
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 5  
 

Semaphores, Conditional Variables"

February 6, 2013!
Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 5.2!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  Atomic instruction sequence!

•  Continue with Synchronization Abstractions!
– Semaphores, Monitors and condition variables!

!

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.!

Lec 5.3!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Atomic Read-Modify-Write
instructions"

•  Problems with interrupt-based lock solution:!
– Canʼt give lock implementation to users!
– Doesnʼt work well on multiprocessor!

» Disabling interrupts on all processors requires messages and
would be very time consuming!

•  Alternative: atomic instruction sequences!
– These instructions read a value from memory and write a new

value atomically!
– Hardware is responsible for implementing this correctly !

»  on both uniprocessors (not too hard) !
»  and multiprocessors (requires help from cache coherence

protocol)!
– Unlike disabling interrupts, can be used on both

uniprocessors and multiprocessors!

Lec 5.4!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Examples of Read-Modify-Write "

•  test&set (&address) { /* most architectures */
 result = M[address];
 M[address] = 1;
 return result;

}

•  swap (&address, register) { /* x86 */

 temp = M[address];
 M[address] = register;
 register = temp;

}

•  compare&swap (&address, reg1, reg2) { /* 68000 */
 if (reg1 == M[address]) {
 M[address] = reg2;
 return success;
 } else {
 return failure;
 }

}

Page 2

Lec 5.5!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Implementing Locks with test&set"

•  Simple solution:!
! !int value = 0; // Free
 Acquire() {

 while (test&set(value)); // while busy
 }

 Release() {
 value = 0;
 }

•  Simple explanation:!
–  If lock is free, test&set reads 0 and sets value=1, so lock is now

busy. It returns 0 so while exits!
–  If lock is busy, test&set reads 1 and sets value=1 (no change). It

returns 1, so while loop continues!
– When we set value = 0, someone else can get lock!

!

test&set (&address) {
 result = M[address];
 M[address] = 1;
 return result;
}
!

Lec 5.6!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Problem: Busy-Waiting for Lock"
•  Positives for this solution!

– Machine can receive interrupts!
– User code can use this lock!
– Works on a multiprocessor!

•  Negatives!
–  Inefficient: busy-waiting thread will consume cycles waiting!
– Waiting thread may take cycles away from thread holding lock! !
– Priority Inversion: If busy-waiting thread has higher priority

than thread holding lock ⇒ no progress!!
•  Priority Inversion problem with original Martian rover !
•  For semaphores and monitors, waiting thread may wait for

an arbitrary length of time!!
– Even if OK for locks, definitely not ok for other primitives!
– Homework/exam solutions should not have busy-waiting!!

Lec 5.7!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Better Locks using test&set"
•  Can we build test&set locks without busy-waiting?!

– Canʼt entirely, but can minimize!!
–  Idea: only busy-wait to atomically check lock value!

•  Note: sleep has to be sure to reset the guard variable!
– Why canʼt we do it just before or just after the sleep?!

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
 // Short busy-wait time
 while (test&set(guard));
 if (value == BUSY) {
 put thread on wait queue;
 go to sleep() & guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 }

}

Lec 5.8!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Locks using test&set vs. Interrupts"
•  Compare to “disable interrupt” solution (last lecture)!

•  Basically replace !
– disable interrupts à while (test&set(guard));
– enable interrupts à guard = 0;"

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;

}

Page 3

Lec 5.9!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Recap: Locks"
int value = 0;
Acquire() {
 // Short busy-wait time
 disable interrupts;
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??
 } else {
 value = 1;
 enable interrupts;
 }
}

Release() {
 // Short busy-wait time
 disable interrupts;
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 enable interrupts;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Acquire() {
 disable interrupts;
}

Release() {
 enable interrupts;
}

If one thread in critical
section, no other
activity (including OS)
can run! !

Lec 5.10!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Recap: Locks"
int guard = 0;
int value = 0;
Acquire() {
 // Short busy-wait time
 while(test&set(guard));
 if (value == 1) {
 put thread on wait-queue;
 go to sleep()& guard = 0;
 } else {
 value = 1;
 guard = 0;
 }
}

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait-queue
 Place on ready queue;
 } else {
 value = 0;
 }
 guard = 0;
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

int value = 0;
Acquire() {
 while(test&set(value));
}

Release() {
 value = 0;
}

Threads waiting to
enter critical section
busy-wait!

Lec 5.11!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Where are we going with
synchronization?"

•  We are going to implement various higher-level
synchronization primitives using atomic operations!

– Everything is pretty painful if only atomic primitives are load
and store!

– Need to provide primitives useful at user-level!

Load/Store Disable Ints Test&Set Comp&Swap"

Locks Semaphores Monitors Send/Receive"

Shared Programs"

Hardware"

Higher-
level "
API"

Programs"

Lec 5.12!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Semaphores"
•  Semaphores are a kind of generalized locks!

– First defined by Dijkstra in late 60s!
– Main synchronization primitive used in original UNIX!

•  Definition: a Semaphore has a non-negative integer value
and supports the following two operations:!

– P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1 !

»  Think of this as the wait() operation!
– V(): an atomic operation that increments the semaphore by 1,

waking up a waiting P, if any!
»  This of this as the signal() operation!

– Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch!

Page 4

Lec 5.13!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Value=2 Value=1 Value=0

Semaphores Like Integers Except"
•  Semaphores are like integers, except!

– No negative values!
– Only operations allowed are P and V – canʼt read or write value,

except to set it initially!
– Operations must be atomic!

»  Two Pʼs together canʼt decrement value below zero!
»  Similarly, thread going to sleep in P wonʼt miss wakeup from V –

even if they both happen at same time!
•  Semaphore from railway analogy!

– Here is a semaphore initialized to 2 for resource control:!

Value=1 Value=0 Value=2

Lec 5.14!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Two Uses of Semaphores"
•  Mutual Exclusion (initial value = 1)!

– Also called “Binary Semaphore”.!
– Can be used for mutual exclusion:!

 semaphore.P();
 // Critical section goes here
 semaphore.V();

•  Scheduling Constraints (initial value = 0)!
– Allow thread 1 to wait for a signal from thread 2, i.e., thread 2

schedules thread 1 when a given constrained is satisfied!
– Example: suppose you had to implement ThreadJoin which

must wait for thread to terminiate:!
! !Initial value of semaphore = 0
 ThreadJoin {

 semaphore.P();
 }

 ThreadFinish {
 semaphore.V();
 }

Lec 5.15!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Producer-consumer with a bounded buffer"

•  Problem Definition!
– Producer puts things into a shared buffer!
– Consumer takes them out!
– Need synchronization to coordinate producer/consumer!

•  Donʼt want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them!

– Need to synchronize access to this buffer!
– Producer needs to wait if buffer is full!
– Consumer needs to wait if buffer is empty!

•  Example: Coke machine!
– Producer can put limited number of cokes in machine!
– Consumer canʼt take cokes out if machine is empty!

Producer Consumer Buffer

Lec 5.16!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Correctness constraints for solution"

•  Correctness Constraints:!
– Consumer must wait for producer to fill slots, if empty

(scheduling constraint)!
– Producer must wait for consumer to make room in buffer, if all

full (scheduling constraint)!
– Only one thread can manipulate buffer queue at a time (mutual

exclusion)!
!
•  General rule of thumb:  

Use a separate semaphore for each constraint!
– Semaphore fullSlots; // consumer’s constraint
– Semaphore emptySlots;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Page 5

Lec 5.17!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Full Solution to Bounded Buffer"
 Semaphore fullSlots = 0; // Initially, no coke
 Semaphore emptySlots = bufSize;

 // Initially, num empty slots
 Semaphore mutex = 1; // No one using machine

Producer(item) {

 emptySlots.P(); // Wait until space
 mutex.P(); // Wait until machine free
 Enqueue(item);
 mutex.V();
 fullSlots.V(); // Tell consumers there is
 // more coke

}
 Consumer() {

 fullSlots.P(); // Check if there’s a coke
 mutex.P(); // Wait until machine free
 item = Dequeue();
 mutex.V();
 emptySlots.V(); // tell producer need more
 return item;

}

Lec 5.18!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Discussion about Solution"
•  Why asymmetry?!

– Producer does: emptySlots.P(), fullSlots.V()!
– Consumer does: fullSlots.P(), emptySlots.V()

!

Decrease # of
empty slots!

Increase # of
occupied slots!

Increase # of
empty slots!

Decrease # of
occupied slots!

Lec 5.19!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Discussion about Solution"
•  Is order of Pʼs important?!

– Yes! Can cause deadlock!
•  Is order of Vʼs important?!

– No, except that it might affect
scheduling efficiency!

•  What if we have 2 producers or 2
consumers?!

– Do we need to change anything?!

Producer(item) {

 mutex.P();
 emptySlots.P();
 Enqueue(item);
 mutex.V();
 fullSlots.V();

 }
 Consumer() {

 fullSlots.P();
 mutex.P();
 item = Dequeue();
 mutex.V();
 emptySlots.V();
 return item;

}

Lec 5.20!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

Page 6

Lec 5.21!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Motivation for Monitors and Condition
Variables"

•  Semaphores are a huge step up; just think of trying to do
the bounded buffer with only loads and stores!

•  Problem is that semaphores are dual purpose:!
– They are used for both mutex and scheduling constraints!
– Example: the fact that flipping of Pʼs in bounded buffer gives

deadlock is not immediately obvious. How do you prove
correctness to someone?!

Lec 5.22!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Motivation for Monitors and Condition
Variables"

•  Cleaner idea: Use locks for mutual exclusion and condition
variables for scheduling constraints!

•  Monitor: a lock and zero or more condition variables for
managing concurrent access to shared data!

– Some languages like Java provide this natively!
– Most others use actual locks and condition variables!

Lec 5.23!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

 Monitor with Condition Variables"

•  Lock: the lock provides mutual exclusion to shared data!
– Always acquire before accessing shared data structure!
– Always release after finishing with shared data!
– Lock initially free!

•  Condition Variable: a queue of threads waiting for something
inside a critical section!

– Key idea: make it possible to go to sleep inside critical section by
atomically releasing lock at time we go to sleep!

Lec 5.24!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Simple Monitor Example"
•  Here is an (infinite) synchronized queue!
! Lock lock;

 Queue queue;

 AddToQueue(item) {

 lock.Acquire(); // Lock shared data
 queue.enqueue(item); // Add item
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {

 lock.Acquire(); // Lock shared data
 item = queue.dequeue();// Get next item or null
 lock.Release(); // Release Lock
 return(item); // Might return null
 }

•  Not very interesting use of “Monitor”!
– It only uses a lock with no condition variables!
– Cannot put consumer to sleep if no work!!

!

Page 7

Lec 5.25!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Condition Variables"

•  Condition Variable: a queue of threads waiting for something
inside a critical section!

– Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep!

– Contrast to semaphores: Canʼt wait inside critical section!

•  Operations:!
– Wait(&lock): Atomically release lock and go to sleep. Re-

acquire lock later, before returning. !
– Signal(): Wake up one waiter, if any!
– Broadcast(): Wake up all waiters!

•  Rule: Must hold lock when doing condition variable ops!!
!

Lec 5.26!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Complete Monitor Example (with condition
variable)"

•  Here is an (infinite) synchronized queue!
! Lock lock;

 Condition dataready;
 Queue queue;

 AddToQueue(item) {

 lock.Acquire(); // Get Lock
 queue.enqueue(item); // Add item
 dataready.signal(); // Signal any waiters
 lock.Release(); // Release Lock
 }

 RemoveFromQueue() {

 lock.Acquire(); // Get Lock
 while (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item
 lock.Release(); // Release Lock
 return(item);
 }!

Lec 5.27!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Mesa vs. Hoare monitors"

•  Need to be careful about precise definition of signal and wait.
Consider a piece of our dequeue code:!
 while (queue.isEmpty()) {

 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item
– Why didnʼt we do this?!

 if (queue.isEmpty()) {
 dataready.wait(&lock); // If nothing, sleep
 }
 item = queue.dequeue(); // Get next item

!
•  Answer: depends on the type of scheduling!

– Hoare-style!
– Mesa-style!

Lec 5.28!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Hoare monitors"
•  Signaler gives up lock, CPU to waiter; waiter runs

immediately!
•  Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again!
•  Most textbooks!

!
Lock.Acquire()
…
if (queue.isEmpty()) {
 dataready.wait(&lock);
}
…
lock.Release();

…
lock.Acquire()
…
dataready.signal();
…
lock.Release();

Lock, CPU
Lock, CPU

Page 8

Lec 5.29!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Mesa monitors"
•  Signaler keeps lock and processor!
•  Waiter placed on ready queue with no special priority!
•  Practically, need to check condition again after wait!
•  Most real operating systems!

!
Lock.Acquire()
…
while (queue.isEmpty()) {
 dataready.wait(&lock);
}
…
lock.Release();

…
lock.Acquire()
…
dataready.signal();
…
lock.Release();

Put waiting
thread on

ready queue!

schedule waiting thread!

Lec 5.30!2/6/13! Ion Stoica and Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary"
•  Locks construction based on atomic seq. of instructions!

– Must be very careful not to waste/tie up machine resources!
»  Shouldnʼt spin wait for long!

– Key idea: Separate lock variable, use hardware mechanisms to
protect modifications of that variable!

•  Semaphores!
– Generalized locks!
– Two operations: P(), V()!

•  Monitors: A lock plus one or more condition variables!
– Always acquire lock before accessing shared data!
– Use condition variables to wait inside critical section!

»  Three Operations: Wait(), Signal(), and Broadcast()

!

