CS162
Operating Systems and
Systems Programming

Lecture 3

Concurrency and Thread Dispatching

January 30, 2013
Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

Goals for Today

» Review: Processes and Threads
+ Thread Dispatching

« Cooperating Threads

» Concurrency examples

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, lon Stoica, Doug Tygar, and David Wagner.

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec3.2

Why Processes & Threads?
Goals:

p
* Multiprogramming: Run multiple applications concurrently

+ Protection: Don’t want a bad application to crash system!
J

~N

Solution: U

(Process: unit of execution and allocation
+ Virtual Machine abstraction: give process illusion it owns
__machine (i.e., CPU, Memory, and 10 device multiplexing)

J

Challenge:
p

© Need concurrency within same app (e.g., web server)

Solution:

(Thread: Decouple allocation and execution
| * Run multiple threads within same process

» Process creation & switching expensive]

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.3

Putting it together: Process

(Unix) Process

(/A(im tmp){) \ _
if (tmp<2)
B(); Memory
printf(tmp);
} | oo]
— | [e
Sequential C(); s dgk;et ’
stream of }
; . contexts)
instructions \ co{ -
L N
e CPU state
} (PC, SP, Stored in OS
\ AQ1); registers..)
L
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.4

Putting it together: Processes

Process 2 Process N

Process 1

+ Switch overhead: high

— CPU state:

— Memory/IO state: high
* Process creation: high
* Protection

- CPU:

— Memory/IO:

+ Sharing overhead: high
(involves at least a
context switch)

Mem.
10
state
CPU
state

(OF]

1 process

at a time
CPU
(1 core)

Anthony D. Joseph CS162 ©UCB Spring 2013

&
<

1/30/13 Lec 3.5

Putting it together: Multi-Cores
Process N
threads

Process 1
threads

CPU
state

« Switch overhead:
(only CPU state)

+ Thread creation:
+ Protection

- CPU:

— Memory/IO: No

+ Sharing overhead:
(thread switch
overhead low)

4 threads at
atime

Core 4 | |[CPU

Anthony D. Joseph CS162 ©UCB Spring 2013

1/30/13 Lec 3.7

Page 2

Putting it together: Threads
Process N
threads

Process 1
threads

« Switch overhead:

(only CPU state)
» Thread creation:

+ Protection
- CPU:
— Memory/IO: No

+ Sharing overhead:
(thread switch
overhead low)

(OR]

\ ,ﬁ 1 thread

at a time
CPU
(1 core)

Anthony D. Joseph CS162 ©UCB Spring 2013

1/30/13 Lec 3.6

Putting it together: Hyper-Threading

Process 1

Process N
threads

threads

« Switch overhead
between hardware-
threads:

(done in hardware)

+ Contention for ALUs/
FPUs may hurt
performance

CPU
state state

oS
8 threads at

hardware-threads
(hyperthreading)

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.8

Classification
TS ®
£
u One Man
threads : & Y
per AS:
MS/DOS, early -
One Macintosh Traditional UNIX
Embedded systems :
(Geoworks, VxWorks, AT O L|nu.x
Many JavaOS,etc) Win NT to 8, Solaris,
JavaOs, Pilot(PC) HEsRE SR
+ Real operating systems have either
— One or many address spaces
— One or many threads per address space
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.9

Review: Execution Stack Example

addrX:| A(int tmp) {
’ if (tmp<2)
B();
addrY:| printf(tmp);
}

B(){

C();

addrU:| }
cO{ .
+ Stack holds function arguments,
A(2);
return address
addrV: . . .
. ;(1) « Permits recursive execution
: o + Crucial to modern languages
addrz: |_exit;
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.11

Page 3

Thread State

+ State shared by all threads in process/addr space
— Content of memory (global variables, heap)
— /0 state (file system, network connections, etc)

+ State “private” to each thread
— Kept in TCB = Thread Control Block
— CPU registers (including, program counter)
— Execution stack — what is this?

+ Execution Stack
— Parameters, temporary variables
— Return PCs are kept while called procedures are executing

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.10

Review: Execution Stack Example

. A: tmp=1
addrX:| A(int tmp) { Stack R ret=l;ddrz
: if (tmp<2) Pointer l
B();
Stack Growth

addrY:| printf(tmp);
}
B(){

(%4

addrU: | }
CcO{ .
+ Stack holds function arguments,
A(2);
return address
addrV: . . .
. :(1) « Permits recursive execution
) _’ + Crucial to modern languages
addrz: |_exit;
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.12

Review: Execution Stack Example

A: tmp=1
addrX: [A(int tmp) { Stack | retuaddrz
: if (tmp<2) Pointer l
B();
addrY:| printf(tmp); Stack Growth
}
B() {
CO;
addrU: | }
cO{ .
AQ): + Stack holds function arguments,
’ return address
ad'f'rv: :(1) » Permits recursive execution
) 7 + Crucial to modern languages
addrZ: |_exit;
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.13
Review: Execution Stack Example
. A: tmp=1
addrX:| A(int tmp) { ret=';der
if (tmp<2) B: ret=addrY
B(); Stack >
addrY:| printf(tmp); Pointer l
} Stack Growth
B() {
C0;
addrU: | }
co{ .
AQ): + Stack holds function arguments,
’ return address
a"‘."‘” :(1) » Permits recursive execution
) 7 + Crucial to modern languages
addrz: |_exit;

1/30/13

Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.15

addrV:

1/30/13

Review: Execution Stack Example

addrX:

addrY:

addrU:

addrZ:

Aint tmp) { Stack o Alr;T:Z:i:irZ

if (tmp<2) Pointer l

B();

printf(tmp); Stack Growth
}
B() {

CO;
}
C0O{ .

AQ); + Stack holds function arguments,

return address
)) + Permits recursive execution
:((:t) + Crucial to modern languages
! Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.14

1/30/13

addrX:

addrY:

addrU:

addrV:

addrZ:

Review: Execution Stack Example

. A: tmp=1
A(int tmp) { ret=l:|ddrz
if (tmp<2) B: ret=addrY
B(); Stack .
printf(tmp); Pointer l
} Stack Growth
B(){
C();
}
CcO{ .
+ Stack holds function arguments,
A(2);
return address
:(1) « Permits recursive execution
_t’ + Crucial to modern languages
exit;
Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.16

Page 4

Review: Execution Stack Example

. A: tmp=1
addrX:| Aint tmp) { etonddrZ
’ if (tmp<2
if (tmp<2) B: ret=addrY
B();
: intf(tmp); C: ret=addrU
addrY printf(tmp) Stack R
} Pointer l
BO{ Stack Growth
CO;
addrU: | }
C0O{ .
AQ); + Stack holds function arguments,
’ return address
V: . . .
ad'flr :(1) « Permits recursive execution
: 7 + Crucial to modern languages
addrZ: |_exit;
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.17
Review: Execution Stack Example
. A: tmp=1
addrX:| Aint tmp) { etanddrZ
) if 2
if (tmp<2) B: ret=addrY
B();
addrY:| printf(tmp); C: ret=addrU
} A: tmp=2
B(){ Stack | ret=addrV
Pointer
C0; l
addruU: | } Stack Growth
.| cot _
AQ); + Stack holds function arguments,
’ return address
V: . . .
ad(.’r ;(1) « Permits recursive execution
) 7 + Crucial to modern languages
addrz: |_exit;

1/30/13

Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.19

addrX:

addrY:

addrU:

addrV:

addrZ:
1/30/113

Review: Execution Stack Example

. A: tmp=1
A(int tmp) { ret=addrZ
if (tmp<2
if (tmp<2) B: ret=addrY
B();
intf(t ; C: ret=addrU
printf(tmp) Stack —
} Pointer l
BO{ Stack Growth
CO;
}
CO{ .
+ Stack holds function arguments,
A(2);
return address
;(1) » Permits recursive execution
_t’ + Crucial to modern languages
exit;
Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.18

addrV:

addrZ:
1/30113

Review: Execution Stack Example

addrX:

addrY:

addrU:

. A: tmp=1
A(int tmp) { ret=addrZ
if
i (tmp<2) B: ret=addrY
B();
printf(tmp); C: ret=addrU
} A: tmp=2
B { Stack | ret=addrV
Pointer
C(); l
} Stack Growth
CO{ .
+ Stack holds function arguments,
A(2);
return address
:(1) « Permits recursive execution
_t’ + Crucial to modern languages
exit;
Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.20

Page 5

addrX:

addrY:

addrU:

addrV:

addrZ:

1/30/13

Review: Execution Stack Example

A(int tmp) {

if (tmp<2)
B();

printf(tmp);

}

B(){
C();

}

CO{
A(2);

}

A(1);

exit;

A: tmp=1
ret=addrZ

B: ret=addrY

C: ret=addrU

Stack >

A: tmp=2
ret=addrV

Pointer

}

Stack Growth

Output:
2

Anthony D. Joseph CS162 ©UCB Spring 2013

Lec 3.21

addrX:

addrY:

addrU:

addrV:

addrz:

1/30/13

Review: Execution Stack Example

A(int tmp) {

if (tmp<2)
B();

printf(tmp);

}

B(){
C();

}

CO{
A(2);

}

A(1);

exit;

Stack >

A: tmp=1
ret=addrZ

B: ret=addrY

Pointer

]

Stack Growth

Output:
2

Anthony D. Joseph CS162 ©UCB Spring 2013

Lec 3.23

Page 6

Review: Execution Stack Example

. A: tmp=1
addrX:| A(int tmp) { ret=I;der
’ if (tmp<2
if (tmp<2) B: ret=addrY
B();
. i . C: ret=addrU
addrY:| printf(tmp); Stack R
} Pointer l
B(){ Stack Growth
C();
addrU: | }
C0O{ Output:
A(2); 2
addrV: | }
: A(1);
addrz: [_exit;
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.22
Review: Execution Stack Example
. A: tmp=1
addrX:| A(int tmp) { Stack ret=addrz
if (tmp<2) Pointer l
BO; Stack Growth
addrY:| printf(tmp);
}
B(){
C();
addrU: | }
CO{ Output:
A(2); 2
addrVv: | } 1
: A(1);
addrz: [_exit;
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.24

Review: Execution Stack Example

addrX:| A(int tmp) {
’ if (tmp<2)
B();
addrY:| printf(tmp);
}
B(){
C();
addrU: | }
co¢ Output:
A(2); 2
addrV: | } 1
o A
addrz: |_exit;

Lec 3.25

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013

Use of Threads
* Version of program with Threads:

main () |
CreateThread (ComputePI (“pi.txt”));
CreateThread (PrintClassList (“clist.text”));

+ What does “CreateThread” do?
— Start independent thread running given procedure
+ What is the behavior here?
— Now, you would actually see the class list
— This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

Time

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.27

Page 7

Single-Threaded Example

+ Imagine the following C program:

main () {
ComputePI (“pi.txt”);
PrintClassList (“clist.text”);

+ What is the behavior here?
— Program would never print out class list
— Why? ComputePl would never finish

1/30/113 Anthony D. Joseph CS162 ©UCB Spring 2013

Lec 3.26

Memory Footprint of Two-Thread
Example

+ If we stopped this program and examined it with a
debugger, we would see

aoedg ssaippy

— Two sets of CPU registers Stack 1
— Two sets of Stacks 1
+ Questions: Stack 2
— How do we position stacks relative to 1
each other?
— What maximum size should we choose 4
for the stacks? Heap
— What happens if threads violate this?
— How might you catch violations? el ik
Code

1/30113 Anthony D. Joseph CS162 ©UCB Spring 2013

Lec 3.28

Per Thread State

« Each Thread has a Thread Control Block (TCB)

— Execution State: CPU registers, program counter (PC), pointer
to stack (SP)

— Scheduling info: state, priority, CPU time

— Various Pointers (for implementing scheduling queues)
— Pointer to enclosing process (PCB)

— Etc (add stuff as you find a need)

+ OS Keeps track of TCBs in protected memory
—In Array, or Linked List, or ...

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.29

Ready Queue And Various I/0 Device Queues

» Thread not running = TCB is in some scheduler queue
— Separate queue for each device/signal/condition
— Each queue can have a different scheduler policy

Ready |[Head Link [—]Link Lnk
Queue | Tail Registers Registers Registers =
Other Other Other
SSD Head [1D State State State
. - - TCBy TCBg TCBig
Unit 0 Tail B
Disk Head Link Link —
Unit0 | gl Registers Registers| =
Other Other
Disk Head [L State State
Unit2 [— TCB, TCB,
Ether [Fiead 7’ e
Netwk 0 Tail —g—'o?helf ers
State
TCBy
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.31

Page 8

Lifecycle of a Thread (or Process)

admitted

1/0 or event completion scheduler dispateh 1/0 or event wait

waiting

interrupt terminated

+ As athread executes, it changes state:
—new: The thread is being created
—ready: The thread is waiting to run
—running: Instructions are being executed
—waiting: Thread waiting for some event to occur
—terminated: The thread has finished execution

« “Active” threads are represented by their TCBs

— TCBs organized into queues based on their state
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.30

Administrivia: Project Signhup
+ Project Signup: Use “Group/Section Signup” Link
— 4-5 members to a group, everyone must attend the same section
» Use Piazza pinned teammate search thread (please close when done!)
— Only submit once per group! Due Thu (1/31) by 11:59PM

» Everyone in group must have logged into their cs162-xx accounts once
before you register the group, Select at least 3 potential sections

» New section assignments: Watch “Group/Section Assignment’ Link
— Attend new sections NEXT week

Section Time Location TA
101 Tu 10:00A-11:00A 6 Evans David
102 Tu 11:00A-12:00P 75 Evans David
103 Tu 1:00P-2:00P 75 Evans Neeraja
104 Tu 3:00P-4:00P 2070 VLSB Daniel
105 Tu 11:00A-12:00P 3105 Etcheverry Daniel
106 Tu 1:00P-2:00P 385 LeConte Wesley
107 Tu 2:00P-3:00P 71 Evans Neeraja
108 Tu 6:00P-7:00P 71 Evans Wesley
1730773 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec332

5min Break

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013

Lec 3.33

Running a thread

Consider first portion: RunThread ()

* How do | run a thread?

— Load its state (registers, stack pointer) into CPU
— Load environment (virtual memory space, etc)
—Jump to the PC

+ How does the dispatcher get control back?
— Internal events: thread returns control voluntarily
— External events: thread gets preempted

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013

Lec 3.35

Page 9

Dispatch Loop

+ Conceptually, the dispatching loop of the operating system looks
as follows:

Loop {
RunThread() ;
ChooseNextThread () ;
SaveStateOfCPU (curTCB) ;
LoadStateOfCPU (newTCB) ;
}

+ This is an infinite loop
— One could argue that this is all that the OS does

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.34

Yielding through Internal Events

+ Blocking on I/O
— The act of requesting I/0 implicitly yields the CPU
+ Waiting on a “signal” from other thread
— Thread asks to wait and thus yields the CPU
» Thread executes a yield ()
— Thread volunteers to give up CPU
computePI () {
while (TRUE) {
ComputeNextDigit () ;
yield();

}

— Note that yield () must be called by programmer frequently
enough!

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.36

Review: Stack for Yielding Thread

ComputePl

yield
Trap to OS C

ymoub yoerg

+ How do we run a new thread?
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* deallocates finished threads */

}
+ Finished thread not killed right away. Why?
— Move them in “exit/terminated” state

— ThreadHouseKeeping() deallocates finished threads
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.37

Review: Stack for Yielding Thread

ComputePl

yield
Trap to OS C

ymmoub yoerg

» How do we run a new thread?
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* deallocates finished threads */

}
* How does dispatcher switch to a new thread?
— Save anything next thread may trash: PC, regs, SP

— Maintain isolation for each thread
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.38

Review: Two Thread Yield Example

+ Consider the following

code blocks: Thread S Thread T

proc A() { A A

BO; = | | B(white) B(while)

H

} % yield yield
proc B() { f;

while (TRUE) ({ g

yield();

}

+ Suppose we have two
threads:

—Threads Sand T

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.39

Detour: Interrupt Controller

y BB
5|0
T v 3 g
-g_ <
: =%
M
ol K
v Software Control
NMI
Network Interrupt

« Interrupts invoked with interrupt lines from devices
« Interrupt controller chooses interrupt request to honor
— Mask enables/disables interrupts
— Priority encoder picks highest enabled interrupt
— Software Interrupt Set/Cleared by Software
— Interrupt identity specified with ID line
+ CPU can disable all interrupts with internal flag

» Non-maskable interrupt line (NMI) can’t be disabled
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.40

Review: Preemptive Multithreading
+ Use the timer interrupt to force scheduling decisions

Interrupt

» Timer Interrupt routine:
TimerInterrupt () {
DoPeriodicHouseKeeping () ;
run_new_ thread();

6 yoels

yimou

+ This is often called preemptive multithreading, since threads
are preempted for better scheduling
— Solves problem of user who doesn’t insert yield();

Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.41

1/30/13

Threaded Web Server

=

+ Multithreaded version:
serverLoop () {
connection = AcceptCon();
ThreadCreate (ServiceWebPage () ,connection) ;
}
+ Advantages of threaded version:
— Can share file caches kept in memory, results of CGl scripts,
other things
— Threads are much cheaper to create than processes, so this
has a lower per-request overhead
+ What if too many requests come in at once?

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.43

Page 11

Why allow cooperating threads?

+ People cooperate; computers help/enhance people’s lives, so
computers must cooperate
— By analogy, the non-reproducibility/non-determinism of people is
a notable problem for “carefully laid plans”
Advantage 1: Share resources
— One computer, many users
— One bank balance, many ATMs
» What if ATMs were only updated at night?
— Embedded systems (robot control: coordinate arm & hand)
+ Advantage 2: Speedup
— Overlap I/0 and computation
— Multiprocessors — chop up program into parallel pieces
+ Advantage 3: Modularity
— Chop large problem up into simpler pieces
» To compile, for instance, gcc calls cpp | cc1 lcc2l as | Id

» Makes system easier to extend
Anthony D. Joseph CS162 ©UCB Spring 2013

1/30/13 Lec 3.42

Thread Pools
* Problem with previous version: Unbounded Threads
— When web-site becomes too popular — throughput sinks

+ Instead, allocate a bounded “pool” of threads, representing
the maximum level of multiprogramming

Thread Pool

slave (queue) {
while (TRUE) {
con=Dequeue (queue) ;
if (con==null)
sleepOn (queue) ;
else
ServiceWebPage (con) ;

master () {
allocThreads (slave, queue) ;
while (TRUE) {
con=AcceptCon|() ;
Enqueue (queue,con) ;
wakeUp (queue) ;

}

Anthony D. Joseph CS162}OUCB Spring 2013 Lec 3.44

1/30% 3

ATM Bank Server

oooo
oooo
oooo

L]

oooo
oooo
oooo

|

oooo

+ ATM server problem:
— Service a set of requests
— Do so without corrupting database

— Don’t hand out too much money
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.45

ATM bank server example

+ Suppose we wanted to implement a server process to
handle requests from an ATM network:

BankServer () {
while (TRUE) {
ReceiveRequest (&op, &acctId, &amount);
ProcessRequest (op, acctId, amount);
}
}
ProcessRequest (op, acctId, amount) {
if (op == deposit) Deposit (acctId, amount);
else 1f ..
}
Deposit (acctId, amount) {
acct = GetAccount (acctId); /* may use disk I/0O */
acct->balance += amount;
StoreAccount (acct); /* Involves disk I/0 */

}
+ How could we speed this up?
— More than one request being processed at once
— Multiple threads (multi-proc, or overlap comp and 1/O)

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.46

Can Threads Help?

+ One thread per request!

* Requests proceeds to completion, blocking as required:

Deposit (acctId, amount) {
acct = GetAccount (actId); /* May use disk I/0 */
acct->balance += amount;
StoreAccount (acct) ; /* Involves disk I/O */

}

+ Unfortunately, shared state can get corrupted:
Thread 1 Thread 2

load rl, acct->balance
load rl, acct->balance
add rl, amount2
store rl, acct->balance

add rl, amountl

store rl, acct->balance

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.47

Problem is at the lowest level

+ Most of the time, threads are working on separate data, so
scheduling doesn’t matter:

Thread A Thread B
x=1; y=2;
+ However, What about (Initially, y = 12):
Thread A Thread B
x=1 y=2
x=y+; y=y'2;
— What are the possible values of x?
Thread A Thread B
x=1;
X =y+1;
y=2;
y=y2

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.48

Problem is at the lowest level

* Most of the time, threads are working on separate data, so
scheduling doesn’t matter:

Thread A Thread B
x=1; y=2
+ However, What about (Initially, y = 12):
Thread A Thread B
x=1; y=2
X =y+1; y=y'2;
— What are the possible values of x?

Thread A Thread B
y=2;
y=Yy'2;

x=1;
X =y+1;
(s]
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.49
Summary

+ Concurrent threads are a very useful abstraction
— Allow transparent overlapping of computation and I/O
— Allow use of parallel processing when available

+ Concurrent threads introduce problems when accessing
shared data

— Programs must be insensitive to arbitrary interleavings

— Without careful design, shared variables can become
completely inconsistent

+ Next lecture: deal with concurrency problems

1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.51

Page 13

Problem is at the lowest level

+ Most of the time, threads are working on separate data, so
scheduling doesn’t matter:

Thread A Thread B
x=1; y=2
+ However, What about (Initially, y = 12):
Thread A Thread B
x=1; y=2
X =y+1; y=y2
— What are the possible values of x?
Thread A Thread B
y=2
X=1;
X=Yy+1;
y=y*2;
[]
1/30/13 Anthony D. Joseph CS162 ©UCB Spring 2013 Lec 3.50

