
CS162  
Operating Systems and 
Systems Programming 

Lecture 17  
TCP, Flow Control, Reliability"

April 3, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

Lec 17.2!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ Layering improves application
performance!

•  Q2: True _ False _ Routers forward a packet based on its
destination address!

•  Q3: True _ False _ “Best Effort” packet delivery ensures
that packets are delivered in order!

•  Q4: True _ False _ Port numbers belong to network layer!
•  Q5: True _ False _ The hosts on Berkeleyʼs campus share

the same IP address prefix!

!
!

Quiz 16.2: Layering"

Lec 17.3!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ Layering improves application
performance!

•  Q2: True _ False _ Routers forward a packet based on its
destination address!

•  Q3: True _ False _ “Best Effort” packet delivery ensures
that packets are delivered in order!

•  Q4: True _ False _ Port numbers belong to network layer!
•  Q5: True _ False _ The hosts on Berkeleyʼs campus share

the same IP address prefix!

!
!

Quiz 16.2: Layering"
X"

X"

X"

X"
X"

Lec 17.4!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  Socket API!
!
•  TCP!

– Open connection (3-way handshake)!
– Reliable transfer!
– Tear-down connection!
– Flow control!

Lec 17.5!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Socket API"
•  Socket API: Network programming interface!

!

Socket"
API"

TCP" UDP"

IP"

Application"

Transport"

Network "

Lec 17.6!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

BSD Socket API"

•  Created at UC Berkeley (1980s)!

•  Most popular network API!

•  Ported to various OSes, various languages!
– Windows Winsock, BSD, OS X, Linux, Solaris, …!
– Socket modules in Java, Python, Perl, …!

•  Similar to Unix file I/O API!
–  In the form of file descriptor (sort of handle).!
– Can share same read()/write()/close() system calls!

Lec 17.7!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP: Transport Control Protocol"

•  Reliable, in-order, and at most once delivery!

•  Stream oriented: messages can be of arbitrary length!

•  Provides multiplexing/demultiplexing to IP!

•  Provides congestion and flow control!

•  Application examples: file transfer, chat!

Lec 17.8!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Service"

1)  Open connection: 3-way handshaking!

2)  Reliable byte stream transfer from  
(IPa, TCP_Port1) to (IPb, TCP_Port2)!
•  Indication if connection fails: Reset!

3)  Close (tear-down) connection!

Lec 17.9!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Open Connection: 3-Way Handshaking"
•  Goal: agree on a set of parameters, i.e., the start sequence

number for each side!
– Starting sequence number: sequence of first byte in stream !
– Starting sequence numbers are random!

Lec 17.10!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Open Connection: 3-Way Handshaking"
•  Server waits for new connection calling listen()!
•  Sender call connect() passing socket which contains serverʼs

IP address and port number !
– OS sends a special packet (SYN) containing a proposal for first

sequence number, x!

Client (initiator)" Server"

SYN, SeqNum = x"

Active  
Open"

Passive  
Open"

connect()" listen()"

tim
e!

Lec 17.11!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Open Connection: 3-Way Handshaking"
•  If it has enough resources, server calls accept() to accept

connection, and sends back a SYN ACK packet containing!
– Clientʼs sequence number incremented by one, (x + 1)!

» Why is this needed? !
– A sequence number proposal, y, for first byte server will send!

Client (initiator)" Server"

SYN, SeqNum = x"

SYN and ACK, SeqNum = y and Ack = x + 1"

ACK, Ack = y + 1"

Active  
Open"

Passive  
Open"

connect()" listen()"

accept()"

allocate  
buffer space"

tim
e!

Lec 17.12!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

3-Way Handshaking (contʼd) "

•  Three-way handshake adds 1 RTT delay !

•  Why?!
– Congestion control: SYN (40 byte) acts as cheap probe!
– Protects against delayed packets from other connection

(would confuse receiver)!

Lec 17.13!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Generalʼs paradox: !
– Constraints of problem: !

»  Two generals, on separate mountains!
» Can only communicate via messengers!
» Messengers can be captured!

– Problem: need to coordinate attack!
»  If they attack at different times, they all die!
»  If they attack at same time, they win!

– Named after Custer, who died at Little Big Horn because he
arrived a couple of days too early!

•  Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?!

– Remarkably, “no”, even if all messages get through!

– No way to be sure last message gets through!!
Yeah, but what if you

Don’t get this ack?

Generalʼs Paradox"

11 am ok?

So, 11 it is?
Yes, 11 works

Lec 17.14!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Close Connection"

•  Goal: both sides agree to close the connection!
•  4-way connection tear down!

FIN"
FIN ACK"

FIN"
FIN ACK"

Host 1" Host 2"

Can retransmit FIN ACK  
 if it is lost"

tim
eo

ut
"

closed"

close"

close"

closed"

data"

Lec 17.15!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Reliable Transfer"

•  Retransmit missing packets!
– Numbering of packets and ACKs!

•  Do this efficiently!
– Keep transmitting whenever possible!
– Detect missing packets and retransmit quickly!

•  Two schemes!
– Stop & Wait!
– Sliding Window (Go-back-n and Selective Repeat)!

Lec 17.16!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Detecting Packet Loss?"
•  Timeouts!

– Sender timeouts on not receiving ACK!

•  Missing ACKs!
– Receiver ACKs each packet!
– Sender detects a missing packet when seeing a gap in

the sequence of ACKs!
– Need to be careful! Packets and ACKs might be

reordered!

•  NACK: Negative ACK!
– Receiver sends a NACK specifying a packet it is missing!

Lec 17.17!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Stop & Wait w/o Errors"
•  Send; wait for ack; repeat!
•  RTT: Round Trip Time (RTT): time it takes a packet to travel

from sender to receiver and back!
–  One-way latency (d): one way delay from sender and receiver !

ACK 1

Time

Sender Receiver
1!

2!

ACK 2

3!

RTT

RTT

RTT = 2*d !
(if latency is !
 symmetric)!

d

Lec 17.18!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Stop & Wait w/o Errors"
•  How many packets can you send?!
•  1 packet / RTT!
•  Throughput: number of bits delivered to receiver per sec!

ACK 1

Time

Sender Receiver
1!

2!

ACK 2

3!

RTT

RTT

Lec 17.19!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Stop & Wait w/o Errors"
•  Say, RTT = 100ms !
•  1 packet = 1500 bytes!
•  Throughput = 1500*8bits/0.1s = 120 Kbps !

ACK 1

Time

Sender Receiver
1!

2!

ACK 2

3!

RTT

RTT

Lec 17.20!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Stop & Wait w/o Errors"
•  Can be highly inefficient for high capacity links!
•  Throughput doesnʼt depend on the network capacity à

even if capacity is 1Gbps, we can only send 120 Kbps!!

ACK 1

Time

Sender Receiver
1!

2!

ACK 2

3!

RTT

RTT

Lec 17.21!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Stop & Wait with Errors"
•  If a loss wait for a retransmission timeout and retransmit!
•  Ho do you pick the timeout?!

ACK 1

Time

Sender Receiver
1!

RTT

timeout 1!

Lec 17.22!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Sliding Window"
•  window = set of adjacent sequence numbers!

•  The size of the set is the window size!

•  Assume window size is n!

•  Let A be the last ACKʼd packet of sender without gap;
then window of sender = {A+1, A+2, …, A+n} 

! !!
•  Sender can send packets in its window  

! !!
•  Let B be the last received packet without gap by

receiver, then window of receiver = {B+1,…, B+n} 
! !!

•  Receiver can accept out of sequence, if in window!

Lec 17.23!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Sliding Window w/o Errors"
•  Throughput = W*packet_size/RTT!
!

Time!

Window size (W) = 3 packets!

Sender! Receiver!

1!{1}!
2!{1, 2}!
3!{1, 2, 3}!
4!{2, 3, 4}!
5!{3, 4, 5}!

Unacked packets !
in senderʼs window!

Out-o-seq packets!
in receiverʼs window!

{}!

6!{4, 5, 6}!
.!
.!
.!

.!

.!

.!

{}!
{}!

Lec 17.24!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Sliding Window w/o Errors"
•  Assume !

– Link capacity, C = 1Gbps!
– Latency between end-hosts, RTT = 80ms!
– packet_length = 1000 bytes !

•  What is the window size W to match linkʼs capacity, C?!

•  Solution!
We want Throughput = C!
Throughput = W*packet_size/RTT!
C = W*packet_size/RTT!
W = C*RTT/packet_size = 109bps*80*10-3s/(8000b) = 104 packets !

Window size ~ Bandwidth (Capacity), delay (RTT/2)!

Lec 17.25!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Sliding Window with Errors"

•  Two approaches!
– Go-Back-n (GBN)!
– Selective Repeat (SR)!

•  In the absence of errors they behave identically!

•  Go-Back-n (GBN)!
– Transmit up to n unacknowledged packets!
–  If timeout for ACK(k), retransmit k, k+1, …!
– Typically uses NACKs instead of ACKs!

» Recall, NACK specifies first in-sequence packet missed by
receiver!

Lec 17.26!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

GBN Example with Errors"

Window size (W) = 3 packets!

Sender! Receiver!

1!
2!
3!
4!
5!

{}!
{}!
{}!

6!
{5}!
{5,6}!

4 is !
missing!Timeout!

Packet 4!

4!
5!
6! {}!

Why doesnʼt
sender retransmit

packet 4 here?!Assume
packet 4

lost!!

Out-o-seq packets!
in receiverʼs window!

NACK 4

NACK 4

Lec 17.27!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Selective Repeat (SR)"
•  Sender: transmit up to n unacknowledged packets!

•  Assume packet k is lost!

•  Receiver: indicate packet k is missing (use ACKs)!

•  Sender: retransmit packet k !

Lec 17.28!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

SR Example with Errors"

Time"

Sender" Receiver"

1"
2"
3"
4"
5"
6"

4"

7"

Window size (W) = 3 packets!
{1}"

{1, 2}"
{1, 2, 3}"
{2, 3, 4}"
{3, 4, 5}"
{4, 5, 6}"

{4,5,6}"

{7}"

Unacked packets !
in senderʼs window!

ACK 5

ACK 6

Lec 17.29!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary"
•  TCP: Reliable Byte Stream!

– Open connection (3-way handshaking)!
– Close connection: no perfect solution; no way for two

parties to agree in the presence of arbitrary message
losses (Generalʼs Paradox) !

•  Reliable transmission!
– S&W not efficient for links with large capacity

(bandwidth) delay product!
– Sliding window more efficient but more complex!
!

Lec 17.30!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

Lec 17.31!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Flow Control"
•  Recall: Flow control ensures a fast sender does not

overwhelm a slow receiver!
•  Example: Producer-consumer with bounded buffer

(Lecture 5)!
– A buffer between producer and consumer!
– Producer puts items into buffer as long as buffer not full"
– Consumer consumes items from buffer!

Produ-
cer"

Con-
sumer"

buffer!

Lec 17.32!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"
•  TCP: sliding window protocol at byte (not packet) level!

– Go-back-N: TCP Tahoe, Reno, New Reno!
– Selective Repeat (SR): TCP Sack !

•  Receiver tells sender how many more bytes it can receive
without overflowing its buffer (i.e., AdvertisedWindow)!

•  The ACK contains sequence number N of next byte the
receiver expects, i.e., receiver has received all bytes in
sequence up to and including N-1!

Lec 17.33!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

•  TCP/IP implemented by OS (Kernel)!
– Cannot do context switching on sending/receiving every packet!

»  At 1Gbps, it takes 12 usec to send an 1500 bytes, and 0.8usec to
send an 100 byte packet !

•  Need buffers to match … !
– sending app with sending TCP!
–  receiving TCP with receiving app!

Sending Process" Receiving Process"

OS!
(TCP/IP)! OS!

(TCP/IP)!

Lec 17.34!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

•  Three pairs of producer-consumerʼs!
①  sending process à sending TCP!
②  Sending TCP à receiving TCP!
③  receiving TCP à receiving process!

Sending Process" Receiving Process"

TCP layer! TCP layer!

IP layer! IP layer!
OS!

!
!
1!

!
!
2!

!
!
3!

Lec 17.35!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

•  Example assumptions: !
– Maximum IP packet size = 100 bytes!
– Size of the receiving buffer (MaxRcvBuf) = 300 bytes!

•  Recall, ack indicates the next expected byte in-sequence, not
the last received byte !

•  Use circular buffers!
!

Sending Process" Receiving Process"

TCP layer! TCP layer!

IP layer! IP layer!

300 bytes!

OS!

Lec 17.36!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Circular Buffer"
•  Assume!

– A buffer of size N!
– A stream of bytes, where bytes have increasing sequence numbers!

»  Think of stream as an unbounded array of bytes and of sequence
number as indexes in this array!

•  Buffer stores at most N consecutive bytes from the stream!
•  Byte k stored at position (k mod N) + 1 in the buffer!

!

H! E! L! L! O! R! L! ! W O!
27! 28! 29! 30! 31! 32! 33! 34! 35! 36!

sequence #!

1! 2! 3! 4! 5! 6! 7! 8! 9! 10!

Circular buffer!
(N = 10)!

buffered data!

(28 mod 10) + 1 = 9 !

E! L!O! R! ! W O! E!L!

(35 mod 10) + 1 = 6 !

start!end!

Lec 17.37!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

•  LastByteWritten: last byte written by sending process !
•  LastByteSent: last byte sent by sender to receiver!
•  LastByteAcked: last ack received by sender from receiver!
•  LastByteRcvd: last byte received by receiver from sender!
•  NextByteExpected: last in-sequence byte expected by receiver!
•  LastByteRead: last byte read by the receiving process!

LastByteAcked(0)" LastByteSent(0)"

Sending Process"

NextByteExpected(1)"LastByteRcvd(0)"

LastByteRead(0)"

Receiving Process"

LastByteWritten(0)"

Lec 17.38!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

Receiving Process"

NextByteExpected" LastByteRcvd"

LastByteRead"

•  AdvertisedWindow: number of bytes TCP receiver can receive!

•  SenderWindow: number of bytes TCP sender can send!
!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)"

SenderWindow = AdvertisedWindow – (LastByteSent – LastByteAcked)"

LastByteAcked"

Sending Process"

LastByteWritten"

LastByteSent"

MaxRcvBuffer!MaxSendBuffer!

Lec 17.39!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

Receiving Process"

NextByteExpected" LastByteRcvd"

LastByteRead"

•  Still true if receiver missed data….!

•  WriteWindow: number of bytes sending process can write!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)"

WriteWindow = MaxSendBuffer – (LastByteWritten – LastByteAcked)"

LastByteAcked"

Sending Process"

LastByteWritten"

LastByteSent"

MaxRcvBuffer!MaxSendBuffer!

Lec 17.40!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

•  Sending app sends 350 bytes!
•  Recall: !

– We assume IP only accepts packets no larger than 100 bytes!
– MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 byets!

LastByteAcked(0)" LastByteSent(0)"

Sending Process"

NextByteExpected(1)"LastByteRcvd(0)"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"
1, 350!

Lec 17.41!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

1, 350!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"
101, 350!

LastByteSent(100)"

1,!
100!

NextByteExpected(101)"LastByteRcvd(100)"

1,
100!

Data[1,100]!{[1,100]}!
{[1,100]}!

tim
e!Sender sends first packet (i.e., first 100

bytes) and receiver gets the packet!

Lec 17.42!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

Data[1,100]!{[1,100]}!
{[1,100]}!

Receiver sends ack for 1st packet!
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) "
 = 300 – (100 – 0) = 200"

Ack=101, AdvWin = 200!

1, 350!

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"
101, 350!

LastByteSent(100)"

1,!
100!

NextByteExpected(101)"LastByteRcvd(100)"

1,
100!

Lec 17.43!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"

LastByteSent(200)" NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Sender sends 2nd packet (i.e., next 100
bytes) and receiver gets the packet!

Data[101,200]!{[1,200]}!
{[1,200]}!

1,!
100! 101, 350!101,!

200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

1,
100!

Ack=101, AdvWin = 200!

Lec 17.44!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"

LastByteSent(200)" NextByteExpected(201)"LastByteRcvd(200)"

1, 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 2nd packet (i.e., next 100
bytes) and receiver gets the packet!

Ack=101, AdvWin = 200!

Lec 17.45!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(200)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Receiving TCP delivers first 100 bytes to
recienving process!

Ack=101, AdvWin = 200!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

1, !
100!

Lec 17.46!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(200)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Ack=101, AdvWin = 200!

Ack=201, AdvWin = 200!

Receiver sends ack for 2nd packet!
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) "
 = 300 – (200 – 100) = 200"

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 17.47!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 3rd packet (i.e., next 100
bytes) and the packet is lost!

201,!
300!

{[1,300]}! Data[201,300]!

301,
350!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 17.48!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender stops sending as window full !
SndWin = AdvWin – (LastByteSent – LastByteAcked) "

 = 300 – (300 – 0) = 0"

1,300!

{[1,300]}! Data[201,300]!

301,
350!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 17.49!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Sender gets ack for 1st packet!
•  AdWin = 200"

1,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 17.50!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(100)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

•  Ack for 1st packet (ack indicates next byte
expected by receiver)!

•  Receiver no longer needs first 100 bytes!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 17.51!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(100)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

Sender still cannot send as window full!
SndWin = AdvWin – (LastByteSent – LastByteAcked) "

 = 200 – (300 – 100) = 0"

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101,
200!

Lec 17.52!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(100)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteSent(300)" NextByteExpected(201)"LastByteRcvd(200)"

101,
200!101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Receiver gets ack for 2nd packet!
•  AdvWin = 200 bytes!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

Lec 17.53!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(200)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

Sender can now send new data! !
SndWin = AdvWin – (LasByteSent – LastByteAcked) = 100"

101,
200!

LastByteSent(300)"

Lec 17.54!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

301,
350!

Lec 17.55!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

Lec 17.56!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!201,
300!

301,
350!

101,
200!

301,
350!

LastByteSent(350)"

301,
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 3rd packet?!

Lec 17.57!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!201,
300!

301,
350!

101,
200!

301,
350!

LastByteSent(350)"

301,
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!

•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 3rd packet?!

Lec 17.58!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!201, 350!201,
300!

301,
350!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 2nd packet since itʼs in existing
window – wonʼt cause receiver window to grow !

Data[201,300]!{[201,350]}!
{[101,350]}!

201,
300!

Lec 17.59!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!201, 350!201,
300!

301,
350! 101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 2nd packet since itʼs in existing
window – wonʼt cause receiver window to grow !

Data[201,300]!{[201,350]}!
{[101,350]}!

Lec 17.60!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

LastByteSent(350)"

Ack=201, AdvWin = 50!{201, 350}!

•  Sender gets 3rd packet and sends Ack for 351!
•  AdvWin = 50!

Data[201,300]!{[201,350]}!
{[101,350]}!

Ack=351, AdvWin = 50!{}!

201,
300!

301,
350!

Lec 17.61!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(350)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

LastByteSent(350)"

Ack=201, AdvWin = 50!{201, 350}!

Sender DONE with sending all bytes! !

Data[201,300]!{[201,350]}!
{[101,350]}!

Ack=351, AdvWin = 50!{}!

Lec 17.62!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Discussion"
•  Why not have a huge buffer at the receiver (memory is

cheap!)?!

•  Sending window (SndWnd) also depends on network
congestion!

– Congestion control: ensure that a fast sender doesnʼt
overwhelm a router in the network (discussed in detail in
EE122)!

•  In practice there is another set of buffers in the protocol
stack, at the link layer (i.e., Network Interface Card)!

!

Lec 17.63!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary: Reliability & Flow Control"
•  Flow control: three pairs of producer consumers!

– Sending process à sending TCP!
– Sending TCP à receiving TCP!
– Receiving TCP à receiving process!

•  AdvertisedWindow: tells sender how much new data
the receiver can buffer!

•  SenderWindow: specifies how many more bytes the
sending application can send to the sending OS!

– Depends on AdvertisedWindow and on data sent since
sender received AdvertisedWindow!

Lec 17.64!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary: Networking (Internet Layering)"

101010100110101110!

Transport
Layer !

Trans.
Hdr.

Network
Layer !

Trans.
Hdr.

Net.
Hdr.

Datalink
Layer !

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Physical
Layer !

Data!

Data!

Data!

Data!
Application

Layer
Any distributed protocol!
(e.g., HTTP, Skype, p2p, !
 KV protocol in your project)!

Send bits to other node directly !
connected to same physical !
network!

Send frames to other node !
directly connected to same !
physical network!
!

Send packets to another node !
possibly located in a different !
network!
!

Send segments to another!
process running on same or!
different node!

