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•  Q1: True _  False _  Layering improves application 
performance!

•  Q2: True _  False _  Routers forward a packet based on its 
destination address!

•  Q3: True _  False _  “Best Effort” packet delivery ensures 
that packets are delivered in order!

•  Q4: True _  False _  Port numbers belong to network layer!
•  Q5: True _  False _  The hosts on Berkeleyʼs campus share 

the same IP address prefix!

!
!

Quiz 16.2: Layering"
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Goals for Today"
•  Socket API!
!
•  TCP!

– Open connection (3-way handshake)!
– Reliable transfer!
– Tear-down connection!
– Flow control!
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Socket API"
•  Socket API: Network programming interface!

!

Socket"
API"

TCP" UDP"

IP"

Application"

Transport"

Network "
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BSD Socket API"

•  Created at UC Berkeley (1980s)!

•  Most popular network API!

•  Ported to various OSes, various languages!
– Windows Winsock, BSD, OS X, Linux, Solaris, …!
– Socket modules in Java, Python, Perl, …!

•  Similar to Unix file I/O API!
–  In the form of file descriptor (sort of handle).!
– Can share same read()/write()/close() system calls!
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TCP: Transport Control Protocol"

•  Reliable, in-order, and at most once delivery!

•  Stream oriented: messages can be of arbitrary length!

•  Provides multiplexing/demultiplexing to IP!

•  Provides congestion and flow control!

•  Application examples: file transfer, chat!
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TCP Service"

1)  Open  connection: 3-way handshaking!

2)  Reliable byte stream transfer from  
(IPa, TCP_Port1) to (IPb, TCP_Port2)!
•  Indication if connection fails: Reset!

3)  Close (tear-down) connection!
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Open Connection: 3-Way Handshaking"
•  Goal: agree on a set of parameters, i.e., the start sequence 

number for each side!
– Starting sequence number: sequence of first byte in stream !
– Starting sequence numbers are random!
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Open Connection: 3-Way Handshaking"
•  Server waits for new connection calling listen()!
•  Sender call connect() passing socket which contains serverʼs 

IP address and port number !
– OS sends a special packet (SYN) containing a proposal for first 

sequence number, x!

Client (initiator)" Server"

SYN, SeqNum = x"

Active  
Open"

Passive  
Open"

connect()" listen()"

tim
e!
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Open Connection: 3-Way Handshaking"
•  If it has enough resources, server calls accept() to accept 

connection, and sends back a SYN ACK packet containing!
– Clientʼs sequence number incremented by one, (x + 1)!

» Why is this needed? !
– A sequence number proposal, y, for first byte server will send!

Client (initiator)" Server"

SYN, SeqNum = x"

SYN and ACK, SeqNum = y and Ack = x + 1"

ACK, Ack = y + 1"

Active  
Open"

Passive  
Open"

connect()" listen()"

accept()"

allocate  
buffer space"

tim
e!
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3-Way Handshaking (contʼd) "

•  Three-way handshake adds 1 RTT delay !

•  Why?!
– Congestion control: SYN (40 byte) acts as cheap probe!
– Protects against delayed packets from other connection 

(would confuse receiver)!
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•  Generalʼs paradox: !
– Constraints of problem: !

»  Two generals, on separate mountains!
» Can only communicate via messengers!
» Messengers can be captured!

– Problem: need to coordinate attack!
»  If they attack at different times, they all die!
»  If they attack at same time, they win!

– Named after Custer, who died at Little Big Horn because he 
arrived a couple of days too early!

•  Can messages over an unreliable network be used to 
guarantee two entities do something simultaneously?!

– Remarkably, “no”, even if all messages get through!

– No way to be sure last message gets through!!
Yeah, but what if you 

Don’t get this ack? 

Generalʼs Paradox"

11 am ok? 

So, 11 it is? 
Yes, 11 works 
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Close Connection"

•  Goal: both sides agree to close the connection!
•  4-way connection tear down!

FIN"
FIN ACK"

FIN"
FIN ACK"

Host 1" Host 2"

Can retransmit FIN ACK  
 if it is lost"

tim
eo

ut
"

closed"

close"

close"

closed"

data"
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Reliable Transfer"

•  Retransmit missing packets!
– Numbering of packets and ACKs!

•  Do this efficiently!
– Keep transmitting whenever possible!
– Detect missing packets and retransmit quickly!

•  Two schemes!
– Stop & Wait!
– Sliding Window (Go-back-n and Selective Repeat)!
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Detecting Packet Loss?"
•  Timeouts!

– Sender timeouts on not receiving ACK!

•  Missing ACKs!
– Receiver ACKs each packet!
– Sender detects a missing packet when seeing a gap in 

the sequence of ACKs!
– Need to be careful! Packets and ACKs might be 

reordered!

•  NACK: Negative ACK!
– Receiver sends a NACK specifying a packet it is missing!
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Stop & Wait w/o Errors"
•  Send; wait for ack; repeat!
•  RTT: Round Trip Time (RTT): time it takes a packet to travel 

from sender to receiver and back!
–  One-way latency (d): one way delay from sender and receiver  !

ACK 1 

Time 

Sender Receiver 
1!

2!

ACK 2 

3!

RTT 

RTT 

RTT = 2*d !
(if latency is !
 symmetric)!

d 
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Stop & Wait w/o Errors"
•  How many packets can you send?!
•  1 packet / RTT!
•  Throughput: number of bits delivered to receiver per sec!

ACK 1 

Time 

Sender Receiver 
1!

2!

ACK 2 

3!

RTT 

RTT 
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Stop & Wait w/o Errors"
•  Say, RTT = 100ms !
•  1 packet = 1500 bytes!
•  Throughput = 1500*8bits/0.1s = 120 Kbps !

ACK 1 

Time 

Sender Receiver 
1!

2!

ACK 2 

3!

RTT 

RTT 
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Stop & Wait w/o Errors"
•  Can be highly inefficient for high capacity links!
•  Throughput doesnʼt depend on the network capacity à 

even if capacity is 1Gbps, we can only send 120 Kbps!!

ACK 1 

Time 

Sender Receiver 
1!

2!

ACK 2 

3!

RTT 

RTT 
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Stop & Wait with Errors"
•  If a loss wait for a retransmission timeout and retransmit!
•  Ho do you pick the timeout?!

ACK 1 

Time 

Sender Receiver 
1!

RTT 

timeout 1!
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Sliding Window"
•  window  = set of adjacent sequence numbers!

•  The size of the set is the window size!

•  Assume window size is n!

•  Let A be the last ACKʼd packet of sender without gap; 
then window of sender = {A+1, A+2, …, A+n} 

! !!
•  Sender can send packets in its window  

! !!
•  Let B be the last received packet without gap by 

receiver, then window of receiver = {B+1,…, B+n} 
! !!

•  Receiver can accept out of sequence, if in window!
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Sliding Window w/o Errors"
•  Throughput = W*packet_size/RTT!
!

Time!

Window size (W) = 3 packets!

Sender! Receiver!

1!{1}!
2!{1, 2}!
3!{1, 2, 3}!
4!{2, 3, 4}!
5!{3, 4, 5}!

Unacked packets !
in senderʼs window!

Out-o-seq packets!
in receiverʼs window!

{}!

6!{4, 5, 6}!
.!
.!
.!

.!

.!

.!

{}!
{}!
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Example: Sliding Window w/o Errors"
•  Assume !

– Link capacity, C = 1Gbps!
– Latency between end-hosts, RTT = 80ms!
– packet_length = 1000 bytes !

•  What is the window size W to match linkʼs capacity, C?!

•  Solution!
We want Throughput = C!
Throughput = W*packet_size/RTT!
C = W*packet_size/RTT!
W = C*RTT/packet_size = 109bps*80*10-3s/(8000b) = 104 packets !

Window size ~ Bandwidth (Capacity), delay (RTT/2)!
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Sliding Window with Errors"

•  Two approaches!
– Go-Back-n (GBN)!
– Selective Repeat (SR)!

•  In the absence of errors they behave identically!

•  Go-Back-n (GBN)!
– Transmit up to n unacknowledged packets!
–  If timeout for ACK(k), retransmit k, k+1, …!
– Typically uses NACKs instead of ACKs!

» Recall, NACK specifies first in-sequence packet missed by 
receiver!
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GBN Example with Errors"

Window size (W) = 3 packets!

Sender! Receiver!

1!
2!
3!
4!
5!

{}!
{}!
{}!

6!
{5}!
{5,6}!

4 is !
missing!Timeout!

Packet 4!

4!
5!
6! {}!

Why doesnʼt 
sender retransmit 

packet 4 here?!Assume 
packet 4 

lost!!

Out-o-seq packets!
in receiverʼs window!

NACK 4 

NACK 4 
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Selective Repeat (SR)"
•  Sender: transmit up to n unacknowledged packets!

•  Assume packet k is lost!

•  Receiver: indicate packet k is missing (use ACKs)!

•  Sender: retransmit packet k !
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SR Example with Errors"

Time"

Sender" Receiver"

1"
2"
3"
4"
5"
6"

4"

7"

Window size (W) = 3 packets!
{1}"

{1, 2}"
{1, 2, 3}"
{2, 3, 4}"
{3, 4, 5}"
{4, 5, 6}"

{4,5,6}"

{7}"

Unacked packets !
in senderʼs window!

ACK 5 

ACK 6 
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Summary"
•  TCP: Reliable Byte Stream!

– Open connection (3-way handshaking)!
– Close connection: no perfect solution; no way for two 

parties to agree in the presence of arbitrary message 
losses (Generalʼs Paradox) !

•  Reliable transmission!
– S&W not efficient for links with large capacity 

(bandwidth) delay product!
– Sliding window more efficient but more complex!
!
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5min Break"
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Flow Control"
•  Recall: Flow control ensures a fast sender does not  

overwhelm a slow receiver!
•  Example: Producer-consumer with bounded buffer 

(Lecture 5)!
– A buffer between producer and consumer!
– Producer puts items into buffer as long as buffer not full"
– Consumer consumes items from buffer!

Produ-
cer"

Con-
sumer"

buffer!
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TCP Flow Control"
•  TCP: sliding window protocol at byte (not packet) level!

– Go-back-N: TCP Tahoe, Reno, New Reno!
– Selective Repeat (SR): TCP Sack !

•  Receiver tells sender how many more bytes it can receive 
without overflowing its buffer (i.e., AdvertisedWindow)!

•  The ACK contains sequence number N of next byte the 
receiver expects, i.e., receiver has received all bytes in 
sequence up to and including N-1!
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TCP Flow Control"

•  TCP/IP implemented by OS (Kernel)!
– Cannot do context switching on sending/receiving every packet!

»  At 1Gbps, it takes 12 usec to send an 1500 bytes, and 0.8usec to 
send an 100 byte packet  !

•  Need buffers to match … !
– sending app with sending TCP!
–  receiving TCP with receiving app!

Sending Process" Receiving Process"

OS!
(TCP/IP)! OS!

(TCP/IP)!
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TCP Flow Control"

•  Three pairs of producer-consumerʼs!
①  sending process à sending TCP!
②  Sending TCP à receiving TCP!
③  receiving TCP à receiving process!

Sending Process" Receiving Process"

TCP layer! TCP layer!

IP layer! IP layer!
OS!

!
!
1!

!
!
2!

!
!
3!
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TCP Flow Control"

•  Example assumptions: !
– Maximum IP packet size = 100 bytes!
– Size of the receiving buffer (MaxRcvBuf) = 300 bytes!

•  Recall, ack indicates the next expected byte in-sequence, not 
the last received byte !

•  Use circular buffers!
!

Sending Process" Receiving Process"

TCP layer! TCP layer!

IP layer! IP layer!

300 bytes!

OS!
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Circular Buffer"
•  Assume!

– A buffer of size N!
– A stream of bytes, where bytes have increasing sequence numbers!

»  Think of stream as an unbounded array of bytes and of sequence 
number as indexes in this array!

•  Buffer stores at most N consecutive bytes from the stream!
•  Byte k stored at position (k mod N) + 1 in the buffer!

!

H! E! L! L! O! R! L!  ! W O!
27! 28! 29! 30! 31! 32! 33! 34! 35! 36!

sequence  #!

1! 2! 3! 4! 5! 6! 7! 8! 9! 10!

Circular buffer!
(N = 10)!

buffered data!

(28 mod 10) + 1 = 9 !

E! L!O! R!  ! W O! E!L!

(35 mod 10) + 1 = 6 !

start!end!
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TCP Flow Control"

•  LastByteWritten: last byte written by sending process !
•  LastByteSent: last byte sent by sender to receiver!
•  LastByteAcked: last ack received by sender from receiver!
•  LastByteRcvd: last byte received by receiver from sender!
•  NextByteExpected: last in-sequence byte expected by receiver!
•  LastByteRead: last byte read by the receiving process!

LastByteAcked(0)" LastByteSent(0)"

Sending Process"

NextByteExpected(1)"LastByteRcvd(0)"

LastByteRead(0)"

Receiving Process"

LastByteWritten(0)"
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TCP Flow Control"

Receiving Process"

NextByteExpected" LastByteRcvd"

LastByteRead"

•  AdvertisedWindow: number of bytes TCP receiver can receive!

•  SenderWindow: number of bytes TCP sender can send!
!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)"

SenderWindow = AdvertisedWindow – (LastByteSent – LastByteAcked)"

LastByteAcked"

Sending Process"

LastByteWritten"

LastByteSent"

MaxRcvBuffer!MaxSendBuffer!
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TCP Flow Control"

Receiving Process"

NextByteExpected" LastByteRcvd"

LastByteRead"

•  Still true if receiver missed data….!

•  WriteWindow: number of bytes sending process can write!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)"

WriteWindow = MaxSendBuffer – (LastByteWritten – LastByteAcked)"

LastByteAcked"

Sending Process"

LastByteWritten"

LastByteSent"

MaxRcvBuffer!MaxSendBuffer!
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TCP Flow Control"

•  Sending app sends 350 bytes!
•  Recall: !

– We assume IP only accepts packets no larger than 100 bytes!
– MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 byets!

LastByteAcked(0)" LastByteSent(0)"

Sending Process"

NextByteExpected(1)"LastByteRcvd(0)"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"
1, 350!
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1, 350!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"
101, 350!

LastByteSent(100)"

1,!
100!

NextByteExpected(101)"LastByteRcvd(100)"

1, 
100!

Data[1,100]!{[1,100]}!
{[1,100]}!

tim
e!Sender sends first packet (i.e., first 100 

bytes) and receiver gets the packet!
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TCP Flow Control"

Data[1,100]!{[1,100]}!
{[1,100]}!

Receiver sends ack for 1st packet!
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) "
              = 300 – (100 – 0) = 200"

Ack=101, AdvWin = 200!

1, 350!

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"
101, 350!

LastByteSent(100)"

1,!
100!

NextByteExpected(101)"LastByteRcvd(100)"

1, 
100!
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TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"

LastByteSent(200)" NextByteExpected(201)"LastByteRcvd(200)"

101, 
200!

Sender sends 2nd packet (i.e., next 100 
bytes) and receiver gets the packet!

Data[101,200]!{[1,200]}!
{[1,200]}!

1,!
100! 101, 350!101,!

200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

1, 
100!

Ack=101, AdvWin = 200!
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TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteRead(0)"

Receiving Process"

LastByteWritten(350)"

LastByteSent(200)" NextByteExpected(201)"LastByteRcvd(200)"

1, 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 2nd packet (i.e., next 100 
bytes) and receiver gets the packet!

Ack=101, AdvWin = 200!
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TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(200)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Receiving TCP delivers first 100 bytes to 
recienving process!

Ack=101, AdvWin = 200!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101, 
200!

1, !
100!



Lec 17.46!4/3/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(200)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Ack=101, AdvWin = 200!

Ack=201, AdvWin = 200!

Receiver sends ack for 2nd packet!
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) "
              = 300 – (200 – 100) = 200"

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101, 
200!
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TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 3rd packet (i.e., next 100 
bytes) and the packet is lost!

201,!
300!

{[1,300]}! Data[201,300]!

301, 
350!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101, 
200!
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TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender stops sending as window full !
SndWin = AdvWin – (LastByteSent – LastByteAcked) "

                 = 300 – (300 – 0) = 0"

1,300!

{[1,300]}! Data[201,300]!

301, 
350!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101, 
200!
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TCP Flow Control"

LastByteAcked(0)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Sender gets ack for 1st packet!
•  AdWin = 200"

1,300!

{[1,300]}! Data[201,300]!

301, 
350!

Ack=101, AdvWin = 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101, 
200!
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TCP Flow Control"

LastByteAcked(100)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301, 
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

•  Ack for 1st packet (ack indicates next byte 
expected by receiver)!

•  Receiver no longer needs first 100 bytes!

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101, 
200!
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TCP Flow Control"

LastByteAcked(100)"

Sending Process"

LastByteWritten(350)"

LastByteSent(300)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301, 
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

Sender still cannot send as window full!
SndWin = AdvWin – (LastByteSent – LastByteAcked) "

                 = 200 – (300 – 100) = 0"

LastByteRead(100)"

Receiving Process"

NextByteExpected(201)"LastByteRcvd(200)"

101, 
200!
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TCP Flow Control"

LastByteAcked(100)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteSent(300)" NextByteExpected(201)"LastByteRcvd(200)"

101, 
200!101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Receiver gets ack for 2nd packet!
•  AdvWin = 200 bytes!

101,300!

{[1,300]}! Data[201,300]!

301, 
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!
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TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(200)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301, 
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

Sender can now send new data! !
SndWin = AdvWin – (LasByteSent – LastByteAcked) = 100"

101, 
200!

LastByteSent(300)"
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TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301, 
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101, 
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

301, 
350!
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TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301, 
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101, 
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

301, 
350!

Ack=201, AdvWin = 50!{201, 350}!
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TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!201,
300!

301, 
350!

101, 
200!

301,
350!

LastByteSent(350)"

301, 
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 3rd packet?!
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TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

NextByteExpected(201)"LastByteRcvd(350)"

101, 350!201, 350!201,
300!

301, 
350!

101, 
200!

301,
350!

LastByteSent(350)"

301, 
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!

•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 3rd packet?!
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TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!201, 350!201,
300!

301, 
350!

101, 
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

301, 
350!

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 2nd packet since itʼs in existing 
window – wonʼt cause receiver window to grow  !

Data[201,300]!{[201,350]}!
{[101,350]}!

201, 
300!
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TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!201, 350!201,
300!

301, 
350! 101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)"

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 2nd packet since itʼs in existing 
window – wonʼt cause receiver window to grow  !

Data[201,300]!{[201,350]}!
{[101,350]}!
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TCP Flow Control"

LastByteAcked(200)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

LastByteSent(350)"

Ack=201, AdvWin = 50!{201, 350}!

•  Sender gets 3rd packet and sends Ack for 351!
•  AdvWin = 50!

Data[201,300]!{[201,350]}!
{[101,350]}!

Ack=351, AdvWin = 50!{}!

201,
300!

301,
350!
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TCP Flow Control"

LastByteAcked(350)"

Sending Process"

LastByteRead(100)"

Receiving Process"

LastByteWritten(350)"

LastByteRcvd(350)"NextByteExpected(351)"

101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

LastByteSent(350)"

Ack=201, AdvWin = 50!{201, 350}!

Sender DONE with sending all bytes! !

Data[201,300]!{[201,350]}!
{[101,350]}!

Ack=351, AdvWin = 50!{}!
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Discussion"
•  Why not have a huge buffer at the receiver (memory is 

cheap!)?!

•  Sending window (SndWnd) also depends on network 
congestion!

– Congestion control: ensure that  a fast sender doesnʼt 
overwhelm a router in the network (discussed in detail in 
EE122)!

•  In practice there is another set of buffers in the protocol 
stack, at the link layer (i.e., Network Interface Card)!

!
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Summary: Reliability & Flow Control"
•  Flow control: three pairs of producer consumers!

– Sending process à sending TCP!
– Sending TCP à receiving TCP!
– Receiving TCP à receiving process!

•  AdvertisedWindow: tells sender how much new data 
the receiver can buffer!

•  SenderWindow: specifies how many more bytes the 
sending application can send to the sending OS!

– Depends on AdvertisedWindow and on data sent since 
sender received AdvertisedWindow!
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Summary: Networking (Internet Layering)"

101010100110101110!

Transport 
Layer !

Trans. 
Hdr. 

Network 
Layer !

Trans. 
Hdr. 

Net. 
Hdr. 

Datalink 
Layer !

Trans. 
Hdr. 

Net. 
Hdr. 

Frame 
Hdr. 

Physical 
Layer !

Data!

Data!

Data!

Data!
Application

Layer  
Any distributed protocol!
(e.g., HTTP, Skype, p2p, !
 KV protocol in your project)!

Send bits to other node directly !
connected to same physical  !
network!

Send frames to other node !
directly connected to same !
physical  network!
!

Send packets to another node !
possibly located in a different !
network!
!

Send segments to another!
process running on same or!
different node!


