads introduce problems when accessing 
shared data!

– Programs must be insensitive to arbitrary interleavings!
– Without careful design, shared variables can become 

completely inconsistent!

•  Next lecture: deal with concurrency problems!


