
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 11  
 

Page Allocation and Replacement"

March 4, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

11.2!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Post Project 1 Class Format"
•  Mini quizzes after each topic!

– Not graded!!
– Simple True/False!
– Immediate feedback for you (and me)!

•  Separate from pop quizzes!

11.3!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ Paging does not suffer from external
fragmentation!

•  Q2: True _ False _ The segment offset can be larger than
the segment size!

•  Q3: True _ False _ Paging: to compute the physical
address, add physical page # and offset!

•  Q4: True _ False _ Uni-programming doesnʼt provide
address protection!

•  Q5: True _ False _ Virtual address space is always larger
than physical address space !

•  Q6: True _ False _ Inverted page tables keeps fewer
entries than two-page tables!

!
!
!
!
!
!

Quiz 11.1: Address Translation"

11.4!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ Paging does not suffer from external
fragmentation!

•  Q2: True _ False _ The segment offset can be larger than
the segment size!

•  Q3: True _ False _ Paging: to compute the physical
address, add physical page # and offset!

•  Q4: True _ False _ Uni-programming doesnʼt provide
address protection!

•  Q5: True _ False _ Virtual address space is always larger
than physical address space !

•  Q6: True _ False _ Inverted page tables keeps fewer
entries than two-page tables!

!
!
!
!
!
!

Quiz 11.1: Address Translation"
X"

X"

X"

X"

X"

X"

Page 2

11.5!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Address Translation Comparison"
Advantages" Disadvantages"

Segmentation! Fast context
switching: Segment
mapping
maintained by CPU !

External fragmentation!

Paging
(single-level
page)!

No external
fragmentation!

Large table size ~ virtual
memory!

Paged
segmentation!

Table size ~ # of
virtual memory
pages allocated to
the process!

Multiple memory
references per page
access !Two-level

pages!
Inverted Table! Table size ~ # of

pages in physical
memory!

Hash function more
complex!

11.6!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ Associative caches have fewer
compulsory misses than direct mapped caches!

•  Q2: True _ False _ Two-way set associative caches can
cache two addresses with same cache index!

•  Q3: True _ False _ With write-through caches, a read miss
can result in a write!

•  Q4: True _ False _ LRU caches are more complex than
Random caches!

•  Q5: True _ False _ A TLB caches translations to virtual
addresses!

!
!
!
!
!
!

Quiz 11.2: Caches & TLBs"

11.7!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ Associative caches have fewer
compulsory misses than direct mapped caches!

•  Q2: True _ False _ Two-way set associative caches can
cache two addresses with same cache index!

•  Q3: True _ False _ With write-through caches, a read miss
can result in a write!

•  Q4: True _ False _ LRU caches are more complex than
Random caches!

•  Q5: True _ False _ A TLB caches translations to virtual
addresses!

!
!
!
!
!
!

Quiz 11.2: Caches & TLBs"
X"

X"

X"

X"

X"

11.8!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Paging & Address Translation"

Physical Address:!
Offset!Physical!

Page #!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

PageTablePtr!

Page Table !
(1st level)!

Page Table !
(2nd level)!

Physical !
Memory:!

Page 3

11.9!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Page Table !
(2nd level)!

PageTablePtr!

Page Table !
(1st level)!

Review: Translation Lookaside Buffer"

Offset!Physical!
Page #!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

Physical !
Memory:!

Physical Address:!

…!

TLB:!

11.10!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Page Table !
(2nd level)!

PageTablePtr!

Page Table !
(1st level)!

Virtual Address:!
Offset!Virtual!

P2 index!
Virtual!
P1 index!

…!

TLB:!

Review: Cache"

Offset!

Physical !
Memory:!

Physical Address:!
Physical!
Page #!

…

tag:! block:!
cache:!

index! byte!tag!

11.11!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  Page Replacement Policies!

– FIFO, LRU!
– Clock Algorithm !!

!
!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz."

11.12!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Demand Paging"
•  Modern programs require a lot of physical memory!

– Memory per system growing faster than 25%-30%/year!
•  But they donʼt use all their memory all of the time!

– 90-10 rule: programs spend 90% of their time in 10% of their
code!

– Wasteful to require all of userʼs code to be in memory!
•  Solution: use main memory as cache for disk!

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

Caching"

Page 4

11.13!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Demand Paging is Caching"
•  Since Demand Paging is Caching, we must ask:!

Question" Choice"

What is the block size?! 1 page!

What is the organization of this
cache (i.e., direct-mapped, set-
associative, fully-associative)?!

Fully-associative: arbitrary
virtual→physical mapping!

How do we find a page in the
cache?!

First check TLB, then traverse page
tables!

What is page replacement policy?
(i.e., LRU, Random, …)!

Requires more explanation… (kinda
LRU)!

What happens on a miss?! Go to lower level to fill a miss (i.e.,
disk)!

What happens on a write? (i.e.,
write-through, write-back)!

Definitely write-back. Need a “dirty”
bit (D)!!

11.14!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  PTE helps us implement demand paging!
– Valid ⇒ Page in memory, PTE points at physical page!
– Not Valid ⇒ Page not in memory; use info in PTE to find it on

disk when necessary!
•  Suppose user references page with invalid PTE?!

– Memory Management Unit (MMU) traps to OS!
» Resulting trap is a “Page Fault”!

– What does OS do on a Page Fault?:!
» Choose an old page to replace !
»  If old page modified (“D=1”), write contents back to disk!
» Change its PTE and any cached TLB to be invalid!
»  Load new page into memory from disk!
» Update page table entry, invalidate TLB for new entry!
» Continue thread from original faulting location!

– TLB for new page will be loaded when thread continued!!
– While pulling pages off disk for one process, OS runs another

process from ready queue!
»  Suspended process sits on wait queue!

Demand Paging Mechanisms"

11.15!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Steps in Handling a Page Fault"

11.16!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Demand Paging Example"
•  Since Demand Paging like caching, can compute average

access time! (“Effective Access Time”)!
–  EAT = Hit Rate x Hit Time + Miss Rate x Miss Time!

•  Example:!
–  Memory access time = 200 nanoseconds!
–  Average page-fault service time = 8 milliseconds!
–  Suppose p = Probability of miss, 1-p = Probably of hit!
–  Then, we can compute EAT as follows:!

! !EAT != (1 – p) x 200ns + p x 8 ms!
! != (1 – p) x 200ns + p x 8,000,000ns!

 = 200ns + p x 7,999,800ns!
•  If one access out of 1,000 causes a page fault, then EAT =

8.2 μs:!
–  This is a slowdown by a factor of 40!!

•  What if want slowdown by less than 10%?!
–  EAT < 200ns x 1.1 ⇒ p < 2.5 x 10-6!

–  This is about 1 page fault in 400,000 !!

Page 5

11.17!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

What Factors Lead to Misses?"
•  Compulsory Misses: !

– Pages that have never been paged into memory before!
– How might we remove these misses?!

»  Prefetching: loading them into memory before needed!
» Need to predict future somehow! More later.!

•  Capacity Misses:!
– Not enough memory. Must somehow increase size.!
– Can we do this?!

» One option: Increase amount of DRAM (not quick fix!)!
»  Another option: If multiple processes in memory: adjust percentage

of memory allocated to each one!!
•  Conflict Misses:!

– Technically, conflict misses donʼt exist in virtual memory, since it
is a “fully-associative” cache!

•  Policy Misses:!
– Caused when pages were in memory, but kicked out prematurely

because of the replacement policy!
– How to fix? Better replacement policy!

11.18!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Page Replacement Policies"
•  Why do we care about Replacement Policy? !!

– Replacement is an issue with any cache!
– Particularly important with pages!

»  The cost of being wrong is high: must go to disk!
» Must keep important pages in memory, not toss them out!

•  FIFO (First In, First Out)!
– Throw out oldest page. Be fair – let every page live in memory

for same amount of time.!
– Bad, because throws out heavily used pages instead of

infrequently used pages!
•  MIN (Minimum): !

– Replace page that wonʼt be used for the longest time !
– Great, but canʼt really know future…!
– Makes good comparison case, however!

•  RANDOM:!
– Pick random page for every replacement!
– Typical solution for TLBʼs. Simple hardware!
– Unpredictable!

11.19!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Replacement Policies (Conʼt)"
•  LRU (Least Recently Used):!

– Replace page that hasnʼt been used for the longest time!
– Programs have locality, so if something not used for a while,

unlikely to be used in the near future.!
– Seems like LRU should be a good approximation to MIN.!

•  How to implement LRU? Use a list!!

– On each use, remove page from list and place at head!
– LRU page is at tail!

•  Problems with this scheme for paging?!
– List operations complex!

» Many instructions for each hardware access!
•  In practice, people approximate LRU (more later)!

Page 6" Page 7" Page 1" Page 2"Head"

Tail (LRU)"

11.20!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Suppose we have 3 page frames, 4 virtual pages, and
following reference stream: !

– A B C A B D A D B C B!
•  Consider FIFO Page replacement:!

– FIFO: 7 faults. !
– When referencing D, replacing A is bad choice, since need A

again right away!

Example: FIFO"

C"

B"

A"

D"

C"

B"

A"

B"C"B"D"A"D"B"A"C"B"A"

3"

2"

1"

Ref:"
Page:"

Page 6

11.21!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Suppose we have the same reference stream: !
– A B C A B D A D B C B!

•  Consider MIN Page replacement:!

– MIN: 5 faults !
– Look for page not referenced farthest in future.!

•  What will LRU do?!
– Same decisions as MIN here, but wonʼt always be true!!

Example: MIN"

C"

D"C"

B"

A"

B"C"B"D"A"D"B"A"C"B"A"

3"

2"

1"

Ref:"
Page:"

11.22!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Consider the following: A B C D A B C D A B C D!
•  LRU Performs as follows (same as FIFO here):!

– Every reference is a page fault!!
•  MIN Does much better:!

D"

When will LRU perform badly?"

C"

B"

A"

D"

C"

B"

A"

D"

C"

B"

A"

C"B"A"D"C"B"A"D"C"B"A" D"

3"

2"

1"

Ref:"
Page:"

B"

C"

D"C"

B"

A"

C"B"A"D"C"B"A"D"C"B"A" D"

3"

2"

1"

Ref:"
Page:"

11.23!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Graph of Page Faults Versus The Number of Frames"

•  One desirable property: When you add memory the miss rate
goes down!

– Does this always happen?!
– Seems like it should, right?!

•  No: Beladyʼs anomaly !
– Certain replacement algorithms (FIFO) donʼt have this obvious

property!!
11.24!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Adding Memory Doesnʼt Always Help Fault Rate"
•  Does adding memory reduce number of page faults?!

– Yes for LRU and MIN!
– Not necessarily for FIFO! (Called Beladyʼs anomaly)!

•  After adding memory:!
– With FIFO, contents can be completely different!
–  In contrast, with LRU or MIN, contents of memory with X pages

are a subset of contents with X+1 Page!

D"
C"

E"

B"
A"

D"

C"
B"

A"

D"C"B"A
"

E"B"A"D"C"B"A" E"

3"
2"
1"

Page:"

C"D"4"

E"
D"

B"
A"

E"

C"
B"

A"

D"C"B"A"E"B"A"D"C"B"A" E"

3"
2"
1"

Page:"

Page 7

11.25!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia"

•  Project 2 Design Doc due Thursday 3/7 at 11:59PM!

•  Midterm exam is next Wednesday 3/13 4-5:30pm in 2 rooms"
– 145 Dwinelle for last names beginning with A-H!
– 245 Li Ka Shing for last names beginning with I-Z!

•  Midterm is closed book, no calculators!
– Covers lectures/readings #1-12 (Wed 3/6) and project one!
– One double-sided handwritten page of notes allowed!
– Midterm review session: 105 North Gate, Sat, March 9, 1-3PM!

•  Please fill the anonymous course survey at
https://www.surveymonkey.com/s/9DK2VVJ !

•  Weʼll try to make changes this semester based on your feedback!

!

5min Break"

11.27!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Implementing LRU & Second Chance"
•  Perfect:!

– Timestamp page on each reference!
– Keep list of pages ordered by time of reference!
– Too expensive to implement in reality for many reasons!

•  Second Chance Algorithm: !
– Approximate LRU!

» Replace an old page, not the oldest page!
– FIFO with “use” bit!

•  Details!
– A “use” bit per physical page!
– On page fault check page at head of queue!

»  If use bit=1 à clear bit, and move page at tail (give the page
second chance!)!

»  If use bit=0 à replace page !
– Moving pages to tail still complex !

11.28!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
!

B	 u:0	

first	 loaded	
page	

A	 u:1	 D	 u:0	 C	 u:0	

last	 loaded	
page	

Page 8

11.29!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!

B	 u:0	

first	 loaded	
page	

A	 u:1	 D	 u:0	 C	 u:0	

last	 loaded	
page	

11.30!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!

A	 u:1	

first	 loaded	
page	

D	 u:0	 C	 u:0	 F	 u:0	

last	 loaded	
page	

11.31!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!

A	 u:1	

first	 loaded	
page	

D	 u:1	 C	 u:0	 F	 u:0	

last	 loaded	
page	

11.32!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

A	 u:1	

first	 loaded	
page	

D	 u:1	 C	 u:0	 F	 u:0	

last	 loaded	
page	

Page 9

11.33!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

D	 u:1	

first	 loaded	
page	

C	 u:0	 F	 u:0	 A	 u:0	

last	 loaded	
page	

11.34!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Second Chance Illustration"
•  Max page table size 4!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

C	 u:0	

first	 loaded	
page	

F	 u:0	 A	 u:0	 D	 u:0	

last	 loaded	
page	

E	 u:0	

11.35!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Clock Algorithm"
•  Clock Algorithm: more efficient implementation of second

chance algorithm!
– Arrange physical pages in circle with single clock hand!

•  Details:!
– On page fault:!

» Check use bit: 1→used recently; clear and leave it alone  
 0→selected candidate for replacement!

»  Advance clock hand (not real time)!
– Will always find a page or loop forever?!

!

11.36!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!

B	 u:
0	

Page 10

11.37!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A! B	 u:

0	
A	 u:
0	

11.38!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!

B	 u:
0	

A	 u:
1	

D	 u:
0	

11.39!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!

B	 u:
0	

A	 u:
1	

D	 u:
0	

C	 u:
0	

11.40!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

B	 u:
0	

Clock Replacement Illustration"
•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!

F	 u:0	

A	 u:
1	

D	 u:
0	

C	 u:
0	

Page 11

11.41!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

C	 u:
0	
E	 u:
0	

•  Max page table size 4!

•  Invariant: point at oldest page!

– Page B arrives!
– Page A arrives!
– Access page A!
– Page D arrives!
– Page C arrives!
– Page F arrives!
– Access page D!
– Page E arrives!

A	 u:
1	
A	 u:
0	

D	 u:
1	
D	 u:
0	

Clock Replacement Illustration"

F	 u:0	

11.42!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Clock Algorithm: Discussion"
!

•  What if hand moving slowly?!
– Good sign or bad sign?!

» Not many page faults and/or find page quickly!

•  What if hand is moving quickly?!
– Lots of page faults and/or lots of reference bits set!

11.43!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Nth Chance version of Clock Algorithm"
•  Nth chance algorithm: Give page N chances!

– OS keeps counter per page: # sweeps!
– On page fault, OS checks use bit:!

»  1⇒clear use and also clear counter (used in last sweep)!
»  0⇒increment counter; if count=N, replace page!

– Means that clock hand has to sweep by N times without page
being used before page is replaced!

•  How do we pick N?!
– Why pick large N? Better approx to LRU!

»  If N ~ 1K, really good approximation!
– Why pick small N? More efficient!

» Otherwise might have to look a long way to find free page!
•  What about dirty pages?!

– Takes extra overhead to replace a dirty page, so give dirty
pages an extra chance before replacing?!

– Common approach:!
» Clean pages, use N=1!
» Dirty pages, use N=2 (and write back to disk when N=1)!

11.44!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Clock Algorithms: Details"
•  Which bits of a PTE entry are useful to us?!

– Use: Set when page is referenced; cleared by clock algorithm!
– Modified: set when page is modified, cleared when page

written to disk!
– Valid: ok for program to reference this page!
– Read-only: ok for program to read page, but not modify!

»  For example for catching modifications to code pages!!
•  Do we really need hardware-supported “modified” bit?!

– No. Can emulate it (BSD Unix) using read-only bit!
»  Initially, mark all pages as read-only, even data pages!
» On write, trap to OS. OS sets software “modified” bit, and marks

page as read-write.!
» Whenever page comes back in from disk, mark read-only!

Page 12

11.45!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Clock Algorithms Details (contʼd)"

•  Do we really need a hardware-supported “use” bit?!

– No. Can emulate it using “invalid” bit:!
» Mark all pages as invalid, even if in memory!
» On read to invalid page, trap to OS!
» OS sets use bit, and marks page read-only!

– When clock hand passes by, reset use bit and mark page as
invalid again!

 !

11.46!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ Demand paging incurs conflict misses !
•  Q2: True _ False _ LRU can never achieve higher hit rate

than MIN!
•  Q3: True _ False _ The LRU miss rate may increase as the

cache size increases!
•  Q4: True _ False _ The Clock algorithm is a simpler

implementation of the Second Chance algorithm!
•  Q5: Assume a cache with 100 pages. The number of pages

that the Second Chance algorithm may need to check
before finding a page to evict is at most ___ !

!
!
!
!
!

Quiz 11.3: Demand Paging"

11.47!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ Demand paging incurs conflict misses !
•  Q2: True _ False _ LRU can never achieve higher hit rate

than MIN!
•  Q3: True _ False _ The LRU miss rate may increase as the

cache size increases!
•  Q4: True _ False _ The Clock algorithm is a simpler

implementation of the Second Chance algorithm!
•  Q5: Assume a cache with 100 pages. The number of pages

that the Second Chance algorithm may need to check
before finding a page to evict is at most ___ !

!
!
!
!
!

Quiz 11.3: Demand Paging"
X"

X"

X"

X"

101"

11.48!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary (1/2)"
•  Demand Paging:!

– Treat memory as cache on disk!
– Cache miss ⇒ find free page, get page from disk!

•  Transparent Level of Indirection!
– User program is unaware of activities of OS behind

scenes!
– Data can be moved without affecting application

correctness!

•  Replacement policies!
– FIFO: Place pages on queue, replace page at end!

»  Fair but can eject in-use pages, suffers from Beladyʼs
anomaly!

– MIN: Replace page that will be used farthest in future!
»  Benchmark for comparisons, canʼt implement in practice!

– LRU: Replace page used farthest in past!
»  For efficiency, use approximation !

Page 13

11.49!3/4/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary (2/2)"

•  Clock Algorithm: Approximation to LRU!
– Arrange all pages in circular list!
– Sweep through them, marking as not “in use”!
–  If page not “in use” for one pass, than can replace!

!

