
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 20  
 

Why Systems Fail and  
What We Can Do About It"

April 15, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

Lec 20.2!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  Definitions for Fault Tolerance!
•  Causes of system failures!
•  Fault Tolerance approaches!

– HW- and SW-based Fault Tolerance, Datacenters,
Cloud, Geographic diversity!

!

Note: Some slides and/or pictures in the following are adapted from slides
from a talk given by Jim Gray at UC Berkeley on November 9, 2000.!

“You know you have a distributed system when the crash of
a computer you’ve never heard of stops you from getting
any work done.” —LESLIE LAMPORT!

Lec 20.3!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Dependability: The 3 ITIES"

•  Reliability / Integrity: ! 
does the right thing. 
 ! (Need large MTBF)!

•  Availability: does it now.  
!(Need small MTTR  

 MTBF+MTTR)!

•  System Availability: 
if 90% of terminals up & 99% of DB up?  

!(=> 89% of transactions are serviced on time)!

Security Integrity
Reliability

Availability

MTBF or MTTF = Mean Time Between (To) Failure!
MTTR = Mean Time To Repair!

Lec 20.4!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Mean Time to Recovery"
•  Critical time as further failures can occur during recovery!

•  Total Outage duration (MTTR) =!
Time to Detect ! !(need good monitoring)!
+ Time to Diagnose !(need good docs/ops, best practices)!
+ Time to Decide ! !(need good org/leader, best practices)!
+ Time to Act ! !(need good execution!)!

Page 2

Lec 20.5!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Fault Tolerance versus  
Disaster Tolerance"

•  Fault-Tolerance: mask local faults!
– Redundant HW or SW!
– RAID disks!
– Uninterruptible Power Supplies!
– Cluster Failover !

•  Disaster Tolerance: masks site failures!
– Protects against fire, flood, sabotage,..!
– Redundant system and service at  

remote site(s)!
– Use design diversity !

Lec 20.6!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

High Availability System Classes"

! ! !GOAL: Class 6!
Gmail, Hosted Exchange target 3 nines (unscheduled)!
2010: Gmail (99.984), Exchange (>99.9)!
!
UnAvailability ~ MTTR/MTBF!

!Can cut it by reducing MTTR or increasing MTBF!

Availability %" Downtime per year" Downtime per month" Downtime per week"

90% (“one nine”)! 36.5 days! 72 hours! 16.8 hours!

99% (“two nines”)! 3.65 days! 7.20 hours! 1.68 hours!

99.9% (“three nines”)! 8.76 hours! 43.2 minutes! 10.1 minutes!

99.99% (“four nines”)! 52.56 minutes! 4.32 minutes! 1.01 minutes!

99.999% (“five nines”)!5.26 minutes! 25.9 seconds! 6.05 seconds!

99.9999% (“six nines”)!31.5 seconds! 2.59 seconds! 0.605 seconds!

Lec 20.7!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Causal Factors for Unavailability"
Lack of best practices for: "
•  Change control!
•  Monitoring of the relevant components!
•  Requirements and procurement!
•  Operations!
•  Avoidance of network failures, internal application

failures, and external services that fail!
•  Physical environment, and network redundancy!
•  Technical solution of backup, and process solution of

backup!
•  Physical location, infrastructure redundancy!
•  Storage architecture redundancy!

Ulrik Franke et al: Availability of enterprise IT systems - an expert-based Bayesian model!
Lec 20.8!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Case Studies - Tandem Trends   Reported MTBF by Component"

0

50

100

150

200

250

300

350

400

450

1985 1987 1989

software

hardware

maintenance

operations

environment

total

Mean Time to System Failure (years)
by Cause

" " "1985 "1987 "1990"
SOFTWARE " 2 " 53 " 33 "Years"
HARDWARE " 29 " 91 "310 "Years"
MAINTENANCE " 45 "162 "409 "Years"
OPERATIONS " 99 "171 "136 "Years"
ENVIRONMENT "142 "214 "346 "Years"
SYSTEM " 8 "20 "21 "Years"
Problem: Systematic Under-reporting!
!

Page 3

Lec 20.9!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Operations Failures"

RAID Drive 1 failed!!
Replace immediately!

What went wrong??!
Lec 20.10!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Operations Failures"
RAID Drive 1 failed!!
Replace immediately!

Lec 20.11!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!
From: http://analysiscasestudy.blogspot.com/ "

Cloud Computing Outages 2011"
Vendor When Duration What Happened & Why

Apple iPhone
4S Siri

November
2011

1 Day Siri loses even the most basic functionality when Apples servers are down. Because Siri
depends on servers to do the heavy computing required for voice recognition, the service is
useless without that connection. Network outages caused the disruption according to Apple.

Blackberry
outage

October
2011

3 Days Outage was caused by a hardware failure (core switch failure) that prompted a "ripple effect" in
RIM's systems. Users in Europe, Middle East, Africa, India, Brazil, China and Argentina initially
experienced email and message delays and complete outages and later the outages spread to
North America too. Main problem is message backlogs and the downtime produced a huge
queue of undelivered messages causing delays and traffic jams.

Google Docs September
2011

1 Hour Google Docs word collaboration application cramp, shutting out millions of users from their
document lists, documents, drawings and Apps Scripts. Outage was caused by a memory
management bug software engineers triggered in a change designed to “improve real time
collaboration within the document list.

Windows Live
services -
Hotmail &
SkyDrive

September
2011

3 Hours Users did not have any data loss during the outage and the interruption was due to an issue in
Domain Name Service (DNS). Network traffic balancing tool had an update and the update did
not work properly which caused the issue.

Amazon’s EC2
cloud &

August
2011

1-2 days Transformer exploded and caught fire near datacenter that resulted in power outage due to
generator failure. Power back up systems at both the data centers failed causing power
outages. Transformer explosion was caused by lightening strike but disputed by local utility
provider.

Microsoft’s
BPOS

August
2011

1-2 days Transformer exploded and caught fire near datacenter that resulted in power outage due to
generator failure. Power back up systems at both the data centers failed causing power
outages. Transformer explosion was caused by lightening strike but disputed by local utility
provider.

Lec 20.12!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Fault Model"

•  Assume failures are independent*  
So, single fault tolerance is a big win !

•  Hardware fails fast (blue-screen, panic, …)!
•  Software fails-fast (or stops responding/hangs)!
•  Software often repaired by reboot: !!

– Heisenbugs – Works On Retry!
– (Bohrbugs – Faults Again On Retry)!

•  Operations tasks: major source of outage!
– Utility operations – UPS/generator maintenance!
– Software upgrades, configuration changes!

Page 4

Lec 20.13!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Traditional Fault Tolerance Techniques"
•  Fail fast modules: work or stop!

•  Spare modules: yield instant repair time!

•  Process/Server pairs: Mask HW and SW faults!

•  Transactions: yields ACID semantics (simple fault
model)!

Lec 20.14!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Fail-Fast is Good, but Repair is Needed"

! !
Improving either MTTR or MTBF gives benefit!
Simple redundancy does not help much (can actually hurt!)!

Lifecycle of a module!
!fail-fast gives !
!short fault latency!

!
High Availability !
 is low UN-Availability!
!
Unavailability ~ MTTR ! !! ! ! ! ! MTBF!

X X"
!

Fault! Detect!

Repair!Return!

Lec 20.15!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Hardware Reliability/Availability  
(how to make HW fail fast)"

!Duplex module with output comparator:!
!
!
!
!

 !!
!Fail-Fast: fail if either fails (e.g., duplexed CPUs)!

2
work!

1
work!

0
work!

MTBF/2! MTBF/1!
MTBF/2!

!Fail-Soft: fail if both fail (e.g., disc, network,...)!

2
work!

1
work!

0
work!

MTBF/2! MTBF/1!
1.5 * MTBF!

Worse MBTF from
simple redundancy!!

The Airplane Rule:!
 A two-engine airplane has twice  
 as many engine problems as a  
 one engine plane!

Lec 20.16!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Add Repair: Gain 104 Improvement"

2
work!

1
work!

0
work!

MTBF/2! MTBF/1!
104 * MTBF!

MTTR! MTTR!

1 Year MTBF modules!
12-hour MTTR!

Adding repair puts module back!
 into service after a failure!
!
Duplex Fail Soft + Repair"
 Equation: MTBF2/(2 * MTTR) !
 Yields > 104 year MTBF!

Page 5

Lec 20.17!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

Lec 20.18!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Software Techniques:  
Learning from Hardware"

•  Fault avoidance starts with a good and correct design!

•  After that – Software Fault Tolerance Techniques:!
!Modularity (isolation, fault containment)!
"Programming for Failures: Programming paradigms that
assume failures are common and hide them!
!Defensive Programming: Check parameters and data !
!N-Version Programming: N-different implementations!

 !Auditors: Check data structures in background!
!Transactions: to clean up state after a failure!

Lec 20.19!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Try&Catch Alone isnʼt Fault Tolerance!"
String filename = "/nosuchdir/myfilename";

try {

 // Create the file
 new File(filename).createNewFile();

}
catch (IOException e) {

 // Print out the exception that occurred
 System.out.println("Unable to create

file ("+filename+”): "+e.getMessage());
}

•  Fail-Fast, but is this the desired behavior?!
•  Alternative behavior: (re)-create missing directory?!

Lec 20.20!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Fail-Fast and High-Availability Execution"
Process Pairs: Instant repair"
!Use Defensive programming to make a process fail-fast!
!Have separate backup process ready to “take over” if 
 primary faults!
!!

•  SW fault is a Bohrbug è no repair!
!“wait for the next release” or !“get an emergency bug fix” or!
!“get a new vendor”!

•  SW fault is a Heisenbug è restart process!
!“reboot and retry”!

!
!
•  Yields millisecond repair 

 times!
!
•  Tolerates some HW faults!

!

SESSION
PRIMARY
PROCESS

BACKUP
PROCESS

STATE
INFORMATION

LOGICAL PROCESS = PROCESS PAIR

Page 6

Lec 20.21!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Server System Pairs for High Availability"

•  Programs, Data, Processes Replicated at 2+ sites!
– Logical System Pair looks like a single system!
– Backup receives transaction log!

•  If primary fails or operator switches, backup offers service!
•  What about workloads requiring more than one server?!

Primary Backup Local or wide area!

Lec 20.22!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Apache ZooKeeper"

•  Multiple servers require coordination!
– Leader Election, Group Membership, Work Queues, Data

Sharding, Event Notifications, Config, and Cluster Mgmt!

•  Highly available, scalable, distributed coordination kernel!
– Ordered updates and strong persistence guarantees!
– Conditional updates (version), Watches for data changes!

Server Server Server Server Server Server
Leader

Client Client Client Client Client Client Client

Lec 20.23!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Datacenter is new “server”"
•  What about even larger scale?!

•  “Program” == Web search, email, map/GIS, …!
•  “Computer” == 1000ʼs computers, storage, network!
•  Warehouse-sized facilities and workloads!
•  Built from less reliable components than traditional

datacenters!

photos: Sun Microsystems & datacenterknowledge.com!
Lec 20.24!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Many Commercial Alternatives"
•  The rise of Cloud Computing!!

•  “Inexpensive” virtual machine-
based computing resources!

–  Instantaneous (minutes)
provisioning of replacement
computing resources!

– Also highly scalable!

•  Competition driving down prices!

•  Easiest way to build a startup!!
– Scale resources/costs as company

grows!

Page 7

Lec 20.25!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

MapReduce: Programming for Failure"

•  First widely popular programming model for data-
intensive apps on commodity clusters!

•  Published by Google in 2004!
– Processes 20 PB of data / day!

•  Popularized by open-source Hadoop project!
– 40,000 nodes at Yahoo!, 70 PB at Facebook!

•  Programming model!
– Data type: key-value records!

» Map function: (Kin, Vin) è	
 list(Kinter, Vinter)!
» Reduce function: (Kinter, list(Vinter)) è	
 list(Kout, Vout)!

Lec 20.26!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Word Count Execution"

the
quick"
brown

fox"

the fox
ate the
mouse"

how
now"

brown
cow"

Map"

Map"

Map"

Reduce"

Reduce"

brown, 2"
fox, 2"
how, 1"
now, 1"
the, 3"

ate, 1"
cow, 1"
mouse,

1"
quick, 1"

the, 1"
brown, 1"

fox, 1"

quick, 1"

the, 1"
fox, 1"
the, 1"

how, 1"
now, 1"

brown, 1"
ate, 1"

mouse, 1"

cow, 1"

Input" Map" Shuffle & Sort" Reduce" Output"

Lec 20.27!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Fault Tolerance in MapReduce"
1. If a task crashes:!

– Retry on another node!
» OK for a map because it had no dependencies!
» OK for reduce because map outputs are on disk!

–  If the same task repeatedly fails, fail the job!

2. If a node crashes:!
– Relaunch its current tasks on other nodes!
– Relaunch any maps the node previously ran!

» Necessary because their output files are lost!

Ø Tasks must be deterministic and side-effect-free!

Lec 20.28!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Fault Tolerance in MapReduce"
3. If a task is going slowly (straggler):!

– Launch second copy of task on another node!
– Take output of whichever copy finishes first!

•  Critical for performance in large clusters!

•  What about other distributed applications?!
– Web applications, distributed services, …!
– Often complex with many, many moving parts!
–  Interdependencies often hidden and/or unclear!

Page 8

Lec 20.29!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Introduce Controlled Chaos"
•  Best way to avoid failure is to fail constantly!!

!– John Ciancutti, Netflix!
!

•  Inject random failures into cloud by killing VMs!
– Most times, nothing happens!
– Occasional surprises!

•  April, 2011: EC2 failure brought down Reddit,
Foursquare, Quora (and many others)!

– Netflix was unaffected thanks to  
Chaos Monkey and replication!

•  Also apply to network and storage systems!
!
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html!

Lec 20.30!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Add Geographic Diversity to
Reduce Single Points of Failure*"

Lec 20.31!4/15/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary"
•  Focus on Reliability/Integrity and Availability!

– Also, Security (see next two lectures)!

•  Use HW/SW FT to increase MTBF and reduce MTTR!
– Build reliable systems from unreliable components!
– Assume the unlikely is likely!
– Leverage Chaos Monkey!

•  Make operations bulletproof: configuration changes,
upgrades, new feature deployment, …!

•  Apply replication at all levels (including globally)!

