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Goals for Today"
•  Atomic instruction sequence!

•  Continue with Synchronization Abstractions!
– Semaphores, Monitors and condition variables!

!

Note: Some slides and/or pictures in the following are adapted from slides 
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D. 
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric 
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.!
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Atomic Read-Modify-Write 
instructions"

•  Problems with interrupt-based lock solution:!
– Canʼt give lock implementation to users!
– Doesnʼt work well on multiprocessor!

» Disabling interrupts on all processors requires messages and 
would be very time consuming!

•  Alternative: atomic instruction sequences!
– These instructions read a value from memory and write a new 

value atomically!
– Hardware is responsible for implementing this correctly !

»  on both uniprocessors (not too hard) !
»  and multiprocessors (requires help from cache coherence 

protocol)!
– Unlike disabling interrupts, can be used on both 

uniprocessors and multiprocessors!
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Examples of Read-Modify-Write "

•  test&set (&address) {   /* most architectures */ 
 result = M[address]; 
 M[address] = 1; 
 return result; 

} 
 
•  swap (&address, register) { /* x86 */ 

  temp = M[address]; 
 M[address] = register; 
 register = temp; 

} 

•  compare&swap (&address, reg1, reg2) { /* 68000 */ 
 if (reg1 == M[address]) { 
  M[address] = reg2; 
  return success; 
 } else { 
  return failure; 
 } 

} 
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Implementing Locks with test&set"

•  Simple solution:!
! !int value = 0; // Free 
  Acquire() { 

  while (test&set(value)); // while busy 
 } 

  Release() { 
  value = 0; 
 } 

•  Simple explanation:!
–  If lock is free, test&set reads 0 and sets value=1, so lock is now 

busy.  It returns 0 so while exits!
–  If lock is busy, test&set reads 1 and sets value=1 (no change). It 

returns 1, so while loop continues!
– When we set value = 0, someone else can get lock!

!

test&set (&address) { 
  result = M[address]; 
  M[address] = 1; 
  return result; 
} 
!
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Problem: Busy-Waiting for Lock"
•  Positives for this solution!

– Machine can receive interrupts!
– User code can use this lock!
– Works on a multiprocessor!

•  Negatives!
–  Inefficient: busy-waiting thread will consume cycles waiting!
– Waiting thread may take cycles away from thread holding lock! !
– Priority Inversion: If busy-waiting thread has higher priority 

than thread holding lock ⇒ no progress!!
•  Priority Inversion problem with original Martian rover !
•  For semaphores and monitors, waiting thread may wait for 

an arbitrary length of time!!
– Even if OK for locks, definitely not ok for other primitives!
– Homework/exam solutions should not have busy-waiting!!
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Better Locks using test&set"
•  Can we build test&set locks without busy-waiting?!

– Canʼt entirely, but can minimize!!
–  Idea: only busy-wait to atomically check lock value!

•  Note: sleep has to be sure to reset the guard variable!
– Why canʼt we do it just before or just after the sleep?!

 
 
 
Release() { 
 // Short busy-wait time 
 while (test&set(guard)); 
 if anyone on wait queue { 
  take thread off wait queue 
  Place on ready queue; 
 } else { 
  value = FREE; 
 } 
 guard = 0; 

 

int guard = 0; 
int value = FREE; 
 
Acquire() { 
 // Short busy-wait time 
 while (test&set(guard)); 
 if (value == BUSY) { 
  put thread on wait queue; 
  go to sleep() & guard = 0; 
 } else { 
  value = BUSY; 
  guard = 0; 
 } 

} 
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Locks using test&set vs. Interrupts"
•  Compare to “disable interrupt” solution (last lecture)!

•  Basically replace !
– disable interrupts à while (test&set(guard)); 
– enable interrupts à guard = 0;"

int value = FREE; 
 
Acquire() { 
 disable interrupts; 
 if (value == BUSY) { 
  put thread on wait queue; 
  Go to sleep(); 
  // Enable interrupts? 
 } else { 
  value = BUSY; 
 } 
 enable interrupts; 

} 

 
 
Release() { 
 disable interrupts; 
 if (anyone on wait queue) { 
  take thread off wait queue 
  Place on ready queue; 
 } else { 
  value = FREE; 
 } 
 enable interrupts; 

} 
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Recap: Locks"
int value = 0; 
Acquire() { 
  // Short busy-wait time 
  disable interrupts; 
  if (value == 1) { 
    put thread on wait-queue; 
    go to sleep() //??  
  } else { 
    value = 1; 
    enable interrupts; 
  } 
} 

Release() { 
  // Short busy-wait time 
  disable interrupts; 
  if anyone on wait queue { 
    take thread off wait-queue 
    Place on ready queue; 
  } else { 
    value = 0; 
  } 
  enable interrupts; 
} 

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release(); 

Acquire() { 
  disable interrupts; 
} 

Release() { 
  enable interrupts; 
} 

If one thread in critical 
section, no other 
activity (including OS) 
can run! !
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Recap: Locks"
int guard = 0; 
int value = 0; 
Acquire() { 
  // Short busy-wait time 
  while(test&set(guard)); 
  if (value == 1) { 
    put thread on wait-queue; 
    go to sleep()& guard = 0; 
  } else { 
    value = 1; 
    guard = 0; 
  } 
} 

Release() { 
  // Short busy-wait time 
  while (test&set(guard)); 
  if anyone on wait queue { 
    take thread off wait-queue 
    Place on ready queue; 
  } else { 
    value = 0; 
  } 
  guard = 0; 
} 

lock.Acquire(); 
 … 
 critical section; 
 … 
lock.Release(); 

int value = 0; 
Acquire() { 
  while(test&set(value)); 
} 

Release() { 
  value = 0; 
} 

Threads waiting to 
enter critical section 
busy-wait!
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Where are we going with 
synchronization?"

•  We are going to implement various higher-level 
synchronization primitives using atomic operations!

– Everything is pretty painful if only atomic primitives are load 
and store!

– Need to provide primitives useful at user-level!

Load/Store    Disable Ints   Test&Set   Comp&Swap"

Locks   Semaphores   Monitors   Send/Receive"

Shared Programs"

Hardware"

Higher-
level "
API"

Programs"
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Semaphores"
•  Semaphores are a kind of generalized locks!

– First defined by Dijkstra in late 60s!
– Main synchronization primitive used in original UNIX!

•  Definition: a Semaphore has a non-negative integer value 
and supports the following two operations:!

– P(): an atomic operation that waits for semaphore to become 
positive, then decrements it by 1 !

»  Think of this as the wait() operation!
– V(): an atomic operation that increments the semaphore by 1, 

waking up a waiting P, if any!
»  This of this as the signal() operation!

– Note that P() stands for “proberen” (to test) and V() stands for 
“verhogen” (to increment) in Dutch!



Page 4 

Lec 5.13!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Value=2 Value=1 Value=0 

Semaphores Like Integers Except"
•  Semaphores are like integers, except!

– No negative values!
– Only operations allowed are P and V – canʼt read or write value, 

except to set it initially!
– Operations must be atomic!

»  Two Pʼs together canʼt decrement value below zero!
»  Similarly, thread going to sleep in P wonʼt miss wakeup from V – 

even if they both happen at same time!
•  Semaphore from railway analogy!

– Here is a semaphore initialized to 2 for resource control:!

Value=1 Value=0 Value=2 
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Two Uses of Semaphores"
•  Mutual Exclusion (initial value = 1)!

– Also called “Binary Semaphore”.!
– Can be used for mutual exclusion:!

  semaphore.P(); 
 // Critical section goes here 
 semaphore.V(); 

•  Scheduling Constraints (initial value = 0)!
– Allow thread 1 to wait for a signal from thread 2, i.e., thread 2 

schedules thread 1 when a given constrained is satisfied!
– Example: suppose you had to implement ThreadJoin which 

must wait for thread to terminiate:!
! !Initial value of semaphore = 0 
  ThreadJoin { 

    semaphore.P(); 
 } 

  ThreadFinish { 
    semaphore.V(); 
 } 
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Producer-consumer with a bounded buffer"

•  Problem Definition!
– Producer puts things into a shared buffer!
– Consumer takes them out!
– Need synchronization to coordinate producer/consumer!

•  Donʼt want producer and consumer to have to work in 
lockstep, so put a fixed-size buffer between them!

– Need to synchronize access to this buffer!
– Producer needs to wait if buffer is full!
– Consumer needs to wait if buffer is empty!

•  Example: Coke machine!
– Producer can put limited number of cokes in machine!
– Consumer canʼt take cokes out if machine is empty!

Producer Consumer Buffer 
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Correctness constraints for solution"

•  Correctness Constraints:!
– Consumer must wait for producer to fill slots, if empty 

(scheduling constraint)!
– Producer must wait for consumer to make room in buffer, if all 

full (scheduling constraint)!
– Only one thread can manipulate buffer queue at a time (mutual 

exclusion)!
!
•  General rule of thumb:  

Use a separate semaphore for each constraint!
– Semaphore fullSlots; // consumer’s constraint 
– Semaphore emptySlots;// producer’s constraint 
– Semaphore mutex;       // mutual exclusion 
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Full Solution to Bounded Buffer"
  Semaphore fullSlots = 0;  // Initially, no coke 
 Semaphore emptySlots = bufSize; 

    // Initially, num empty slots 
 Semaphore mutex = 1;  // No one using machine 
 
Producer(item) { 

 emptySlots.P();  // Wait until space 
 mutex.P();  // Wait until machine free 
 Enqueue(item); 
 mutex.V(); 
 fullSlots.V();  // Tell consumers there is 
    // more coke 

} 
 Consumer() { 

 fullSlots.P();  // Check if there’s a coke 
 mutex.P();  // Wait until machine free 
 item = Dequeue(); 
 mutex.V(); 
 emptySlots.V();  // tell producer need more 
 return item; 

} 
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Discussion about Solution"
•  Why asymmetry?!

– Producer does: emptySlots.P(), fullSlots.V()!
– Consumer does: fullSlots.P(), emptySlots.V() 

!

Decrease # of 
empty slots!

Increase # of 
occupied slots!

Increase # of 
empty slots!

Decrease # of 
occupied slots!
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Discussion about Solution"
•  Is order of Pʼs important?!

– Yes!  Can cause deadlock!
•  Is order of Vʼs important?!

– No, except that it might affect 
scheduling efficiency!

•  What if we have 2 producers or 2 
consumers?!

– Do we need to change anything?!

 
Producer(item) { 

 mutex.P();  
 emptySlots.P(); 
 Enqueue(item); 
 mutex.V(); 
 fullSlots.V(); 

 } 
 Consumer() { 

 fullSlots.P(); 
 mutex.P();
 item = Dequeue(); 
 mutex.V(); 
 emptySlots.V(); 
 return item; 

} 
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5min Break"
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Motivation for Monitors and Condition 
Variables"

•  Semaphores are a huge step up; just think of trying to do 
the bounded buffer with only loads and stores!

•  Problem is that semaphores are dual purpose:!
– They are used for both mutex and scheduling constraints!
– Example: the fact that flipping of Pʼs in bounded buffer gives 

deadlock is not immediately obvious.  How do you prove 
correctness to someone?!
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Motivation for Monitors and Condition 
Variables"

•  Cleaner idea: Use locks for mutual exclusion and condition 
variables for scheduling constraints!

•  Monitor: a lock and zero or more condition variables for 
managing concurrent access to shared data!

– Some languages like Java provide this natively!
– Most others use actual locks and condition variables!
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 Monitor with Condition Variables"

•  Lock: the lock provides mutual exclusion to shared data!
– Always acquire before accessing shared data structure!
– Always release after finishing with shared data!
– Lock initially free!

•  Condition Variable: a queue of threads waiting for something 
inside a critical section!

– Key idea: make it possible to go to sleep inside critical section by 
atomically releasing lock at time we go to sleep!

Lec 5.24!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Simple Monitor Example"
•  Here is an (infinite) synchronized queue!
!  Lock lock; 

 Queue queue; 
 
  AddToQueue(item) { 

  lock.Acquire();  // Lock shared data 
  queue.enqueue(item);  // Add item 
  lock.Release();  // Release Lock 
 } 

 
  RemoveFromQueue() { 

  lock.Acquire();  // Lock shared data 
  item = queue.dequeue();// Get next item or null 
  lock.Release();  // Release Lock 
  return(item);  // Might return null 
 } 

•  Not very interesting use of “Monitor”!
– It only uses a lock with no condition variables!
– Cannot put consumer to sleep if no work!!

!
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Condition Variables"

•  Condition Variable: a queue of threads waiting for something 
inside a critical section!

– Key idea: allow sleeping inside critical section by atomically 
releasing lock at time we go to sleep!

– Contrast to semaphores: Canʼt wait inside critical section!

•  Operations:!
– Wait(&lock): Atomically release lock and go to sleep. Re-

acquire lock later, before returning. !
– Signal(): Wake up one waiter, if any!
– Broadcast(): Wake up all waiters!

•  Rule: Must hold lock when doing condition variable ops!!
!
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Complete Monitor Example (with condition 
variable)"

•  Here is an (infinite) synchronized queue!
!  Lock lock; 

 Condition dataready; 
 Queue queue; 

 
  AddToQueue(item) { 

  lock.Acquire();  // Get Lock 
  queue.enqueue(item);  // Add item 
  dataready.signal();  // Signal any waiters 
  lock.Release();  // Release Lock 
 } 

 
  RemoveFromQueue() { 

  lock.Acquire();  // Get Lock 
  while (queue.isEmpty()) { 
   dataready.wait(&lock); // If nothing, sleep 
  } 
  item = queue.dequeue();  // Get next item 
  lock.Release();  // Release Lock 
  return(item); 
 }!
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Mesa vs. Hoare monitors"

•  Need to be careful about precise definition of signal and wait.  
Consider a piece of our dequeue code:!
   while (queue.isEmpty()) { 

   dataready.wait(&lock); // If nothing, sleep 
  } 
  item = queue.dequeue(); // Get next item 
– Why didnʼt we do this?!

   if (queue.isEmpty()) { 
   dataready.wait(&lock); // If nothing, sleep 
  } 
  item = queue.dequeue(); // Get next item 

!
•  Answer: depends on the type of scheduling!

– Hoare-style!
– Mesa-style!
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Hoare monitors"
•  Signaler gives up lock, CPU to waiter; waiter runs 

immediately!
•  Waiter gives up lock, processor back to signaler when it exits 

critical section or if it waits again!
•  Most textbooks!

!
Lock.Acquire() 
… 
if (queue.isEmpty()) { 
  dataready.wait(&lock);  
} 
… 
lock.Release(); 

… 
lock.Acquire() 
…  
dataready.signal(); 
… 
lock.Release(); 

Lock, CPU 
Lock, CPU 
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Mesa monitors"
•  Signaler keeps lock and processor!
•  Waiter placed on ready queue with no special priority!
•  Practically, need to check condition again after wait!
•  Most real operating systems!

!
Lock.Acquire() 
… 
while (queue.isEmpty()) { 
  dataready.wait(&lock);  
} 
… 
lock.Release(); 

… 
lock.Acquire() 
…  
dataready.signal(); 
… 
lock.Release(); 

Put waiting 
thread on 

ready queue!

schedule waiting thread!
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Summary"
•  Locks construction based on atomic seq. of instructions!

– Must be very careful not to waste/tie up machine resources!
»  Shouldnʼt spin wait for long!

– Key idea: Separate lock variable, use hardware mechanisms to 
protect modifications of that variable!

•  Semaphores!
– Generalized locks!
– Two operations: P(), V()!

•  Monitors: A lock plus one or more condition variables!
– Always acquire lock before accessing shared data!
– Use condition variables to wait inside critical section!

»  Three Operations: Wait(), Signal(), and Broadcast() 

!


