
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 18  
Transactions"

April 8, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

Lec 18.2!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ Flow control is responsible for detecting
packet losses and retransmissions !

•  Q2: True _ False _ Flow control always allows a sender to
resend a lost packet!

•  Q3: True _ False _ With TCP, the receiving OS can deliver
data to the application out-of-sequence (i.e., with gaps)!

•  Q4: True _ False _ Flow control makes sure the sender
doesnʼt overflow the receiver!

!
!
!

Quiz 18.1: Flow-Control"

Lec 18.3!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ Flow control is responsible for detecting
packet losses and retransmissions !

•  Q2: True _ False _ Flow control always allows a sender to
resend a lost packet!

•  Q3: True _ False _ With TCP, the receiving OS can deliver
data to the application out-of-sequence (i.e., with gaps)!

•  Q4: True _ False _ Flow control makes sure the sender
doesnʼt overflow the receiver!

!
!
!

Quiz 18.1: Flow-Control"
X!

X!

X!

X!

Lec 18.4!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  What is a database?!

•  Transactions (ACID semantics)!

!

Note: Some slides and/or pictures in the following are"
adapted from lecture notes by Mike Franklin."

Page 2

Lec 18.5!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

What is a Database "

•  A large integrated collection of data!

•  Models real world, e.g., enterprise!
– Entities (e.g., teams, games)!
– Relationships, e.g., !
 Cal plays against Stanford in The Big Game!
!

Lec 18.6!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Key Concept: Structured Data"
•  A data model is a collection of entities and their

relationships

•  A schema is an instance of a data model
–  E.g., describes the fields in the database; how the

database is organized

•  A relational data model is the most used data model
–  Relation, a table with rows and columns
–  Every relation has a schema which describes the fields

in the column

Lec 18.7!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: University Database"
•  Conceptual schema: !

Students(sid: string, name: string, age: integer, gpa:real)!
Courses(cid: string, cname:string, credits:integer) !
Enrolled(sid:string, cid:string, grade:string) !

!! !FOREIGN KEY sid REFERENCES Students!
!! !FOREIGN KEY cid REFERENCES Courses!

!
•  External Schema (View): !

Course_info(cid:string,enrollment:integer) !
!Create View Course_info AS!
!SELECT cid, Count (*) as enrollment !
!FROM Enrolled!
!GROUP BY cid!

Lec 18.8!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: An Instance of Students
Relation"

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Page 3

Lec 18.9!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

What is a Database System?"
!

•  A Database Management System (DBMS) is a
software system designed to store, manage, and
facilitate access to databases.!

•  A DBMS provides:!
– Data Definition Language (DDL)!

» Define relations, schema!
– Data Manipulation Language (DML)!

» Queries – to retrieve, analyze and modify data.!
– Guarantees about durability, concurrency, semantics,

etc!

Lec 18.10!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Key Concepts: Queries, Query Plans,
and Operators"

 System handles query
plan generation &
optimization; ensures
correct execution. !

SELECT sid, name, gpa
FROM Students S
WHERE S.gpa > 3

Students"

Select"

Projection"

"
Students"
Courses"
Enrolled"

Select all students with GPA > 3.0 !

Select all
students
with GPA>3 !

Pick columns:
(sid, name, gpa)!

Lec 18.11!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Key Concepts: Queries, Query Plans,
and Operators"

 System handles query
plan generation &
optimization; ensures
correct execution. !

"
Students"
Courses"
Enrolled"

SELECT
 COUNT DISTINCT (E.sid)
FROM Enrolled E, Courses C
WHERE E.cid = C.cid

 AND C.credits = 4

Count distinct"

Select"

Enrolled"

Join"

Courses"

Number of students who take a 4
credit class !

Columns: !
(sid,cid,!
credits,…)!

Select rows
with credits=4!

Count distinct
sids!

Columns: !
(sid,cid,..)!

Columns: !
(cid,credits,..)!

Lec 18.12!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Key concept: Transaction"

•  An atomic sequence of database actions (reads/writes)!
•  Takes DB from one consistent state to another!

consistent state 1! consistent state 2!
transaction!

Page 4

Lec 18.13!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example"

•  Here, consistency is based on our knowledge
of banking “semantics”!

•  In general, up to writer of transaction to
ensure transaction preserves consistency!

•  DBMS provides (limited) automatic
enforcement, via integrity constraints (IC)!

– e.g., balances must be >= 0!

checking: $200!
savings: $1000!

transaction! checking: $300!
savings: $900!

Lec 18.14!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

From Multiprogramming to Transactions"
•  Users would like the illusion of running their programs

on the machine alone!
– Why not run the entire program in a critical section?!

•  Users want fast response time and operators want to
increase machine utilization à increase concurrency!

–  Interleave executions of multiple programs!

•  How can DBMS help?!

Lec 18.15!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Concurrent Execution & Transactions

•  Concurrent execution essential for good performance
–  Disk slow, so need to keep the CPU busy by working on

several user programs concurrently

•  DBMS only concerned about what data is read/written from/
to the database

– Not concerned about other operations performed by program
on data

•  Transaction – DBMS’s abstract view of a user program,
i.e., a sequence of reads and writes.

Lec 18.16!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Locking Granularity"
•  What granularity to lock?!

– Database!
– Tables!
– Rows!

•  Fine granularity (e.g., row) à high concurrency!
– Multiple users can update the database and same table

simultaneously!
•  Coarse granularity (e.g., database, table) à simple,

but low concurrency!

Database!
Table 1!

Row!

Table 2! Table 4!

Table 3!

Page 5

Lec 18.17!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Need for Transactions in
Distributed Systems"

•  Example: assume two clients updating same value in a key-
value (KV) store at the same time!

– Client A subtracts 75; client B adds 25!
KV Store!

time!

Client A! Client B!

17 !100 !
K! V!get(17)!

100!
100!

get(17)!

17 !125 !

17 !25 !

100-75 = 25!

put(17, 25)! put(17, 125)!

100+25 = 25!

Client Bʼs
update has
been lost!!

Lec 18.18!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Solution?"
•  How did we solve such problem on a single machine?!

– Critical section, e.g., use locks!
– Letʼs apply same solution here… ! !!

KV Store!

time!

Client A! Client B!

17 !100 !
K! V!

get(17)!
100!

lock_acquire()!

17 !25 !

100-75 = 25!

put(17, 25)!

lock_acquire()!

lock_release()!

Client B canʼt
acquire lock (A
holds it)!

Now, B can
get the lock!!

Lec 18.19!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Discussion"
•  How does client B get the lock?!

– Polling: periodically check whether the lock is free!
– KV storage system keeps a list of clients waiting for the lock,

and gives the lock to next client in the list!

•  What happens if the client holding the lock crashes?!
!
•  Network latency might be higher than update operation!

– Most of the time in critical section spent waiting for messages!

•  What is the lock granularity?!
– Do you lock every key? Do you lock the entire storage?!
– What are the tradeoffs?!

!!
Lec 18.20!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Better Solution"
•  Interleave reads and writes from different clients!

•  Provide the same semantics as clients were running
one at a time!

•  Transaction – database/storage sytemʼs abstract view
of a user program, i.e., a sequence of reads and writes!

Page 6

Lec 18.21!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

“Classic” Example: Transaction

UPDATE accounts SET balance = balance -
100.00 WHERE name = 'Alice'; !

UPDATE branches SET balance = balance -
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Alice');!

UPDATE accounts SET balance = balance +
100.00 WHERE name = 'Bob'; !

UPDATE branches SET balance = balance +
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Bob');!

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bobʼs account!
Lec 18.22!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

The ACID properties of Transactions"
•  Atomicity: all actions in the transaction happen, or none

happen!

•  Consistency: transactions maintain data integrity, e.g.,
– Balance cannot be negative

– Cannot reschedule meeting on February 30!

•  Isolation: execution of one transaction is isolated from that
of all others; no problems from concurrency!

•  Durability: if a transaction commits, its effects persist
despite crashes!

Lec 18.23!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Atomicity"
•  A transaction

– might commit after completing all its operations, or
–  it could abort (or be aborted) after executing some

operations

•  Atomic Transactions: a user can think of a transaction
as always either executing all its operations, or not
executing any operations at all

–  Database/storage system logs all actions so that it can
undo the actions of aborted transactions

Lec 18.24!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Consistency"
•  Data follows integrity constraints (ICs)

•  If database/storage system is consistent before
transaction, it will be after

•  System checks ICs and if they fail, the transaction rolls
back (i.e., is aborted)

– A database enforces some ICs, depending on the ICs
declared when the data has been created

– Beyond this, database does not understand the semantics of
the data (e.g., it does not understand how the interest on a
bank account is computed)

Page 7

Lec 18.25!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Isolation"
•  Each transaction executes as if it was running by itself

–  It cannot see the partial results of another transaction

•  Techniques:
–  Pessimistic – don’t let problems arise in the first place

–  Optimistic – assume conflicts are rare, deal with them after
they happen

Lec 18.26!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Durability"
•  Data should survive in the presence of!

– System crash!
– Disk crash à need backups!

•  All committed updates and only those updates are reflected in the
database

–  Some care must be taken to handle the case of a crash
occurring during the recovery process!

Lec 18.27!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ A relational data model is the most
used data model !

•  Q2: True _ False _ Transactions are not guaranteed to
preserve the consistency of a storage system!

•  Q3: True _ False _ A DBMS uses a log to implement
atomicity!

•  Q4: True _ False _ Durability isolates the reads and writes
of a transaction from all other transactions!

!
!
!

Quiz 18.2: Databases"

Lec 18.28!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia"
•  Project 3 initial design documents due tonight before

11:59PM!

•  Autograder will be available this week!
– Thank the readers!!

Page 8

Lec 18.29!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

Lec 18.30!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ A relational data model is the most
used data model !

•  Q2: True _ False _ Transactions are not guaranteed to
preserve the consistency of a storage system!

•  Q3: True _ False _ A DBMS uses a log to implement
atomicity!

•  Q4: True _ False _ Durability isolates the reads and writes
of a transaction from all other transactions!

!
!
!

Quiz 18.2: Databases"
X!

X!

X!

X!

Lec 18.31!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

This Lecture"
•  Deal with (I)solation, by focusing on concurrency

control

•  Next lecture focus on (A)tomicity, and partially on

(D)urability

Lec 18.32!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example"
•  Consider two transactions:!

– T1: moves $100 from account A to account B!
! ! !!
!!

– T2: moves $50 from account B to account A!

!
•  Each operation consists of (1) a read, (2) an addition/

subtraction, and (3) a write !
•  Example: A = A-100!

!

T1:A := A-100; B := B+100; !

Read(A); // R(A)
A := A – 100;

Write(A); // W(A)

T2:A := A+50; B := B-50; !

Page 9

Lec 18.33!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example (contʼd)"
•  Database only sees reads and writes!

!
•  Assume initially: A = $1000 and B = $500!
•  What is the legal outcome of running T1 and T2?!

– A = $950!
– B = $550 !

T1:R(A),W(A),R(B),W(B)!T1: A:=A-100; B:=B+100; ! à!

T2:R(A),W(A),R(B),W(B)!T2: A:=A+50; B:=B-50; ! à!

Database View!

Lec 18.34!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example (contʼd)"

•  What is the outcome of the following execution?!

•  What is the outcome of the following execution?!

!

T1:R(A),W(A),R(B),W(B)
T2: R(A),W(A),R(B),W(B) !

T1: R(A),W(A),R(B),W(B)
T2:R(A),W(A),R(B),W(B) ! B=550!A=950!

B=450!A=1050!

A=900! B=600!
A=950! B=550!

T1: A:=A-100; B:=B+100; !

T2: A:=A+50; B:=B-50; !

Initial values:!
A:=1000
B:=500

Lec 18.35!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example (contʼd)"

•  What is the outcome of the following execution?!

•  What is the outcome of the following execution?!

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A),R(B),W(B) !

T1:R(A), W(A),R(B),W(B)
T2: R(A),W(A),R(B),W(B) !B=550!A=900!

B=450!A=1050!

A=900!
A=950! B=450!

B=550!

T1: A:=A-100; B:=B+100; !

T2: A:=A+50; B:=B-50; !

Lost $50!"

Initial values:!
A:=1000
B:=500

Lec 18.36!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Transaction Scheduling"

•  Why not run only one transaction at a time?!

•  Answer: low system utilization!
– Two transactions cannot run simultaneously even if they

access different data!

!
!
!

Page 10

Lec 18.37!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals of Transaction Scheduling"

•  Maximize system utilization, i.e., concurrency!
–  Interleave operations from different transactions!

•  Preserve transaction semantics!
– Semantically equivalent to a serial schedule, i.e., one

transaction runs at a time !
!
!

T1: R, W, R, W! T2: R, W, R, R, W!

R, W, R, W, R, W, R, R, W!
Serial schedule (T1, then T2):!

R, W, R, R, W, R, W, R, W!
Serial schedule (T2, then T1):!

Lec 18.38!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Two Key Questions"

1)  Is a given schedule equivalent to a serial execution of
transactions? !

!

2)  How do you come up with a schedule equivalent to a
serial schedule?!

R, W, R, W, R, W, R, R, W! R, W, R, R, W, R, W, R, W!

R, R, W, W, R, R, R, W, W!Schedule:!

Serial schedule (T1, then T2):!
:!

Serial schedule (T2, then T1):!

! ?! ?

Lec 18.39!4/8/13! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary"
•  Transaction: a sequence of storage operations

•  ACID:
–  Atomicity: all operations in a transaction happen, or none happens
–  Consistency: if database/storage starts consistent, it ends up

consistent
–  Isolation: execution of one transaction is isolated from another
–  Durability: the results of a transaction persists

•  Serial schedule: A schedule that does not interleave the
operations of different transactions

– Transactions run serially (one at a time)

