
CS162  
Operating Systems and 
Systems Programming 

Lecture 8  
 

Thread Scheduling"

February 20, 2013"
Anthony D. Joseph"

http://inst.eecs.berkeley.edu/~cs162"

Lec 8.2!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Goals for Today"

•  Scheduling Policy goals!
•  Policy Options!
•  Implementation Considerations!

!

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.!

Lec 8.3!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

CPU Scheduling"

•  Earlier, we talked about the life-cycle of a thread!
– Active threads work their way from Ready queue to Running

to various waiting queues.!
•  Question: How is the OS to decide which of several

threads to take off a queue?!
– Obvious queue to worry about is ready queue!
– Others can be scheduled as well, however!

•  Scheduling: deciding which threads are given access to
resources!

Lec 8.4!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Scheduling Assumptions"
•  CPU scheduling big area of research in early 70ʼs!
•  Many implicit assumptions for CPU scheduling:!

– One program per user!
– One thread per program!
– Programs are independent!

•  In general unrealistic but they simplify the problem !
– For instance: is “fair” about fairness among users or programs? !

»  If I run one compilation job and you run five, you get five times as
much CPU on many operating systems!

•  The high-level goal: Dole out CPU time to optimize some
desired parameters of system!

USER1" USER2" USER3" USER1" USER2"

Time "

Lec 8.5!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Assumption: CPU Bursts"

•  Execution model: programs alternate between bursts of CPU
and I/O!

– Program typically uses the CPU for some period of time, then
does I/O, then uses CPU again!

– Each scheduling decision is about which job to give to the CPU
for use by its next CPU burst!

– With timeslicing, thread may be forced to give up CPU before
finishing current CPU burst!

Weighted toward small bursts!

Lec 8.6!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Scheduling Metrics"

•  Waiting Time: time the job is waiting in the ready queue!
– Time between jobʼs arrival in the ready queue and launching

the job!
•  Service (Execution) Time: time the job is running!
•  Response (Completion) Time: !

– Time between jobʼs arrival in the ready queue and jobʼs
completion!

– Response time is what the user sees:!
»  Time to echo a keystroke in editor!
»  Time to compile a program!

!Response Time = Waiting Time + Service Time!
!
•  Throughput: number of jobs completed per unit of time !

– Throughput related to response time, but not same thing:!
» Minimizing response time will lead to more context switching than

if you only maximized throughput!

Lec 8.7!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Scheduling Policy Goals/Criteria"

•  Minimize Response Time!
– Minimize elapsed time to do an operation (or job)!

!
•  Maximize Throughput!

– Two parts to maximizing throughput!
» Minimize overhead (for example, context-switching)!
»  Efficient use of resources (CPU, disk, memory, etc)!

•  Fairness!
– Share CPU among users in some equitable way!
– Fairness is not minimizing average response time:!

»  Better average response time by making system less fair!

Lec 8.8!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

First-Come, First-Served (FCFS) Scheduling"
•  First-Come, First-Served (FCFS)!

–  Also “First In, First Out” (FIFO) or “Run until done”!
»  In early systems, FCFS meant one program  

scheduled until done (including I/O)!
» Now, means keep CPU until thread blocks !

•  Example: !Process !Burst Time  
!P1 !24  
! P2 !3  
!P3 ! 3 !

–  Suppose processes arrive in the order: P1 , P2 , P3  The Gantt Chart for the schedule is: 
 
 
 
 
!

–  Waiting time for P1 = 0; P2 = 24; P3 = 27!
–  Average waiting time: (0 + 24 + 27)/3 = 17!
–  Average completion time: (24 + 27 + 30)/3 = 27!

•  Convoy effect: short process behind long process!

P1! P2! P3!

24! 27! 30!0!

Lec 8.9!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

FCFS Scheduling (Cont.)"
•  Example continued:!

–  Suppose that processes arrive in order: P2 , P3 , P1  
Now, the Gantt chart for the schedule is: 
!

–  Waiting time for P1 = 6; P2 = 0; P3 = 3!
–  Average waiting time: (6 + 0 + 3)/3 = 3!
–  Average Completion time: (3 + 6 + 30)/3 = 13!

•  In second case:!
–  Average waiting time is much better (before it was 17)!
–  Average completion time is better (before it was 27) !

•  FCFS Pros and Cons:!
–  Simple (+)!
–  Short jobs get stuck behind long ones (-)!

»  Safeway: Getting milk, always stuck behind cart full of small items!

P1!P3!P2!

6!3! 30!0!

Lec 8.10!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Round Robin (RR)"
•  FCFS Scheme: Potentially bad for short jobs!!

– Depends on submit order!
–  If you are first in line at supermarket with milk, you donʼt care

who is behind you, on the other hand…!
•  Round Robin Scheme!

– Each process gets a small unit of CPU time  
(time quantum), usually 10-100 milliseconds!

– After quantum expires, the process is preempted  
and added to the end of the ready queue!

– n processes in ready queue and time quantum is q ⇒!
»  Each process gets 1/n of the CPU time !
»  In chunks of at most q time units !
» No process waits more than (n-1)q time units!

•  Performance!
– q large ⇒ FCFS!
– q small ⇒ Interleaved!
– q must be large with respect to context switch, otherwise

overhead is too high (all overhead)!

Lec 8.11!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 ! 53 
! P2 ! ! 8! ! 8 
! P3 ! !68 ! 68 
! P4 ! ! 24 ! 24!

–  The Gantt chart is:!

!

Lec 8.12!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 ! 33  
! P2 ! ! 8! ! 8 
! P3 ! !68 ! 68 
! P4 ! ! 24 ! 24!

–  The Gantt chart is:!

!

P1!

0! 20!

Lec 8.13!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 ! 33 
! P2 ! ! 8! ! 0  
! P3 ! !68 ! 68 
! P4 ! ! 24 ! 24!

–  The Gantt chart is:!

!

P1!

0! 20!

P2!

28!

Lec 8.14!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 ! 33 
! P2 ! ! 8! ! 0 
! P3 ! !68 ! 48  
! P4 ! ! 24 ! 24!

–  The Gantt chart is:!

!

P1!

0! 20!

P2!

28!

P3!

48!

Lec 8.15!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 ! 33 
! P2 ! ! 8! ! 0 
! P3 ! !68 ! 48 
! P4 ! ! 24 ! 4!

–  The Gantt chart is:!

!

P1!

0! 20!

P2!

28!

P3!

48!

P4!

68!

Lec 8.16!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 ! 13  
! P2 ! ! 8! ! 0 
! P3 ! !68 ! 48 
! P4 ! ! 24 ! 4!

–  The Gantt chart is:!

!

P1!

0! 20!

P2!

28!

P3!

48!

P4!

68!

P1!

88!

Lec 8.17!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 ! 13 
! P2 ! ! 8! ! 0 
! P3 ! !68 ! 28  
! P4 ! ! 24 ! 4!

–  The Gantt chart is:!

!

P1!

0! 20!

P2!

28!

P3!

48!

P4!

68!

P1!

88!

P3!

108!

Lec 8.18!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time !Remaining Time 

! P1 ! !53 ! 0 
! P2 ! ! 8! ! 0 
! P3 ! !68 ! 0  
! P4 ! ! 24 ! 0!

–  The Gantt chart is:!

– Waiting time for P1=(68-20)+(112-88)=72 ! ! !
! P2=(20-0)=20  
! P3=(28-0)+(88-48)+(125-108)=85  
! P4=(48-0)+(108-68)=88!

–  Average waiting time = (72+20+85+88)/4=66¼!
–  Average completion time = (125+28+153+112)/4 = 104½!

•  Thus, Round-Robin Pros and Cons:!
–  Better for short jobs, Fair (+)!
–  Context-switching time adds up for long jobs (-)!

!

P1!

0! 20!

P2!

28!

P3!

48!

P4!

68!

P1!

88!

P3!

108!

P4!

112!

P1!

125!

P3!

145!

P3!

153!

Lec 8.19!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Round-Robin Discussion"
•  How do you choose time slice?!

– What if too big?!
» Response time suffers!

– What if infinite (∞)?!
» Get back FCFS/FIFO!

– What if time slice too small?!
»  Throughput suffers! !

•  Actual choices of timeslice:!
–  Initially, UNIX timeslice one second:!

» Worked ok when UNIX was used by one or two people.!
» What if three compilations going on? 3 seconds to echo each

keystroke!!
–  In practice, need to balance short-job performance and long-

job throughput:!
»  Typical time slice today is between 10ms – 100ms!
»  Typical context-switching overhead is 0.1ms – 1ms!
» Roughly 1% overhead due to context-switching!
!

Lec 8.20!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Comparisons between FCFS and Round Robin"
•  Assuming zero-cost context-switching time, is RR always

better than FCFS?!
•  Simple example: !10 jobs, each takes 100s of CPU time  

!RR scheduler quantum of 1s 
!All jobs start at the same time!

•  Completion Times:!

!

Job #" FIFO" RR"
1! 100! 991!
2! 200! 992!
…! …! …!
9! 900! 999!

10! 1000! 1000!

P1" P2" P9" P10"…"

0" 100" 800" 900" 1000"200"
FCFS"

…"

0" 10" 980" 990" 1000"20"
…" …" …" …"

999"991"

RR"

Lec 8.21!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Comparisons between FCFS and Round Robin"
•  Assuming zero-cost context-switching time, is RR always

better than FCFS?!
•  Simple example: !10 jobs, each takes 100s of CPU time  

!RR scheduler quantum of 1s 
!All jobs start at the same time!

•  Both RR and FCFS finish at the same time!
•  Average response time is much worse under RR!!

– Bad when all jobs same length!
•  Also: Cache state must be shared between all jobs with RR

but can be devoted to each job with FCFS!
– Total time for RR longer even for zero-cost switch!!

!

P1" P2" P9" P10"…"

0" 100" 800" 900" 1000"200"
FCFS"

…"

0" 10" 980" 990" 1000"20"
…" …" …" …"

999"991"

RR"

Lec 8.22!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

 !

Quantum!

Completion!
Time!

Wait!
Time!

Average!P4!P3!P2!P1!

Earlier Example with Different Time Quantum"

P2!
[8]!

P4!
[24]!

P1!
[53]!

P3!
[68]!

0! 8! 32! 85! 153!

Best FCFS:"

31¼!8!85!0!32!Best FCFS!

69½!32!153!8!85!Best FCFS!

Lec 8.23!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

 !

Quantum!

Completion!
Time!

Wait!
Time!

Average!P4!P3!P2!P1!

Earlier Example with Different Time Quantum"

31¼!8!85!0!32!Best FCFS!

69½!32!153!8!85!Best FCFS!

121¾!145!68!153!121!Worst FCFS!

83½!121!0!145!68!Worst FCFS!

P2!
[8]!

P4!
[24]!

P1!
[53]!

P3!
[68]!

0! 68! 121! 145!153!

Worst FCFS:"

Lec 8.24!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

 !

Quantum!

Completion!
Time!

Wait!
Time!

Average!P4!P3!P2!P1!

Earlier Example with Different Time Quantum"

62!57!85!22!84!Q = 1!

104½!112!153!28!125!Q = 20!

100½!81!153!30!137!Q = 1!

66¼ !88!85!20!72!Q = 20!

31¼!8!85!0!32!Best FCFS!

121¾!145!68!153!121!Worst FCFS!

69½!32!153!8!85!Best FCFS!
83½!121!0!145!68!Worst FCFS!

95½!80!153!16!133!Q = 8!

57¼!56!85!8!80!Q = 8!

99½!92!153!18!135!Q = 10!

99½!82!153!28!135!Q = 5!

61¼!68!85!10!82!Q = 10!

61¼!58!85!20!82!Q = 5!

P1!

0! 8! 56!

P2! P3! P4! P1! P3! P4! P1! P3! P4! P1! P3! P1! P3! P3!P3!

16" 24! 32! 40! 48! 64! 72! 80" 88! 96! 104! 112!

P1! P3! P1!
120! 128! 133"141!149!

P3!
153"

P2!
[8]!

P4!
[24]!

P1!
[53]!

P3!
[68]!

0! 68! 121! 145!153!

Worst FCFS:"

Lec 8.25!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

5min Break"

Lec 8.26!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

What if we Knew the Future?"
•  Could we always mirror best FCFS?!
•  Shortest Job First (SJF):!

– Run whatever job has the least amount of  
computation to do!

•  Shortest Remaining Time First (SRTF):!
– Preemptive version of SJF: if job arrives and has a shorter

time to completion than the remaining time on the current job,
immediately preempt CPU!

•  These can be applied either to a whole program or the
current CPU burst of each program!

–  Idea is to get short jobs out of the system!
– Big effect on short jobs, only small effect on long ones!
– Result is better average response time!

Lec 8.27!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Discussion"

•  SJF/SRTF are the best you can do at minimizing average
response time!

– Provably optimal (SJF among non-preemptive, SRTF among
preemptive)!

– Since SRTF is always at least as good as SJF, focus on
SRTF!

•  Comparison of SRTF with FCFS and RR!
– What if all jobs the same length?!

»  SRTF becomes the same as FCFS (i.e., FCFS is best can do if
all jobs the same length)!

– What if jobs have varying length?!
»  SRTF (and RR): short jobs not stuck behind long ones!

Lec 8.28!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Example to illustrate benefits of SRTF"

•  Three jobs:!!
– A,B: CPU bound, each run for a week 

C: I/O bound, loop 1ms CPU, 9ms disk I/O!
–  If only one at a time, C uses 90% of the disk, A or B use 100%

of the CPU!
•  With FIFO:!

– Once A or B get in, keep CPU for one week each!
•  What about RR or SRTF?!

– Easier to see with a timeline!

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Lec 8.29!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

RR vs. SRTF"

Cʼs "
I/O"

CABAB…" C"

Cʼs "
I/O"

RR 1ms time slice"

Cʼs "
I/O"

Cʼs "
I/O"

C"A" B"C"

RR 100ms time slice"

Cʼs "
I/O"

A"C"

Cʼs "
I/O"

A"A"

SRTF"

Disk Utilization:"
~90% but lots of

wakeups!"

Disk Utilization:"
90%"

Disk Utilization:"
9/201 ~ 4.5%"

Lec 8.30!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

SRTF Further discussion"
•  Starvation!

– SRTF can lead to starvation if many small jobs!!
– Large jobs never get to run!

•  Somehow need to predict future!
– How can we do this? !
– Some systems ask the user!

» When you submit a job, have to say how long it will take!
»  To stop cheating, system kills job if takes too long!

– But: even non-malicious users have trouble predicting runtime
of their jobs!

•  Bottom line, canʼt really know how long job will take!
– However, can use SRTF as a yardstick  

for measuring other policies!
– Optimal, so canʼt do any better!

•  SRTF Pros & Cons!
– Optimal (average response time) (+)!
– Hard to predict future (-)!
– Unfair (-)!

Lec 8.31!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Predicting the Length of the Next CPU Burst"
•  Adaptive: Changing policy based on past behavior!

– CPU scheduling, in virtual memory, in file systems, etc.!
– Works because programs have predictable behavior!

»  If program was I/O bound in past, likely in future!
»  If computer behavior were random, wouldnʼt help!

•  Example: SRTF with estimated burst length!
– Use an estimator function on previous bursts:  

Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.  
Estimate next burst τn = f(tn-1, tn-2, tn-3, …)!

– Function f could be one of many different time series
estimation schemes (Kalman filters, etc.)!

– Example:  
Exponential averaging 
τn = αtn-1+(1-α)τn-1  with (0<α≤1)!

 
!

Lec 8.32!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Multi-Level Feedback Scheduling"

•  Another method for exploiting past behavior!
– First used in Cambridge Time Sharing System (CTSS)!
– Multiple queues, each with different priority!

» Higher priority queues often considered “foreground” tasks!
– Each queue has its own scheduling algorithm!

»  e.g., foreground – RR, background – FCFS!
»  Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc.)!
•  Adjust each jobʼs priority as follows (details vary)!

– Job starts in highest priority queue!
–  If timeout expires, drop one level!
–  If timeout doesnʼt expire, push up one level (or to top)!

Long-Running "
Compute tasks "

demoted to  
low priority"

Lec 8.33!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Scheduling Details"

•  Result approximates SRTF:!
– CPU bound jobs drop like a rock!
– Short-running I/O bound jobs stay near top!

•  Scheduling must be done between the queues!
– Fixed priority scheduling: !

»  Serve all from highest priority, then next priority, etc.!
– Time slice:!

»  Each queue gets a certain amount of CPU time !
»  e.g., 70% to highest, 20% next, 10% lowest!

Lec 8.34!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Countermeasure"

•  Countermeasure: user action that can foil intent of the OS
designer!

– For multilevel feedback, put in a bunch of meaningless I/O to
keep jobʼs priority high!

– Of course, if everyone did this, wouldnʼt work!!

•  Ex: MIT Othello game project (simpler version of Go game)!
– Computer playing against competitorʼs computer, so key was to

do computing at higher priority the competitors. !
» Cheater put in printfʼs, ran much faster!!

Lec 8.35!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Scheduling Fairness"
•  What about fairness?!

– Strict fixed-priority scheduling between queues is unfair (run
highest, then next, etc):!

»  Long running jobs may never get CPU !
»  In Multics, shut down machine, found 10-year-old job!

– Must give long-running jobs a fraction of the CPU even when
there are shorter jobs to run!

– Tradeoff: fairness gained by hurting average response time!!

•  How to implement fairness?!
– Could give each queue some fraction of the CPU !

» What if one long-running job and 100 short-running ones?!
»  Like express lanes in a supermarket—sometimes express lanes

get so long, get better service by going into one of the other lines!
– Could increase priority of jobs that donʼt get service!

» What is done in UNIX!
»  This is ad hoc—what rate should you increase priorities?!

Lec 8.36!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Lottery Scheduling"
•  Yet another alternative: Lottery Scheduling!

– Give each job some number of lottery tickets!
– On each time slice, randomly pick a winning ticket!
– On average, CPU time is proportional to number of tickets

given to each job!

•  How to assign tickets?!
– To approximate SRTF, short running jobs get more, long

running jobs get fewer!
– To avoid starvation, every job gets at least one ticket

(everyone makes progress)!

•  Advantage over strict priority scheduling: behaves
gracefully as load changes!

– Adding or deleting a job affects all jobs proportionally,
independent of how many tickets each job possesses!

Lec 8.37!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Lottery Scheduling Example"

•  Lottery Scheduling Example!
– Assume short jobs get 10 tickets, long jobs get 1 ticket!

– What if too many short jobs to give reasonable  
response time? !

»  In UNIX, if load average is 100, hard to make progress!
» One approach: log some user out!

short jobs/"
long jobs"

% of CPU each
short jobs gets"

% of CPU each
long jobs gets"

1/1! 91%! 9%!
0/2! N/A! 50%!
2/0! 50%! N/A!

10/1! 9.9%! 0.99%!
1/10! 50%! 5%!

Lec 8.38!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

How to Evaluate a Scheduling algorithm?"
•  Deterministic modeling!

– Takes a predetermined workload and compute the
performance of each algorithm for that workload!

•  Queuing models!
– Mathematical approach for handling stochastic workloads!

•  Implementation/Simulation:!
– Build system which allows actual algorithms to be run against

actual data. Most flexible/general.!

Lec 8.39!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

A Final Word On Scheduling"
•  When do the details of the scheduling policy and fairness

really matter?!
– When there arenʼt enough resources to go around!

•  When should you simply buy a faster computer?!
–  (Or network link, or expanded highway, or …)!
– One approach: Buy it when it will pay  

for itself in improved response time!
»  Assuming youʼre paying for worse  

response time in reduced productivity,  
customer angst, etc…!

» Might think that you should buy a  
faster X when X is utilized 100%,  
but usually, response time goes  
to infinity as utilization⇒100%!

•  An interesting implication of this curve:!
– Most scheduling algorithms work fine in the “linear” portion of

the load curve, fail otherwise!
– Argues for buying a faster X when hit “knee” of curve!

Utilization"

R
esponse tim

e"

100%
"

Lec 8.40!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Summary"

•  Scheduling: selecting a process from the ready queue and
allocating the CPU to it!

•  FCFS Scheduling:!
– Run threads to completion in order of submission!
– Pros: Simple (+)!
– Cons: Short jobs get stuck behind long ones (-)!

•  Round-Robin Scheduling: !
– Give each thread a small amount of CPU time when it

executes; cycle between all ready threads!
– Pros: Better for short jobs (+)!
– Cons: Poor when jobs are same length (-)!

!
!

Lec 8.41!2/20/13" Anthony D. Joseph, CS162 ©UCB Spring 2013!

Summary (contʼd)"
•  Shortest Job First (SJF)/Shortest Remaining Time First

(SRTF):!
– Run whatever job has the least amount of computation to do/

least remaining amount of computation to do!
– Pros: Optimal (average response time) !
– Cons: Hard to predict future, Unfair!

•  Multi-Level Feedback Scheduling:!
– Multiple queues of different priorities!
– Automatic promotion/demotion of process priority in order to

approximate SJF/SRTF!

•  Lottery Scheduling:!
– Give each thread a number of tokens (short tasks ⇒ more

tokens)!
– Reserve a minimum number of tokens for every thread to

ensure forward progress/fairness!

