
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 14  
 

File Systems (Part 2)"

March 18, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

Lec 14.2!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Storage Performance"
•  Hard (Magnetic) Disk Performance: !

– Latency = Queuing time + Controller + Seek + Rotational +
Transfer!

– Rotational latency: on average ½ rotation!
– Transfer time: depends on rotation speed and bit density!

•  SSD Performance: !
– Read: Queuing time + Controller + Transfer!
– Write: Queuing time + Controller (Find Free Block) + Transfer!
– Find Free Block time: depends on how full SSD is (available

empty pages), write burst duration, …!
– Limited drive lifespan!

Lec 14.3!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: File System Goals"

•  Maximize sequential performance!

•  Efiicient random access to file!

•  Easy management of files (growth, truncation, etc)!

Lec 14.4!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Review: Linked Allocation"

•  MSDOS links pages together to create a file!
– Links not in pages, but in the File Allocation Table (FAT)!

»  FAT contains an entry for each block on the disk!
»  FAT Entries corresponding to blocks of file linked together!

– Access properties:!
»  Sequential access expensive unless FAT cached in memory!
» Random really expensive if FAT not cached!

Page 2

Lec 14.5!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  File Systems Structures (contʼd)!

•  Naming and Directories!
!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne "
Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz."

Lec 14.6!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Multilevel Indexed Files (UNIX 4.1) "
•  Multilevel Indexed Files:  

 (from UNIX 4.1 BSD)!
– Key idea: efficient for small  

files, but still allow big files!

!

•  File hdr contains 13 pointers !
– Fixed size table, pointers not all equivalent!
– This header is called an “inode” in UNIX!

•  File Header format:!
– First 10 pointers are to data blocks!
– Ptr 11 points to “indirect block” containing 256 block ptrs!
– Pointer 12 points to “doubly indirect block” containing 256

indirect block ptrs for total of 64K blocks!
– Pointer 13 points to a triply indirect block (16M blocks)!

Lec 14.7!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Multilevel Indexed Files (UNIX 4.1):
Discussion "

•  Basic technique places an upper limit on file size that is
approximately 16Gbytes!

– Designers thought this was bigger than anything anyone
would need. Much bigger than a disk at the time…!

– Fallacy: today, Facebook gets hundreds of TBs of logs every
day!!

•  Pointers get filled in dynamically: need to allocate indirect
block only when file grows > 10 blocks !

– On small files, no indirection needed!

Lec 14.8!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example of Multilevel Indexed Files"
•  Sample file in multilevel  

indexed format:!
– How many accesses for  

block #23? (assume file  
header accessed on open)?!

»  Two: One for indirect block,  
one for data!

– How about block #5?!
» One: One for data!

– Block #340?!
»  Three: double indirect block,  

indirect block, and data!
•  UNIX 4.1 Pros and cons!

– Pros: !Simple (more or less) 
!Files can easily expand (up to a point) 
!Small files particularly cheap and easy!

– Cons: !Lots of seeks 
!Very large files must read many indirect blocks (four 

 !I/Oʼs per block!)!
!

Page 3

Lec 14.9!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

UNIX BSD 4.2"
•  Same as BSD 4.1 (same file header and triply indirect blocks),

except incorporated ideas from Cray-1 DEMOS:!
– Uses bitmap allocation in place of freelist!
– Attempt to allocate files contiguously!
– 10% reserved disk space (mentioned next slide)!
– Skip-sector positioning (mentioned in two slides)!

•  Problem: When create a file, donʼt know how big it will become
(in UNIX, most writes are by appending)!

– How much contiguous space do you allocate for a file?!
–  In BSD 4.2, just find some range of free blocks!

»  Put each new file at the front of different range!
»  To expand a file, you first try successive blocks in bitmap, then

choose new range of blocks!
– Also in BSD 4.2: store files from same directory near each other!

Lec 14.10!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

How to Deal with Full Disks?"
•  In many systems, disks are always full!

– EECS department growth: 300 GB to 1TB in a year (now 10s TB)!

Lec 14.11!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Billable Storage (in GB)

UNIVERSITY OF CALIFORNIA Berkeley Instructional and Research

Information Systems

UNIVERSITY OF CALIFORNIA Berkeley ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

UNIVERSITY OF CALIFORNIA Berkeley

0

5000

10000

15000

20000

25000

1/1/2005 1/1/2007 1/1/2009 1/1/2011 1/1/2013

Restructure Rates

Project

Home

IMAP

Rate Drop Rate Drop

Lec 14.12!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

How to Deal with Full Disks?"
•  In many systems, disks are always full!

– EECS department growth: 300 GB to 1TB in a year (now 10s TB)!
– How to fix? Announce disk space is low, so please delete files?!

» Donʼt really work: people try to store their data faster!
– Sidebar: Perhaps we are getting out of this mode with new disks…

However, letʼs assume disks are full for now!
•  Solution:!

– Donʼt let disks get completely full: reserve portion!
»  Free count = # blocks free in bitmap!
»  Scheme: Donʼt allocate data if count < reserve!

– How much reserve do you need?!
»  In practice, 10% seems like enough!

– Tradeoff: pay for more disk, get contiguous allocation!
»  Since seeks so expensive for performance, this is a very good

tradeoff!

Page 4

Lec 14.13!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Attack of the Rotational Delay"
•  Problem: Missing blocks due to rotational delay!

–  Issue: Read one block, do processing, and read next block. In
meantime, disk has continued turning: missed next block! !

– Solution 1: Skip sector positioning (“interleaving”)!
»  Place the blocks from one file on every other block of a track: give

time for processing to overlap rotation!
– Solution 2: Read ahead: read next block right after first, even if

application hasnʼt asked for it yet!
»  This can be done either by OS (read ahead) !
»  By disk itself (track buffers). Many disk controllers have internal

RAM that allows them to read a complete track!
•  Important Aside: Modern disks+controllers do many complex

things “under the covers”!
– Track buffers, elevator algorithms, bad block filtering!

Skip Sector!

Track Buffer!
(Holds complete track)!

Lec 14.14!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia"
•  Midterm results: Mean 73.1, Std dev 13!

•  Regrade request deadline: April 2, 2013!
– We will regrade the entire exam!

•  Please fill the anonymous course survey at
https://www.surveymonkey.com/s/9DK2VVJ !

•  Weʼll try to make changes this semester based on your feedback!

!

0

10

20

30

40

50

60

70

80

Up To
20

20 To
30

30 To
40

40 To
50

50 To
60

60 To
70

70 To
80

80 To
90

90 To
100

More

Co
un

t

Histogram

Lec 14.15!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ With FAT, pointers are maintained in
the data blocks!

•  Q2: True _ False _ Unix file system is more efficient than
FAT for random access!

•  Q3: True _ False _ The “Skip Sector Positioning” technique
allows reading consecutive blocks on a track!

•  Q4: True _ False _ Maintaining the free blocks in a list is
more efficient than using a bitmap!

•  Q5: True _ False _ In Unix, accessing random data in a
large file is on average slower than in a small file!

!
!
!

Quiz 14.1: File Systems"

Lec 14.16!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

Page 5

Lec 14.17!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ With FAT, pointers are maintained in
the data blocks!

•  Q2: True _ False _ Unix file system is more efficient than
FAT for random access!

•  Q3: True _ False _ The “Skip Sector Positioning” technique
allows reading consecutive blocks on a track!

•  Q4: True _ False _ Maintaining the free blocks in a list is
more efficient than using a bitmap!

•  Q5: True _ False _ In Unix, accessing random data in a
large file is on average slower than in a small file!

!
!
!

Quiz 14.1: File Systems"
X"

X"

X"

X"

X"

Lec 14.18!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

How do we actually access files?"
•  All information about a file contained in its file header!

– UNIX calls this an “inode”!
»  Inodes are global resources identified by index (“inumber”)!

– Once you load the header structure, all blocks of file are locatable!

•  Question: how does the user ask for a particular file?!
– One option: user specifies an inode by a number (index).!

»  Imagine: open(“14553344”)!
– Better option: specify by textual name!

» Have to map name→inumber!
– Another option: Icon!

»  This is how Apple made its money. Graphical user interfaces. Point
to a file and click!

Lec 14.19!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Naming"
•  Naming (name resolution): process by which a system

translates from user-visible names to system resources!

•  In the case of files, need to translate from strings (textual
names) or icons to inumbers/inodes!

•  For global file systems, data may be spread over globe⇒need
to translate from strings or icons to some combination of
physical server location and inumber !

Lec 14.20!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Directories"
•  Directory: a relation used for naming!

– Just a table of (file name, inumber) pairs!

•  How are directories constructed?!
– Directories often stored in files!

» Reuse of existing mechanism!
» Directory named by inode/inumber like other files!

– Needs to be quickly searchable!
» Options: Simple list or Hashtable!
» Can be cached into memory in easier form to search!

•  How are directories modified?!
– Originally, direct read/write of special file!
– System calls for manipulation: mkdir, rmdir
– Ties to file creation/destruction!

» On creating a file by name, new inode grabbed and associated
with new file in particular directory!

Page 6

Lec 14.21!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Directory Organization"
•  Directories organized into a hierarchical structure!

– Seems standard, but in early 70ʼs it wasnʼt!
– Permits much easier organization of data structures!

•  Entries in directory can be either files or directories!

•  Files named by ordered set (e.g., /programs/p/list)!

Lec 14.22!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Directory Structure"

•  Not really a hierarchy!!
– Many systems allow directory structure to be organized as an

acyclic graph or even a (potentially) cyclic graph!
– Hard Links: different names for the same file!

» Multiple directory entries point at the same file!
– Soft Links: “shortcut” pointers to other files!

»  Implemented by storing the logical name of actual file!

Lec 14.23!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Directory Structure"

•  Name Resolution: The process of converting a logical name
into a physical resource (like a file)!

– Traverse succession of directories until reach target file!
– Global file system: May be spread across the network!

Lec 14.24!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Directory Structure (Conʼt)"
•  How many disk accesses to resolve “/my/book/count”?!

– Read in file header for root (fixed spot on disk)!
– Read in first data block for root!

»  Table of file name/index pairs. Search linearly – ok since
directories typically very small!

– Read in file header for “my”!
– Read in first data block for “my”; search for “book”!
– Read in file header for “book”!
– Read in first data block for “book”; search for “count”!
– Read in file header for “count”!

•  Current working directory: Per-address-space pointer to a
directory (inode) used for resolving file names!

– Allows user to specify relative filename instead of absolute path
(say CWD=“/my/book” can resolve “count”)!

Page 7

Lec 14.25!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Where are inodes stored?"

•  In early UNIX and DOS/Windowsʼ FAT file system,
headers stored in special array in outermost cylinders!

– Header not stored anywhere near the data blocks. To
read a small file, seek to get header, seek back to data.!

– Fixed size, set when disk is formatted. At formatting
time, a fixed number of inodes were created (They were
each given a unique number, called an “inumber”)!

Lec 14.26!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Where are inodes stored?"
•  Later versions of UNIX moved the header information to be

closer to the data blocks!
– Often, inode for file stored in same “cylinder group” as parent

directory of the file (makes an ls of that directory run fast).!
– Pros: !

» UNIX BSD 4.2 puts a portion of the file header array on each
cylinder. For small directories, can fit all data, file headers, etc.
in same cylinder ⇒ no seeks!!

»  File headers much smaller than whole block (a few hundred
bytes), so multiple headers fetched from disk at same time!

» Reliability: whatever happens to the disk, you can find many of
the files (even if directories disconnected)!

– Part of the Fast File System (FFS)!
» General optimization to avoid seeks!

Lec 14.27!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Open system call:!
– Resolves file name, finds file control block (inode)!
– Makes entries in per-process and system-wide tables!
– Returns index (called “file handle”) in open-file table!

In-Memory File System Structures"

Lec 14.28!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Read/write system calls:!
– Use file handle to locate inode!
– Perform appropriate reads or writes !

In-Memory File System Structures"

Page 8

Lec 14.29!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ A hard-link is a pointer to other file!
•  Q2: True _ False _ inumber is the id of a block!
•  Q3: True _ False _ Typically, directories are stored as files!
•  Q4: True _ False _ Storing file headers on the outermost

cylinders minimizes the seek time!
!
!

Quiz 14.2: File Systems"

Lec 14.30!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ A hard-link is a pointer to other file!
•  Q2: True _ False _ inumber is the id of a block!
•  Q3: True _ False _ Typically, directories are stored as files!
•  Q4: True _ False _ Storing file headers on the outermost

cylinders minimizes the seek time!
!
!

Quiz 14.2: File Systems"
X"

X"

X"

X"

Lec 14.31!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

File System Summary (1/2)"
•  File System:!

– Transforms blocks into Files and Directories!
– Optimize for access and usage patterns!
– Maximize sequential access, allow efficient random access!

•  File (and directory) defined by header, called “inode”!

•  Multilevel Indexed Scheme!
–  Inode contains file info, direct pointers to blocks, !
–  indirect blocks, doubly indirect, etc..!

!
Lec 14.32!3/18/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

File System Summary (2/2)"

•  4.2 BSD Multilevel index files!
–  Inode contains pointers to actual blocks, indirect blocks, double

indirect blocks, etc. !
– Optimizations for sequential access: start new files in open

ranges of free blocks, rotational Optimization!

•  Naming: act of translating from user-visible names to actual
system resources!

– Directories used for naming for local file systems!

!

