CS162 Operating Systems and Systems Programming Lecture 13

Disk/SSDs, File Systems (Part 1)

March 11, 2013 Anthony D. Joseph http://inst.eecs.berkeley.edu/~cs162

Quiz 13.1: Synchronization

- Q1: True _ False _ During a critical section, a thread can be preempted by the CPU dispatcher
- Q2: True _ False _ If we use interrupts to implement locks we need to enable interrupts before going to sleep (in the lock() primitive)
- Q3: True _ False _ The order of sem.P() and sem.V() in a program is commutative
- Q4: True _ False _ With Mesa monitors, the program needs to check again the condition (on which it went to sleep) after waking up
- Q5: True _ False _ In a database (think of the Readers/ Writers problem), a user can read while another one writes
- 3/11/2013

Anthony D. Joseph CS162 ©UCB Spring 2013

13.2

13.4

Quiz 13.1: Synchronization

- Q1: True <u>x</u> False _ During a critical section, a thread can be preempted by the CPU dispatcher
- Q2: True _ False X If we use interrupts to implement locks we need to enable interrupts before going to sleep (in the lock() primitive)
- Q3: True <u>x</u> False _ The order of sem.P() and sem.V() in a program is commutative
- Q4: True <u>X</u> False _ With Mesa monitors, the program needs to check again the condition (on which it went to sleep) after waking up
- Q5: True _ False <u>x</u> In a database (think of the Readers/ Writers problem), a user can read while another one writes

3/11/2013

Anthony D. Joseph CS162 ©UCB Spring 2013

Goals for Today

- · Disks and SSDs
- Important Storage Policies and Patterns
- File Systems Structures

Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides generated from my lecture notes by Kubiatowicz. 3/11/2013 Anthony D. Joseph CS162 ©UCB Spring 2013 1

Parameter	Info / Range	
Average seek time	Typically 5-10 milliseconds. Depending on reference locality, actual cost m 25-33% of this number.	ay be
Average rotational latency	Most laptop/desktop disks rotate at 3600-7200 (16-8 ms/rotation). Server disks up to 15,000 F Average latency is halfway around disk yielding corresponding times of 8-4 milliseconds	RPM }PM. g
Controller time	Depends on controller hardware	
Transfer time	 Typically 50 to 100 MB/s. Depends on: Transfer size (usually a sector): 512B – sector Rotation speed: 3600 RPM to 15000 R Recording density: bits per inch on a tra Diameter: ranges from 1 in to 5.25 in 	· 1KB per PM ack
Cost Drops by a factor of two every 1.5 yea \$0.05/GB in 2012		en faster).

SSD Architecture – Writes	
 Writing data is complex! (~200µs – 1.7ms) Can only write empty pages (erase takes ~1.5ms) Controller maintains pool of empty pages by coalescing used sectors (read, erase, write), also reserve some % of capacity 	
 Typical steady state behavior when SSD is almost full One erase every 64 or 128 writes (e.g., 4KB/32B = 128) 	
 Write and erase cycles require "high" voltage Damages memory cells, limits SSD lifespan Controller uses ECC, performs wear leveling 	
Result is very workload dependent performance - Latency = Queuing Time + Controller time (Find Free Block) + Xfer Time - Highest BW: Seq. OB Bandom writes (limited by empty pages)	
Rule of thumb: writes 10x more expensive than reads,	
and erases 10x more expensive than writes	

Г

\$	Storage Performance & Price			
	Bandwidth (sequential R/W)	Cost/GB	Size	
HDD	50-100 MB/s	\$0.05-0.1/GB	2-4 TB	
SSD ¹	200-600 MB/s (SATA) 6 GB/s (PCI)	\$1-1.5/GB	200GB-1TB	
DRAM	10-16 GB/s	\$5-10/GB	64GB-256GB	
http://www.fast	estssd.com/featured/s	sd-rankings-the-fa	astest-solid-state-dri	ves/
3W: SSD u	p to x10 than H	DD, DRAM >	x10 than SSI	D
Price: HDD	x20 less than S	SSD, SSD x5 l	ess than DRA	Μ
3/11/2013	Anthony D. Joseph C	S162 ©UCB Spring 2013	13.18	

SSD Summ	ary		Administrivia	
 Pros (vs. hard disk drives): Low latency, high throughput (elimination - No moving parts:	ninate seek/rotational delay) nt, very shock insensitive by controller and I/O bus) r expensive (20x disk) SSD with large HDD ce: read pg/erase/write pg algorithms have major effect 0K writes/page for MLC	 Midterm exam 145 Dwinelle 245 Li Ka Sr Closed book Covers lectur One double- Please fill the antipathetic structure of the structure	a this Wednesday 3/13 4-5:30pm in 2 roo e for last names beginning with A-H ning for last names beginning with I-Z a, no calculators pres/readings #1-12 and project one esided handwritten page of notes allowed anonymous course survey at prveymonkey.com/s/9DK2VVJ ake changes <i>this</i> semester based on your feedbac	ms ck
3/11/2013 Anthony D. Joseph CS162 ©UCB	Spring 2013 13.19	3/11/2013	Anthony D. Joseph CS162 ©UCB Spring 2013	13.20

3/11/2013

3/11/2013 Anthony D. Joseph CS162 ©UCB Spring 2013 1

File System Goals

Anthony D. Joseph CS162 ©UCB Spring 2013

13.30

• Easy management of files (growth, truncation, etc)

Maximize sequential performance

· Efiicient random access to file

3/11/2013 Anthony D. Joseph CS162 ©UCB Spring 2013 13.31

Quiz 13.3: Deadlocks	Quiz 13.3: Deadlocks
 Q1: True _ False _ If a resource type (e.g., disk) has multiple instances we cannot have deadlock Q2: True _ False _ Deadlock implies starvation Q3: True _ False _ Starvation implies deadlock Q4: True _ False _ If resources can be preempted from threads we cannot have deadlock Q5: True _ False _ Assume a system in which each thread is only allowed to either allocate all resources it needs or none of them. In such a system we can still have deadlock. 	 Q1: True _ False <u>x</u> If a resource type (e.g., disk) has multiple instances we cannot have deadlock Q2: True <u>x</u> False _ Deadlock implies starvation Q3: True _ False <u>x</u> Starvation implies deadlock Q4: True <u>x</u> False _ If resources can be preempted from threads we cannot have deadlock Q5: True _ False <u>x</u> Assume a system in which each thread is only allowed to either allocate all resources it needs or none of them. In such a system we can still have deadlock.
3/11/2013 Anthony D. Joseph CS162 ©UCB Spring 2013 13.33	3/11/2013 Anthony D. Joseph CS162 ©UCB Spring 2013 13.34

3/11/2013