
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 13  
 

Disk/SSDs, 
File Systems (Part 1)"

March 11, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

13.2!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ During a critical section, a thread can
be preempted by the CPU dispatcher!

•  Q2: True _ False _ If we use interrupts to implement locks
we need to enable interrupts before going to sleep (in the
lock() primitive) !

•  Q3: True _ False _ The order of sem.P() and sem.V() in a
program is commutative!

•  Q4: True _ False _ With Mesa monitors, the program
needs to check again the condition (on which it went to
sleep) after waking up!

•  Q5: True _ False _ In a database (think of the Readers/
Writers problem), a user can read while another one writes !

!
!
!

Quiz 13.1: Synchronization"

13.3!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ During a critical section, a thread can
be preempted by the CPU dispatcher!

•  Q2: True _ False _ If we use interrupts to implement locks
we need to enable interrupts before going to sleep (in the
lock() primitive) !

•  Q3: True _ False _ The order of sem.P() and sem.V() in a
program is commutative!

•  Q4: True _ False _ With Mesa monitors, the program
needs to check again the condition (on which it went to
sleep) after waking up!

•  Q5: True _ False _ In a database (think of the Readers/
Writers problem), a user can read while another one writes !

!
!
!

Quiz 13.1: Synchronization"
X"

X"

X"

X"

X"

13.4!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  Disks and SSDs!

•  Important Storage Policies and Patterns!

•  File Systems Structures!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne "
Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz."

Page 2

13.5!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Hard Disk Drives (HDDs)"

IBM/Hitachi Microdrive"

Western Digital Drive!
http://www.storagereview.com/guide/!

Read/Write Head"
Side View"

IBM Personal Computer/AT (1986)
30 MB hard disk - $500
30-40ms seek time
0.7-1 MB/s (est.)

13.6!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Properties of a Magnetic Hard Disk"

•  Properties!
–  Independently addressable element: sector!

» OS always transfers groups of sectors together—“blocks”!
– A disk can access directly any given block either sequentially or

randomly.!

•  Typical numbers (depending on the disk size):!
– 500 to more than 20,000 tracks per surface!
– 32 to 800 sectors per track!

•  Zoned bit recording!
– Constant bit density: more bits (sectors) on outer tracks!
– Apple][gs/old Macs: speed varies with track location!

Track"

Sector"

Platters"

13.7!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Magnetic Disk Characteristic"
•  Cylinder: all the tracks under the  

head at a given point on all surfaces!
•  Read/write: three-stage process:!

– Seek time: position the head/arm over the proper track (into
proper cylinder)!

– Rotational latency: wait for the desired sector 
to rotate under the read/write head!

– Transfer time: transfer a block of bits (sector) 
under the read-write head!

•  Disk Latency = Queuing Time + Controller time + 
 Seek Time + Rotation Time + Xfer Time!

•  Highest Bandwidth: !
– Transfer large group of blocks sequentially from one track!

Sector"
Track"

Cylinder"
Head"

Platter"

Software"
Queue"
(Device Driver)"

H
ardw

are"
C

ontroller"

 Media Time"
(Seek+Rot+Xfer)"

R
equest"

R
esult"

13.8!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Typical Numbers of a Magnetic Disk"
Parameter" Info / Range"
Average seek time! Typically 5-10 milliseconds.!

Depending on reference locality, actual cost may be
25-33% of this number.!

Average rotational
latency!

Most laptop/desktop disks rotate at 3600-7200 RPM
(16-8 ms/rotation). Server disks up to 15,000 RPM.!
Average latency is halfway around disk yielding
corresponding times of 8-4 milliseconds"

Controller time! Depends on controller hardware!
Transfer time! Typically 50 to 100 MB/s.!

Depends on:!
•  Transfer size (usually a sector): 512B – 1KB per

sector!
•  Rotation speed: 3600 RPM to 15000 RPM!
•  Recording density: bits per inch on a track!
•  Diameter: ranges from 1 in to 5.25 in!

Cost! Drops by a factor of two every 1.5 years (or even faster).!
$0.05/GB in 2012"

Page 3

13.9!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Disk Performance Examples"
•  Assumptions:!

–  Ignoring queuing and controller times for now!
– Avg seek time of 5ms, !
– 7200RPM ⇒ Time for one rotation: 60000ms/7200 ~= 8ms!
– Transfer rate of 4MByte/s, sector size of 1 KByte!

•  Read sector from random place on disk:!
– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)!
– Approx 10ms to fetch/put data: 100 KByte/sec"

•  Read sector from random place in same cylinder:!
– Rot. Delay (4ms) + Transfer (0.25ms)!
– Approx 5ms to fetch/put data: 200 KByte/sec"

•  Read next sector on same track:!
– Transfer (0.25ms): 4 MByte/sec"

•  Key to using disk effectively (especially for file systems)
is to minimize seek and rotational delays!

13.10!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Disk Scheduling"
•  Disk can do only one request at a time; What order do you

choose to do queued requests?!
– Request denoted by (track, sector) !

!
•  Scheduling algorithms:!

– First In First Out (FIFO)!
– Shortest Seek Time First!
– SCAN!
– C-SCAN!

•  In our examples we will ignore the sector!
– Consider only track # !

2,3"
2,1"
3,10"
7,2"
5,2"
2,2" Head"User"

Requests"

1"

4"

2"

D
isk H

ead"

3"

13.11!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

FIFO: First In First Out"
•  Schedule request in the order

they arrive in the queue!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Scheduling order: 2, 1, 3, 6, 2, 5!

•  Pros: Fair among requesters!

•  Cons: Order of arrival may be to
random spots on the disk ⇒ Very
long seeks!

!

D
isk H

ead"

6"

1"
2"
3"
4"
5"

13.12!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

SSTF: Shortest Seek Time First"
•  Pick the request thatʼs closest to

the head on the disk!
– Although called SSTF, include  

rotational delay in calculation, as
rotation can be as long as seek!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Scheduling order: 5, 6, 3, 2, 2, 1!

•  Pros: reduce seeks !

•  Cons: may lead to starvation!

D
isk H

ead"

6"

1"
2"
3"
4"
5"

Page 4

13.13!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

SCAN"
•  Implements an Elevator

Algorithm: take the closest
request in the direction of travel!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Head is moving towards center!
– Scheduling order: 5, 3, 2, 2, 1, 6!

•  Pros: !
– No starvation!
– Low seek!

•  Cons: favor middle tracks!
!

D
isk H

ead"

6"

1"
2"
3"
4"
5"

13.14!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

C-SCAN"
•  Like SCAN but only serves

request in only one direction!

•  Example:!
– Request queue: 2, 1, 3, 6, 2, 5!
– Head only serves request on its

way from center towards edge!
– Scheduling order: 5, 6, 1, 2, 2, 3!

•  Pros: !
– Fairer than SCAN!
!

•  Cons: longer seeks on the way
back!

!

D
isk H

ead"
6"

1"
2"
3"
4"
5"

13.15!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Solid State Disks (SSDs)"

•  1995 – Replace rotating magnetic media with non-volatile
memory (battery backed DRAM)!

– Since 2009, use NAND Flash: Single Level Cell (1-bit/cell),
Multi-Level Cell (2-bit/cell)!

•  Sector addressable, but stores 4-64 “sectors” per memory
page!

•  No moving parts (no rotate/seek motors)!
– Eliminates seek and rotational delay (0.1-0.2ms access time)!
– Very low power and lightweight !

13.16!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

SSD Architecture – Reads"

Reading data similar to memory !
read (25µs)!
–  No seek or rotational latency!
–  Transfer time: transfer a block of bits (sector)!

»  Limited by controller and disk interface (SATA: 300-600MB/s)!
–  Latency = Queuing Time + Controller time + Xfer Time!
–  Highest Bandwidth: Sequential OR Random reads!

Host"
Buffer!
Manager!
(software!
Queue)!

Flash!
Memory!
Controller!

DRAM!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

NAND!
NAND!

SATA!

Page 5

13.17!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

SSD Architecture – Writes"
•  Writing data is complex! (~200µs – 1.7ms)!

– Can only write empty pages (erase takes ~1.5ms)!
– Controller maintains pool of empty pages by coalescing used

sectors (read, erase, write), also reserve some % of capacity!

•  Typical steady state behavior when SSD is almost full
– One erase every 64 or 128 writes (e.g., 4KB/32B = 128)

•  Write and erase cycles require “high” voltage!
– Damages memory cells, limits SSD lifespan!
– Controller uses ECC, performs wear leveling!

•  Result is very workload dependent performance!
– Latency = Queuing Time + Controller time (Find Free Block) +

Xfer Time!
– Highest BW: Seq. OR Random writes (limited by empty pages)!

»  Sequential easier to implement since can write all data to same pg!Rule	
 of	
 thumb:	
 writes	
 10x	
 more	
 expensive	
 than	
 reads,	
 	

and	
 erases	
 10x	
 more	
 expensive	
 than	
 writes	
 13.18!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Storage Performance & Price"
Bandwidth
(sequential R/W)

Cost/GB Size

HDD 50-100 MB/s $0.05-0.1/GB 2-4 TB

SSD1 200-600 MB/s
(SATA)
6 GB/s (PCI)

$1-1.5/GB 200GB-1TB

DRAM 10-16 GB/s $5-10/GB 64GB-256GB

18

BW:	
 SSD	
 up	
 to	
 x10	
 than	
 HDD,	
 DRAM	
 >	
 x10	
 than	
 SSD	

Price:	
 HDD	
 x20	
 less	
 than	
 SSD,	
 SSD	
 x5	
 less	
 than	
 DRAM	
 	
 	
 	

1http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/ !

13.19!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

SSD Summary"
•  Pros (vs. hard disk drives):!

– Low latency, high throughput (eliminate seek/rotational delay)!
– No moving parts: !

»  Very light weight, low power, silent, very shock insensitive!
– Read at memory speeds (limited by controller and I/O bus)!

•  Cons!
– Small storage (0.1-0.5x disk), very expensive (20x disk)!

» Hybrid alternative: combine small SSD with large HDD!
– Asymmetric block write performance: read pg/erase/write pg!

» Controller garbage collection (GC) algorithms have major effect
on performance!

– Limited drive lifetime !
»  50-100K writes/page for SLC, 1-10K writes/page for MLC!

13.20!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia"

•  Midterm exam this Wednesday 3/13 4-5:30pm in 2 rooms"
– 145 Dwinelle for last names beginning with A-H!
– 245 Li Ka Shing for last names beginning with I-Z!
– Closed book, no calculators!
– Covers lectures/readings #1-12 and project one!
– One double-sided handwritten page of notes allowed!

•  Please fill the anonymous course survey at
https://www.surveymonkey.com/s/9DK2VVJ !

•  Weʼll try to make changes this semester based on your feedback!

!

Page 6

13.21!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ The block is the smallest addressable
unit on a disk !

•  Q2: True _ False _ An SSD has zero seek time!
•  Q3: True _ False _ For an HDD, the read and write

latencies are similar!
•  Q4: True _ False _ For an SSD, the read and write

latencies are similar!
•  Q5: Consider the following sequence of requests (2, 4, 1, 8),

and assume the head position is on track 9. Then, the order
in which SSTF services the requests is _________!

!
!
!
!
!

Quiz 13.2: HDDs and SSDs"

13.22!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

13.23!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ The block is the smallest addressable
unit on a disk !

•  Q2: True _ False _ An SSD has zero seek time!
•  Q3: True _ False _ For an HDD, the read and write

latencies are similar!
•  Q4: True _ False _ For an SSD, the read and write

latencies are similar!
•  Q5: Consider the following sequence of requests (2, 4, 1, 8),

and assume the head position is on track 9. Then, the order
in which SSTF services the requests is _________!

!
!
!
!
!

Quiz 13.2: HDDs and SSDs"
X"

X"
X"

X"

(8, 4, 2, 1)"

13.24!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Building a File System"
•  File System: Layer of OS that transforms block interface of

disks (or other block devices) into Files, Directories, etc.!

•  File System Components!
– Disk Management: organizing disk blocks into files!
– Naming: Interface to find files by name, not by blocks!
– Protection: Layers to keep data secure!
– Reliability/Durability: Keeping of files durable despite crashes,

media failures, attacks, etc.!

Page 7

13.25!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

User vs. System View of a File"
•  Userʼs view: !

– Durable Data Structures!

•  Systemʼs view (system call interface):!
– Collection of Bytes (UNIX)!
– Doesnʼt matter to system what kind of data structures you want

to store on disk!!

•  Systemʼs view (inside OS):!
– Collection of blocks (a block is a logical transfer unit, while a

sector is the physical transfer unit)!
– Block size ≥ sector size; in UNIX, block size is 4KB!

13.26!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Translating from User to System View"

•  What happens if user says: give me bytes 2—12?!
– Fetch block corresponding to those bytes!
– Return just the correct portion of the block!

•  What about: write bytes 2—12?!
– Fetch block!
– Modify portion!
– Write out Block!

•  Everything inside File System is in whole size blocks!
– For example, getc(), putc() ⇒ buffers something like

4096 bytes, even if interface is one byte at a time!
•  From now on, file is a collection of blocks!

File!
System!

13.27!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Disk Management Policies"

•  Basic entities on a disk:!
– File: user-visible group of blocks arranged sequentially in logical

space!
– Directory: user-visible mapping of names to files!

•  Access disk as linear array of sectors. !
– Logical Block Addressing (LBA): Every sector has integer address

from zero up to max number of sectors!
» OS/BIOS must deal with bad sectors!

– Controller translates from address ⇒ physical position!
» Hardware shields OS from structure of disk!

13.28!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Disk Management Policies (contʼd)"
•  Need way to track free disk blocks!

– Link free blocks together ⇒ too slow today!
– Use bitmap to represent free space on disk!

•  Need way to structure files: File Header!
– Track which blocks belong at which offsets within the logical

file structure!

•  Optimize placement of filesʼ disk blocks to match access and
usage patterns!

Page 8

13.29!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Designing the File System: Access Patterns"
•  Sequential Access: bytes read in order (“give me the next X

bytes, then give me next, etc.”)!
– Most of file accesses are of this flavor!

•  Random Access: read/write element out of middle of array
(“give me bytes i—j”)!

– Less frequent, but still important, e.g., mem. page from swap file!
– Want this to be fast – donʼt want to have to read all bytes to get to

the middle of the file!

•  Content-based Access: (“find me 100 bytes starting with
JOSEPH”)!

– Example: employee records – once you find the bytes, increase
my salary by a factor of 2!

– Many systems donʼt provide this; instead, build DBs on top of disk
access to index content (requires efficient random access)!

– Example: Mac OSX Spotlight search (do we need directories?)!
13.30!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Designing the File System: Usage Patterns"
•  Most files are small (for example, .login, .c, .java files)!

– A few files are big – executables, swap, .jar, core files, etc.;
the .jar is as big as all of your .class files combined!

– However, most files are small – .class, .o, .c, .doc, .txt, etc!

•  Large files use up most of the disk space and bandwidth to/
from disk!

– May seem contradictory, but a few enormous files are
equivalent to an immense # of small files !

•  Although we will use these observations, beware!!
– Good idea to look at usage patterns: beat competitors by

optimizing for frequent patterns!
– Except: changes in performance or cost can alter usage

patterns. Maybe UNIX has lots of small files because big files
are really inefficient?!

13.31!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

File System Goals"

•  Maximize sequential performance!

•  Efiicient random access to file!

•  Easy management of files (growth, truncation, etc)!

13.32!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Linked Allocation: File-Allocation Table (FAT)"

•  MSDOS links pages together to create a file!
– Links not in pages, but in the File Allocation Table (FAT)!

»  FAT contains an entry for each block on the disk!
»  FAT Entries corresponding to blocks of file linked together!

– Access properties:!
»  Sequential access expensive unless FAT cached in memory!
» Random access expensive always, but really expensive if FAT not

cached in memory!

Page 9

13.33!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ If a resource type (e.g., disk) has
multiple instances we cannot have deadlock!

•  Q2: True _ False _ Deadlock implies starvation!
•  Q3: True _ False _ Starvation implies deadlock!
•  Q4: True _ False _ If resources can be preempted from

threads we cannot have deadlock!
•  Q5: True _ False _ Assume a system in which each thread

is only allowed to either allocate all resources it needs or
none of them. In such a system we can still have deadlock.!

!
!
!

Quiz 13.3: Deadlocks"

13.34!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ If a resource type (e.g., disk) has
multiple instances we cannot have deadlock!

•  Q2: True _ False _ Deadlock implies starvation!
•  Q3: True _ False _ Starvation implies deadlock!
•  Q4: True _ False _ If resources can be preempted from

threads we cannot have deadlock!
•  Q5: True _ False _ Assume a system in which each thread

is only allowed to either allocate all resources it needs or
none of them. In such a system we can still have deadlock.!

!
!
!

Quiz 13.3: Deadlocks"
X"

X"
X"

X"

X"

13.35!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary (1/2)"
•  Hard (Magnetic) Disk Performance: !

– Latency = Queuing time + Controller + Seek + Rotational +
Transfer!

– Rotational latency: on average ½ rotation!
– Transfer time: depends on rotation speed and bit density!

•  SSD Performance: !
– Read: Queuing time + Controller + Transfer!
– Write: Queuing time + Controller (Find Free Block) + Transfer!
– Find Free Block time: depends on how full SSD is (available

empty pages), write burst duration, …!
– Limited drive lifespan!

13.36!3/11/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary (2/2)"
•  File System:!

– Transforms blocks into Files and Directories!
– Optimize for access and usage patterns!
– Maximize sequential access, allow efficient random access!

•  File (and directory) defined by header, called “inode”!
!

!

