
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 10  
 

Caches and TLBs"

February 28, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

Lec 10.2!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Todayʼs Lecture"
•  Caching!

– Misses!
– Organization!

•  Translation Look aside Buffers (TLBs)!
•  How caching and TLBs fit into the virtual memory

architecture!
!
!

Note: Some slides and/or pictures in the following are adapted from slides ©2005
Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D. Joseph, John
Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric Brewer, Ras Bodik,
Ion Stoica, Doug Tygar, and David Wagner.!

Lec 10.3!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Caching Concept"

•  Cache: a repository for copies that can be accessed more
quickly than the original!

– Make frequent case fast and infrequent case less dominant!
•  Caching at different levels!

– Can cache: memory locations, address translations, pages, file
blocks, file names, network routes, etc…!

•  Only good if:!
– Frequent case frequent enough and!
–  Infrequent case not too expensive!

•  Important measure: Average Access time =  
!(Hit Rate x Hit Time) + (Miss Rate x Miss Time)!

Lec 10.4!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example"

Processor"
Main"
Memory"
(DRAM)"

100ns"

Access time =
100ns"

Average Access time = !
(Hit Rate x HitTime) + (Miss Rate x MissTime)!

•  Data in memory, 10ns cache:!

•  HitRate + MissRate = 1!
•  HitRate = 90% à Average Access Time = 19ns!
•  HitRate = 99% à Average Access Time = 10.9ns!

Processor!
Main!
Memory!
(DRAM)!

100ns!10ns!

Second!
Level!
Cache!
(SRAM)!

•  Data in memory, no cache:!

Page 2

Lec 10.5!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Memory Hierarchy"
•  Take advantage of the principle of locality to:!

– Present as much memory as in the cheapest technology!
– Provide access at speed offered by the fastest technology!

Control"

Datapath"

Secondary  
 Storage  

(Disk)"

Processor"

Second"
Level"
Cache"

(SRAM)"

Main"
Memory"
(DRAM)"

1s" 10,000,000s "
 (10s ms)"

Speed (ns):" 10s-100s" 100s"

100s" Ts"Size (bytes):" Ks-Ms" Gs"

Tertiary"
Storage"
(Tape)"

10,000,000,000s "
 (10s sec)"

Ts"

Lec 10.6!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Why Does Caching Help? Locality!"

•  Temporal Locality (Locality in Time):!
– Keep recently accessed data items closer to processor!

•  Spatial Locality (Locality in Space):!
– Move contiguous blocks to the upper levels !

Address Space 0 2n - 1

Probability
of reference

Lower Level
Memory Upper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Lec 10.7!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Compulsory (cold start): first reference to a block!
–  “Cold” fact of life: not a whole lot you can do about it!
– Note: When running “billions” of instruction, Compulsory Misses

are insignificant!
•  Capacity:!

– Cache cannot contain all blocks access by the program!
– Solution: increase cache size!

•  Conflict (collision):!
– Multiple memory locations mapped to same cache location!
– Solutions: increase cache size, or increase associativity!

•  Two others:!
– Coherence (Invalidation): other process (e.g., I/O) updates

memory !
– Policy: Due to non-optimal replacement policy!

Sources of Cache Misses"

Lec 10.8!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Caching Questions"
•  8 byte cache!
•  32 byte memory!
•  1 block = 1 byte!
•  Assume CPU accesses 01100!

00000"
00001"
00010"
00011"
00100"
00101"
00110"
00111"
01000"
01001"
01010"
01011"
01100"
01101"
01110"
01111"
10000"
10001"
10010"
10011"
10100"
10101"
10110"
10111"
11000"
11001"
11010"
11011"
11100"
11101"
11110"
11111"

000"
001"
010"
011"
100"
101"
110"
111"

Physical Memory!

Cache!

1.  How do you know whether byte @ 01100 is
cached?!

(01100)!

Page 3

Lec 10.9!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Caching Questions"
•  8 byte cache!
•  32 byte memory!
•  1 block = 1 byte!
•  Assume CPU accesses 01100!

00000"
00001"
00010"
00011"
00100"
00101"
00110"
00111"
01000"
01001"
01010"
01011"
01100"
01101"
01110"
01111"
10000"
10001"
10010"
10011"
10100"
10101"
10110"
10111"
11000"
11001"
11010"
11011"
11100"
11101"
11110"
11111"

000"
001"
010"
011"
100"
101"
110"
111"

Physical Memory!

Cache!

1.  How do you know whether byte @ 01100 is
cached?!

2.  If not, at which location in the cache do you
place the byte?!

(01100)!

Lec 10.10!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Caching Questions"
•  8 byte cache!
•  32 byte memory!
•  1 block = 1 byte!
•  Assume CPU accesses 01100!

00000"
00001"
00010"
00011"
00100"
00101"
00110"
00111"
01000"
01001"
01010"
01011"
01100"
01101"
01110"
01111"
10000"
10001"
10010"
10011"
10100"
10101"
10110"
10111"
11000"
11001"
11010"
11011"
11100"
11101"
11110"
11111"

000"
001"
010"
011"
100"
101"
110"
111"

Physical Memory!

Cache!

1.  How do you know whether byte @ 01100 is
cached?!

2.  If not, at which location in the cache do you
place the byte?!

3.  If cache full, which cached byte do you evict?!

Lec 10.11!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Simple Example: Direct Mapped Cache"
•  Each byte (block) in physical memory is

cached to a single cache location!
– Least significant bits of address (last 3

bits) index the cache!
–  (00100),(01100),(10100),(11100) cached

to 100!

000"
001"
010"
011"
100"
101"
110"
111"

Physical Memory!

Cache!Tag!Index!

00000"
00001"
00010"
00011"
00100"
00101"
00110"
00111"
01000"
01001"
01010"
01011"
01100"
01101"
01110"
01111"
10000"
10001"
10010"
10011"
10100"
10101"
10110"
10111"
11000"
11001"
11010"
11011"
11100"
11101"
11110"
11111"

•  How do you know which byte is
cached?!

– Cache stores the most significant two
bits (i.e., tag) of the cached byte!

Lec 10.12!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Simple Example: Direct Mapped Cache"
•  Each byte (block) in physical memory is

cached to a single cache location!
– Least significant bits of address (last 3 bits)

index the cache!
–  (00100),(01100),(10100),(11100) cached to 100!

01100"000"
001"
010"
011"
100"
101"
110"
111"

Physical Memory!

Cache!

1.  How do you know whether (01100) is cached?!
–  Check tag associated with index 100!

2.  At which cache location do you place (01100)?!
–  100!

3.  If cache full, which cached byte do you evict?!
–  100!

Tag!Index!

01"

Page 4

Lec 10.13!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Simple Example: Fully Associative Cache"
•  Each byte can be stored at any location

in the cache! Physical Memory!

Cache!Tag!

00000"
00001"
00010"
00011"
00100"
00101"
00110"
00111"
01000"
01001"
01010"
01011"
01100"
01101"
01110"
01111"
10000"
10001"
10010"
10011"
10100"
10101"
10110"
10111"
11000"
11001"
11010"
11011"
11100"
11101"
11110"
11111"

•  How do you know which byte is
cached?!

– Tag store entire address of cached byte!

Lec 10.14!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Simple Example: Fully Associative Cache"
•  Each byte can be stored at any location

in the cache! Physical Memory!

Cache!Tag!

00000"
00001"
00010"
00011"
00100"
00101"
00110"
00111"
01000"
01001"
01010"
01011"
01100"
01101"
01110"
01111"
10000"
10001"
10010"
10011"
10100"
10101"
10110"
10111"
11000"
11001"
11010"
11011"
11100"
11101"
11110"
11111"

01100"

1.  How do you know whether (01100) is cached?!
–  Check tag of all cache entries!

2.  At which cache location do you place (01100)?!
–  Any!

3.  If cache full, which cached byte do you evict?!
–  Specific eviction policy!

Lec 10.15!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Direct Mapped Cache"
•  Cache index selects a cache block!
•  “Byte select” selects byte within cache block!

– Example: Block Size=32B blocks!
•  Cache tag fully identifies the cached data!
•  Data with same “cache index” shares the same cache entry!

– Conflict misses!

:

 Cache Data
Byte 0 Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Valid Bit

: :

 Cache Tag
Ex: 0x01

Cache Index
0 4 31

Cache Tag Byte Select
8

Compare
Hit Lec 10.16!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Cache Index
0 4 31

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Mux 0 1 Sel1 Sel0

OR

Hit

Set Associative Cache"
•  N-way set associative: N entries per Cache Index!

– N direct mapped caches operates in parallel!
•  Example: Two-way set associative cache!

– Two tags in the set are compared to input in parallel!
– Data is selected based on the tag result!

Compare Compare

Cache Block

Page 5

Lec 10.17!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Fully Associative Cache"
•  Fully Associative: Every block can hold any line!

– Address does not include a cache index!
– Compare Cache Tags of all Cache Entries in Parallel!

•  Example: Block Size=32B blocks!
– We need N 27-bit comparators!
– Still have byte select to choose from within block!

:

 Cache Data
Byte 0 Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Valid Bit

: :

 Cache Tag

0 4
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

Lec 10.18!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

• Example: Block 12 placed in 8 block cache!

0 1 2 3 4 5 6 7 Block
no.

Direct mapped:
block 12 (01100)
can go only into
block 4 (12 mod 8)

Set associative:
block 12 can go
anywhere in set 0

0 1 2 3 4 5 6 7 Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7 Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 Block
no.

Where does a Block Get Placed in a
Cache?"

01" 100"

tag" index"

011" 00"

tag" index"

01100"

tag"

Lec 10.19!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Easy for Direct Mapped: Only one possibility!
•  Set Associative or Fully Associative:!

– Random!
– LRU (Least Recently Used)!

! 2-way ! 4-way ! 8-way 
Size !LRU! Random! LRU! Random ! LRU! Random!
!16 KB !5.2% !5.7% ! 4.7% !5.3% !4.4%! 5.0%!
!64 KB !1.9% !2.0% ! 1.5% !1.7% !1.4%! 1.5%!
!256 KB !1.15% !1.17%! 1.13% ! 1.13% !1.12%! 1.12%!

!

Which block should be replaced on a
miss?"

Lec 10.20!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Write through: The information is written both to the block in
the cache and to the block in the lower-level memory!

•  Write back: The information is written only to the block in the
cache. !

– Modified cache block is written to main memory only when it is
replaced!

– Question is block clean or dirty?!
•  Pros and Cons of each?!

– WT: !
»  PRO: read misses cannot result in writes!
» CON: processor held up on writes unless writes buffered!

– WB: !
»  PRO: repeated writes not sent to DRAM 

! processor not held up on writes!
» CON: More complex 

! Read miss may require writeback of dirty data!

What happens on a write?"

Page 6

Lec 10.21!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia"
•  Midterm exam is Wednesday 3/13 4-5:30pm in two rooms!

– 145 Dwinelle for last names beginning with A-H!
– 245 Li Ka Shing for last names beginning with I-Z!

•  Midterm is closed book, no calculators!
– Covers up to Lecture #12 (Kernel/User and I/O)!
– One double-sided handwritten page of notes allowed!

•  Midterm review session TBA!

•  Project 1 design doc (submit proj1-final-design)
and group evals (Google Docs form) due today by 11:59PM!

– Group evals are anonymous to your group!

•  Class feedback is always welcome! !

!

Lec 10.22!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

Lec 10.23!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Caching Applied to Address Translation"

•  Question is one of page locality: does it exist?!
–  Instruction accesses spend a lot of time on the same page

(since accesses sequential)!
– Stack accesses have definite locality of reference!
– Data accesses have less page locality, but still some…!

•  Can we have a TLB hierarchy?!
– Sure: multiple levels at different sizes/speeds!

Data Read or Write"
(untranslated)"

CPU" Physical"
Memory"

TLB"

Translate"
(MMU)"

No"

Virtual"
Address" Physical"

Address"Yes"
Cached?"

Sav
e"

Res
ult"

Lec 10.24!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

stack!

Recap: Two-Level Paging"

stack!

heap!

code!

data!

Virtual memory view"

1001 0000"
(0x90)"

Physical memory view"

data!

code!

heap!

stack!

0000 0000"
0001 0000"

1000 0000"
(0x80)"

1110 0000"

111 "
110 null"
101 null"
100 "
011 null"
010 "
001 null"
000 "

11 11101 "
10 11100"
01 10111"
00 10110"

11 01101 "
10 01100"
01 01011"
00 01010"

11 00101 "
10 00100"
01 00011"
00 00010"

11 null "
10 10000"
01 01111"
00 01110"

Page Tables"
(level 2)"

Page Table"
(level 1)"

Page 7

Lec 10.25!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

What Actually Happens on a TLB Miss?"
•  Hardware traversed page tables:!

– On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)!

»  If PTE valid, hardware fills TLB and processor never knows!
»  If PTE marked as invalid, causes Page Fault, after which kernel

decides what to do afterwards!

•  Software traversed Page tables!
– On TLB miss, processor receives TLB fault!
– Kernel traverses page table to find PTE!

»  If PTE valid, fills TLB and returns from fault!
»  If PTE marked as invalid, internally calls Page Fault handler!

•  Most chip sets provide hardware traversal!
– Modern operating systems tend to have more TLB faults since

they use translation for many things!

Lec 10.26!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

What happens on a Context Switch?"

•  Need to do something, since TLBs map virtual addresses to
physical addresses!

– Address Space just changed, so TLB entries no longer valid!!

•  Options?!
–  Invalidate TLB: simple but might be expensive!

» What if switching frequently between processes?!
–  Include ProcessID in TLB!

»  This is an architectural solution: needs hardware!

•  What if translation tables change?!
– For example, to move page from memory to disk or vice versa…!
– Must invalidate TLB entry!!

» Otherwise, might think that page is still in memory!!

Lec 10.27!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

What TLB organization makes sense?"

•  Needs to be really fast!
– Critical path of memory access !
– Seems to argue for Direct Mapped or Low Associativity!

•  However, needs to have very few conflicts!!
– With TLB, the Miss Time extremely high!!
– This argues that cost of Conflict (Miss Time) is much higher than

slightly increased cost of access (Hit Time)!
•  Thrashing: continuous conflicts between accesses!

– What if use low order bits of page as index into TLB?!
»  First page of code, data, stack may map to same entry!
» Need 3-way associativity at least?!

– What if use high order bits as index?!
»  TLB mostly unused for small programs!

CPU" TLB" Cache" Memory"

Lec 10.28!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TLB organization: include protection"
• How big does TLB actually have to be?!

– Usually small: 128-512 entries!
– Not very big, can support higher associativity!

• TLB usually organized as fully-associative cache!
– Lookup is by Virtual Address!
– Returns Physical Address + other info!

!
• What happens when fully-associative is too slow?!

– Put a small (4-16 entry) direct-mapped cache in front!
– Called a “TLB Slice”!

• When does TLB lookup occur relative to memory cache
access?!

– Before memory cache lookup?!
– In parallel with memory cache lookup?!

Page 8

Lec 10.29!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  As described, TLB lookup is in serial with cache lookup:!

•  Machines with TLBs go one step further: they overlap TLB
lookup with cache access.!

– Works because offset available early!

Reducing translation time further"

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

Lec 10.30!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Overlapping TLB & Cache Access (1/2)"
•  Main idea: !

– Offset in virtual address exactly covers the “cache index”
and “byte select”!

– Thus can select the cached byte(s) in parallel to perform
address translation !

Offset"Virtual Page #"

index"tag / page #" byte"

virtual address !

physical address !

Lec 10.31!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Here is how this might work with a 4K cache: !

•  What if cache size is increased to 8KB?!
– Overlap not complete!
– Need to do something else. See CS152/252 !

TLB" 4K Cache"

10" 2"
00"

4 bytes"

index" 1 K"

page #" disp"
20"

assoc"
lookup"

32"

Hit/"
Miss"

PA" Data" Hit/"
Miss"

="PA"

Overlapping TLB & Cache Access (1/2)"

Lec 10.32!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Putting Everything Together: Address
Translation"

Physical Address:!
Offset!Physical!

Page #!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

PageTablePtr!

Page Table !
(1st level)!

Page Table !
(2nd level)!

Physical !
Memory:!

Page 9

Lec 10.33!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Page Table !
(2nd level)!

PageTablePtr!

Page Table !
(1st level)!

Putting Everything Together: TLB"

Offset!Physical!
Page #!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

Physical !
Memory:!

Physical Address:!

…!

TLB:!

Lec 10.34!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Page Table !
(2nd level)!

PageTablePtr!

Page Table !
(1st level)!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

…!

TLB:!

Putting Everything Together: Cache"

Offset!

Physical !
Memory:!

Physical Address:!
Physical!
Page #!

…

tag:! block:!
cache:!

index! byte!tag!

Lec 10.35!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary (1/2)"
•  The Principle of Locality:!

– Program likely to access a relatively small portion of the address
space at any instant of time.!

»  Temporal Locality: Locality in Time!
»  Spatial Locality: Locality in Space!

•  Three (+1) Major Categories of Cache Misses:!
– Compulsory Misses: sad facts of life. Example: cold start misses.!
– Conflict Misses: increase cache size and/or associativity!
– Capacity Misses: increase cache size!
– Coherence Misses: Caused by external processors or I/O

devices!

Lec 10.36!2/28/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary (2/2)"
•  Cache Organizations:!

– Direct Mapped: single block per set!
– Set associative: more than one block per set!
– Fully associative: all entries equivalent!

•  TLB is cache on address translations!
– Fully associative to reduce conflicts !
– Can be overlapped with cache access!

