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Goals for Today"

•  Scheduling Policy goals!
•  Policy Options!
•  Implementation Considerations!

!

Note: Some slides and/or pictures in the following are adapted from slides 
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D. 
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric 
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.!
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CPU Scheduling"

•  Earlier, we talked about the life-cycle of a thread!
– Active threads work their way from Ready queue to Running 

to various waiting queues.!
•  Question: How is the OS to decide which of several 

threads to take off a queue?!
– Obvious queue to worry about is ready queue!
– Others can be scheduled as well, however!

•  Scheduling: deciding which threads are given access to 
resources!
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Scheduling Assumptions"
•  CPU scheduling big area of research in early 70ʼs!
•  Many implicit assumptions for CPU scheduling:!

– One program per user!
– One thread per program!
– Programs are independent!

•  In general unrealistic but they simplify the problem !
– For instance: is “fair” about fairness among users or programs?  !

»  If I run one compilation job and you run five, you get five times as 
much CPU on many operating systems!

•  The high-level goal: Dole out CPU time to optimize some 
desired parameters of system!

USER1" USER2" USER3" USER1" USER2"

Time "
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Assumption: CPU Bursts"

•  Execution model: programs alternate between bursts of CPU 
and I/O!

– Program typically uses the CPU for some period of time, then 
does I/O, then uses CPU again!

– Each scheduling decision is about which job to give to the CPU 
for use by its next CPU burst!

– With timeslicing, thread may be forced to give up CPU before 
finishing current CPU burst!

Weighted toward small bursts!
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Scheduling Metrics"

•  Waiting Time: time the job is waiting in the ready queue!
– Time between jobʼs arrival in the ready queue and launching 

the job!
•  Service (Execution) Time: time the job is running!
•  Response (Completion) Time: !

– Time between jobʼs arrival in the ready queue and jobʼs 
completion!

– Response time is what the user sees:!
»  Time to echo a keystroke in editor!
»  Time to compile a program!

!Response Time = Waiting Time + Service Time!
!
•  Throughput: number of jobs completed per unit of time !

– Throughput related to response time, but not same thing:!
» Minimizing response time will lead to more context switching than 

if you only maximized throughput!
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Scheduling Policy Goals/Criteria"

•  Minimize Response Time!
– Minimize elapsed time to do an operation (or job)!

!
•  Maximize Throughput!

– Two parts to maximizing throughput!
» Minimize overhead (for example, context-switching)!
»  Efficient use of resources (CPU, disk, memory, etc)!

•  Fairness!
– Share CPU among users in some equitable way!
– Fairness is not minimizing average response time:!

»  Better average response time by making system less fair!
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First-Come, First-Served (FCFS) Scheduling"
•  First-Come, First-Served (FCFS)!

–  Also “First In, First Out” (FIFO) or “Run until done”!
»  In early systems, FCFS meant one program  

scheduled until done (including I/O)!
» Now, means keep CPU until thread blocks !

•  Example: !Process !Burst Time  
!P1 !24  
! P2 !3  
!P3 ! 3 !

–  Suppose processes arrive in the order: P1 , P2 , P3   The Gantt Chart for the schedule is: 
 
 
 
 
!

–  Waiting time for P1  = 0; P2  = 24; P3 = 27!
–  Average waiting time:  (0 + 24 + 27)/3 = 17!
–  Average completion time: (24 + 27 + 30)/3 = 27!

•  Convoy effect: short process behind long process!

P1! P2! P3!

24! 27! 30!0!
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FCFS Scheduling (Cont.)"
•  Example continued:!

–  Suppose that processes arrive in order: P2 , P3 , P1  
Now, the Gantt chart for the schedule is: 
!

–  Waiting time for P1 = 6; P2 = 0; P3 = 3!
–  Average waiting time:   (6 + 0 + 3)/3 = 3!
–  Average Completion time: (3 + 6 + 30)/3 = 13!

•  In second case:!
–  Average waiting time is much better (before it was 17)!
–  Average completion time is better (before it was 27) !

•  FCFS Pros and Cons:!
–  Simple (+)!
–  Short jobs get stuck behind long ones (-)!

»  Safeway: Getting milk, always stuck behind cart full of small items!

P1!P3!P2!

6!3! 30!0!
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Round Robin (RR)"
•  FCFS Scheme: Potentially bad for short jobs!!

– Depends on submit order!
–  If you are first in line at supermarket with milk, you donʼt care 

who is behind you, on the other hand…!
•  Round Robin Scheme!

– Each process gets a small unit of CPU time  
(time quantum), usually 10-100 milliseconds!

– After quantum expires, the process is preempted  
and added to the end of the ready queue!

– n processes in ready queue and time quantum is q ⇒!
»  Each process gets 1/n of the CPU time !
»  In chunks of at most q time units !
» No process waits more than (n-1)q time units!

•  Performance!
– q large ⇒ FCFS!
– q small ⇒ Interleaved!
– q must be large with respect to context switch, otherwise 

overhead is too high (all overhead)!
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Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 !         53 
! P2 ! ! 8! !           8 
! P3 ! !68 !         68 
! P4 ! ! 24 !         24!

–  The Gantt chart is:!

!
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Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 !         33  
! P2 ! ! 8! !           8 
! P3 ! !68 !         68 
! P4 ! ! 24 !         24!

–  The Gantt chart is:!

!

P1!

0! 20!
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Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 !         33 
! P2 ! ! 8! !           0  
! P3 ! !68 !         68 
! P4 ! ! 24 !         24!

–  The Gantt chart is:!

!

P1!

0! 20!

P2!

28!
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Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 !         33 
! P2 ! ! 8! !           0 
! P3 ! !68 !         48  
! P4 ! ! 24 !         24!

–  The Gantt chart is:!

!

P1!

0! 20!

P2!

28!

P3!

48!
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Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 !         33 
! P2 ! ! 8! !           0 
! P3 ! !68 !         48 
! P4 ! ! 24 !           4!

–  The Gantt chart is:!

!

P1!

0! 20!

P2!

28!

P3!

48!

P4!

68!
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Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 !         13  
! P2 ! ! 8! !           0 
! P3 ! !68 !         48 
! P4 ! ! 24 !           4!

–  The Gantt chart is:!

!

P1!

0! 20!

P2!

28!

P3!

48!

P4!

68!

P1!

88!
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Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 !         13 
! P2 ! ! 8! !           0 
! P3 ! !68 !         28  
! P4 ! ! 24 !           4!

–  The Gantt chart is:!

!

P1!

0! 20!

P2!

28!

P3!

48!

P4!

68!

P1!

88!

P3!

108!
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Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 !           0 
! P2 ! ! 8! !           0 
! P3 ! !68 !           0  
! P4 ! ! 24 !           0!

–  The Gantt chart is:!

– Waiting time for P1=(68-20)+(112-88)=72 ! !   !
!                         P2=(20-0)=20  
!                          P3=(28-0)+(88-48)+(125-108)=85  
!                          P4=(48-0)+(108-68)=88!

–  Average waiting time = (72+20+85+88)/4=66¼!
–  Average completion time = (125+28+153+112)/4 = 104½!

•  Thus, Round-Robin Pros and Cons:!
–  Better for short jobs, Fair (+)!
–  Context-switching time adds up for long jobs (-)!

!

P1!

0! 20!

P2!

28!

P3!

48!

P4!

68!

P1!

88!

P3!

108!

P4!

112!

P1!

125!

P3!

145!

P3!

153!
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Round-Robin Discussion"
•  How do you choose time slice?!

– What if too big?!
» Response time suffers!

– What if infinite (∞)?!
» Get back FCFS/FIFO!

– What if time slice too small?!
»  Throughput suffers! !

•  Actual choices of timeslice:!
–  Initially, UNIX timeslice one second:!

» Worked ok when UNIX was used by one or two people.!
» What if three compilations going on? 3 seconds to echo each 

keystroke!!
–  In practice, need to balance short-job performance and long-

job throughput:!
»  Typical time slice today is between 10ms – 100ms!
»  Typical context-switching overhead is 0.1ms – 1ms!
» Roughly 1% overhead due to context-switching!
!
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Comparisons between FCFS and Round Robin"
•  Assuming zero-cost context-switching time, is RR always 

better than FCFS?!
•  Simple example: !10 jobs, each takes 100s of CPU time  

!RR scheduler quantum of 1s 
!All jobs start at the same time!

•  Completion Times:!

!

Job #" FIFO" RR"
1! 100! 991!
2! 200! 992!
…! …! …!
9! 900! 999!

10! 1000! 1000!

P1" P2" P9" P10"…"

0" 100" 800" 900" 1000"200"
FCFS"

…"

0" 10" 980" 990" 1000"20"
…" …" …" …"

999"991"

RR"
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Comparisons between FCFS and Round Robin"
•  Assuming zero-cost context-switching time, is RR always 

better than FCFS?!
•  Simple example: !10 jobs, each takes 100s of CPU time  

!RR scheduler quantum of 1s 
!All jobs start at the same time!

•  Both RR and FCFS finish at the same time!
•  Average response time is much worse under RR!!

– Bad when all jobs same length!
•  Also: Cache state must be shared between all jobs with RR 

but can be devoted to each job with FCFS!
– Total time for RR longer even for zero-cost switch!!

!

P1" P2" P9" P10"…"

0" 100" 800" 900" 1000"200"
FCFS"

…"

0" 10" 980" 990" 1000"20"
…" …" …" …"

999"991"

RR"
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 !

Quantum!

Completion!
Time!

Wait!
Time!

Average!P4!P3!P2!P1!

Earlier Example with Different Time Quantum"

P2!
[8]!

P4!
[24]!

P1!
[53]!

P3!
[68]!

0! 8! 32! 85! 153!

Best FCFS:"

31¼!8!85!0!32!Best FCFS!

69½!32!153!8!85!Best FCFS!
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 !

Quantum!

Completion!
Time!

Wait!
Time!

Average!P4!P3!P2!P1!

Earlier Example with Different Time Quantum"

31¼!8!85!0!32!Best FCFS!

69½!32!153!8!85!Best FCFS!

121¾!145!68!153!121!Worst FCFS!

83½!121!0!145!68!Worst FCFS!

P2!
[8]!

P4!
[24]!

P1!
[53]!

P3!
[68]!

0! 68! 121! 145!153!

Worst FCFS:"
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 !

Quantum!

Completion!
Time!

Wait!
Time!

Average!P4!P3!P2!P1!

Earlier Example with Different Time Quantum"

62!57!85!22!84!Q = 1!

104½!112!153!28!125!Q = 20!

100½!81!153!30!137!Q = 1!

66¼ !88!85!20!72!Q = 20!

31¼!8!85!0!32!Best FCFS!

121¾!145!68!153!121!Worst FCFS!

69½!32!153!8!85!Best FCFS!
83½!121!0!145!68!Worst FCFS!

95½!80!153!16!133!Q = 8!

57¼!56!85!8!80!Q = 8!

99½!92!153!18!135!Q = 10!

99½!82!153!28!135!Q = 5!

61¼!68!85!10!82!Q = 10!

61¼!58!85!20!82!Q = 5!

P1!

0! 8! 56!

P2! P3! P4! P1! P3! P4! P1! P3! P4! P1! P3! P1! P3! P3!P3!

16" 24! 32! 40! 48! 64! 72! 80" 88! 96! 104! 112!

P1! P3! P1!
120! 128! 133"141!149!

P3!
153"

P2!
[8]!

P4!
[24]!

P1!
[53]!

P3!
[68]!

0! 68! 121! 145!153!

Worst FCFS:"



Lec 8.25!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

5min Break"
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What if we Knew the Future?"
•  Could we always mirror best FCFS?!
•  Shortest Job First (SJF):!

– Run whatever job has the least amount of  
computation to do!

•  Shortest Remaining Time First (SRTF):!
– Preemptive version of SJF: if job arrives and has a shorter 

time to completion than the remaining time on the current job, 
immediately preempt CPU!

•  These can be applied either to a whole program or the 
current CPU burst of each program!

–  Idea is to get short jobs out of the system!
– Big effect on short jobs, only small effect on long ones!
– Result is better average response time!
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Discussion"

•  SJF/SRTF are the best you can do at minimizing average 
response time!

– Provably optimal (SJF among non-preemptive, SRTF among 
preemptive)!

– Since SRTF is always at least as good as SJF, focus on 
SRTF!

•  Comparison of SRTF with FCFS and RR!
– What if all jobs the same length?!

»  SRTF becomes the same as FCFS (i.e., FCFS is best can do if 
all jobs the same length)!

– What if jobs have varying length?!
»  SRTF (and RR): short jobs not stuck behind long ones!
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Example to illustrate benefits of SRTF"

•  Three jobs:!!
– A,B: CPU bound, each run for a week 

C: I/O bound, loop 1ms CPU, 9ms disk I/O!
–  If only one at a time, C uses 90% of the disk, A or B use 100% 

of the CPU!
•  With FIFO:!

– Once A or B get in, keep CPU for one week each!
•  What about RR or SRTF?!

– Easier to see with a timeline!

C 

C’s  
I/O 

C’s  
I/O 

C’s  
I/O 

A or B 
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RR vs. SRTF"

Cʼs "
I/O"

CABAB…" C"

Cʼs "
I/O"

RR 1ms time slice"

Cʼs "
I/O"

Cʼs "
I/O"

C"A" B"C"

RR 100ms time slice"

Cʼs "
I/O"

A"C"

Cʼs "
I/O"

A"A"

SRTF"

Disk Utilization:"
~90% but lots of 

wakeups!"

Disk Utilization:"
90%"

Disk Utilization:"
9/201 ~ 4.5%"
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SRTF Further discussion"
•  Starvation!

– SRTF can lead to starvation if many small jobs!!
– Large jobs never get to run!

•  Somehow need to predict future!
– How can we do this? !
– Some systems ask the user!

» When you submit a job, have to say how long it will take!
»  To stop cheating, system kills job if takes too long!

– But: even non-malicious users have trouble predicting runtime 
of their jobs!

•  Bottom line, canʼt really know how long job will take!
– However, can use SRTF as a yardstick  

for measuring other policies!
– Optimal, so canʼt do any better!

•  SRTF Pros & Cons!
– Optimal (average response time) (+)!
– Hard to predict future (-)!
– Unfair (-)!
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Predicting the Length of the Next CPU Burst"
•  Adaptive: Changing policy based on past behavior!

– CPU scheduling, in virtual memory, in file systems, etc.!
– Works because programs have predictable behavior!

»  If program was I/O bound in past, likely in future!
»  If computer behavior were random, wouldnʼt help!

•  Example: SRTF with estimated burst length!
– Use an estimator function on previous bursts:  

Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.  
Estimate next burst τn = f(tn-1, tn-2, tn-3, …)!

– Function f could be one of many different time series 
estimation schemes (Kalman filters, etc.)!

– Example:  
Exponential averaging 
τn = αtn-1+(1-α)τn-1  with (0<α≤1)!

 
!
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Multi-Level Feedback Scheduling"

•  Another method for exploiting past behavior!
– First used in Cambridge Time Sharing System (CTSS)!
– Multiple queues, each with different priority!

» Higher priority queues often considered “foreground” tasks!
– Each queue has its own scheduling algorithm!

»  e.g., foreground – RR, background – FCFS!
»  Sometimes multiple RR priorities with quantum increasing 

exponentially (highest:1ms, next:2ms, next: 4ms, etc.)!
•  Adjust each jobʼs priority as follows (details vary)!

– Job starts in highest priority queue!
–  If timeout expires, drop one level!
–  If timeout doesnʼt expire, push up one level (or to top)!

Long-Running "
Compute tasks "

demoted to  
low priority"
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Scheduling Details"

•  Result approximates SRTF:!
– CPU bound jobs drop like a rock!
– Short-running I/O bound jobs stay near top!

•  Scheduling must be done between the queues!
– Fixed priority scheduling: !

»  Serve all from highest priority, then next priority, etc.!
– Time slice:!

»  Each queue gets a certain amount of CPU time !
»  e.g., 70% to highest, 20% next, 10% lowest!
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Countermeasure"

•  Countermeasure: user action that can foil intent of the OS 
designer!

– For multilevel feedback, put in a bunch of meaningless I/O to 
keep jobʼs priority high!

– Of course, if everyone did this, wouldnʼt work!!

•  Ex: MIT Othello game project (simpler version of Go game)!
– Computer playing against competitorʼs computer, so key was to 

do computing at higher priority the competitors. !
» Cheater put in printfʼs, ran much faster!!
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Scheduling Fairness"
•  What about fairness?!

– Strict fixed-priority scheduling between queues is unfair (run 
highest, then next, etc):!

»  Long running jobs may never get CPU !
»  In Multics, shut down machine, found 10-year-old job!

– Must give long-running jobs a fraction of the CPU even when 
there are shorter jobs to run!

– Tradeoff: fairness gained by hurting average response time!!

•  How to implement fairness?!
– Could give each queue some fraction of the CPU !

» What if one long-running job and 100 short-running ones?!
»  Like express lanes in a supermarket—sometimes express lanes 

get so long, get better service by going into one of the other lines!
– Could increase priority of jobs that donʼt get service!

» What is done in UNIX!
»  This is ad hoc—what rate should you increase priorities?!
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Lottery Scheduling"
•  Yet another alternative: Lottery Scheduling!

– Give each job some number of lottery tickets!
– On each time slice, randomly pick a winning ticket!
– On average, CPU time is proportional to number of tickets 

given to each job!

•  How to assign tickets?!
– To approximate SRTF, short running jobs get more, long 

running jobs get fewer!
– To avoid starvation, every job gets at least one ticket 

(everyone makes progress)!

•  Advantage over strict priority scheduling: behaves 
gracefully as load changes!

– Adding or deleting a job affects all jobs proportionally, 
independent of how many tickets each job possesses!
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Lottery Scheduling Example"

•  Lottery Scheduling Example!
– Assume short jobs get 10 tickets, long jobs get 1 ticket!

– What if too many short jobs to give reasonable  
response time?  !

»  In UNIX, if load average is 100, hard to make progress!
» One approach: log some user out!

# short jobs/"
# long jobs"

% of CPU each 
short jobs gets"

% of CPU each 
long jobs gets"

1/1! 91%! 9%!
0/2! N/A! 50%!
2/0! 50%! N/A!

10/1! 9.9%! 0.99%!
1/10! 50%! 5%!
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How to Evaluate a Scheduling algorithm?"
•  Deterministic modeling!

– Takes a predetermined workload and compute the 
performance of each algorithm  for that workload!

•  Queuing models!
– Mathematical approach for handling stochastic workloads!

•  Implementation/Simulation:!
– Build system which allows actual algorithms to be run against 

actual data.  Most flexible/general.!
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A Final Word On Scheduling"
•  When do the details of the scheduling policy and fairness 

really matter?!
– When there arenʼt enough resources to go around!

•  When should you simply buy a faster computer?!
–  (Or network link, or expanded highway, or …)!
– One approach: Buy it when it will pay  

for itself in improved response time!
»  Assuming youʼre paying for worse  

response time in reduced productivity,  
customer angst, etc…!

» Might think that you should buy a  
faster X when X is utilized 100%,  
but usually, response time goes  
to infinity as utilization⇒100%!

•  An interesting implication of this curve:!
– Most scheduling algorithms work fine in the “linear” portion of 

the load curve, fail otherwise!
– Argues for buying a faster X when hit “knee” of curve!

Utilization"

R
esponse tim

e"

100%
"
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Summary"

•  Scheduling: selecting a process from the ready queue and 
allocating the CPU to it!

•  FCFS Scheduling:!
– Run threads to completion in order of submission!
– Pros: Simple (+)!
– Cons: Short jobs get stuck behind long ones (-)!

•  Round-Robin Scheduling: !
– Give each thread a small amount of CPU time when it 

executes; cycle between all ready threads!
– Pros: Better for short jobs (+)!
– Cons: Poor when jobs are same length (-)!

!
!
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Summary (contʼd)"
•  Shortest Job First (SJF)/Shortest Remaining Time First 

(SRTF):!
– Run whatever job has the least amount of computation to do/

least remaining amount of computation to do!
– Pros: Optimal (average response time) !
– Cons: Hard to predict future, Unfair!

•  Multi-Level Feedback Scheduling:!
– Multiple queues of different priorities!
– Automatic promotion/demotion of process priority in order to 

approximate SJF/SRTF!

•  Lottery Scheduling:!
– Give each thread a number of tokens (short tasks ⇒ more 

tokens)!
– Reserve a minimum number of tokens for every thread to 

ensure forward progress/fairness!


