

Security (II)

April 22, 2013 Anthony D. Joseph http://inst.eecs.berkeley.edu/~cs162

Recap: Security Requirements in Distributed Systems

- Authentication
 Ensures that a user is who is claiming to be
- Data integrity

 Ensure that data is not changed from source to destination or after being written on a storage device

- Confidentiality
 Ensures that data is read only by authorized users
- Non-repudiation

- Sender/client can't later claim didn't send/write data

- Receiver/server can't claim didn't receive/write data

4/22/2013

Anthony D. Joseph CS162 ©UCB Spring 2013

22.2

Trojan Example	Buffer Overflow
Nov/Dec e-mail message sent containing holiday message and a link or attachment Goal: trick user into opening link/attachment (social engineering) From: Halmark Greeting: [mallocycetifyhalmark-greetings.com] Date: Thursday, November 18, 2010 9:48 PM Date: Peoplem Subject: You have received a greeting! You have received a virtual greeting card from Mary! You can view your greeting card from Mary! You can view your greeting card visiting the following link: http://www.halmark-greetings.com/greetings/IKDFIUERGHIUER If you can't click on the above link, you can also visit Halmark Greetings directly at http://www.halmark-greetings.com/greetings/IKDFIUERGHIUER If you can't click on the above link, you can also visit Halmark Greetings directly at http://www.halmark.greetings.com/greeting.com/greeting.card code, which is: IKDFIUERGHIUER. Halmark Greetings, the greeting that always puts a smile on your face. Addds keystroke logger or turns into zombie How? Typically by using a buffer overflow exploit	 Part of the request sent by the attacker too large to fit into buffer program uses to hold it Spills over into memory beyond the buffer Allows remote attacker to inject executable code void get_cookie(char *packet) { / unnch(packet); / void munch(char *packet) { int n; char cookie[512]; code here computes offset of cookie in packet, stores it in n strcpy(cookie, &packet[n]); /
4/22/2013 Anthony D. Joseph C5162 ©UCB Spring 2013 22.7	4/22/2013 Anthony D. Joseph CS162 ©UCB Spring 2013 22.8

Potential Solutions

- · Don't write buggy software
 - Program defensively validate all user-provided inputs
 - Use code checkers (slow, incomplete coverage)
- Use Type-safe Languages (Java, Perl, Python, ...)
 Eliminate unrestricted memory access of C/C++
- Use HW support for no-execute regions (stack, heap)
- Leverage OS architecture features
 - Address space randomization randomize memory layout
 - Compartmentalize programs
 - » E.g., DNS server doesn't need total system access

```
    Add network firewalls
    Anthony D. Joseph CS162 ©UCB Spring 2013
```

22.31

Quiz 22.1: Security

- Q1: True _ False _ A digital certificate provides a binding between a host's identity and their public key
- Q2: True _ False _ A server must store a user's password in plaintext form so it can be checked against a submitted password
- Q3: True _ False _ Two-factor authentication uses a second authentication password
- Q4: True _ False _ Worms require human intervention to propagate
- Q5: True _ False _ Using a type-safe language eliminates the risk of buffer overflows

4/22/2013

Page 8

Anthony D. Joseph CS162 ©UCB Spring 2013

22.32

Quiz 22.1: Security Q1: True X False A digital certificate provides a binding between a host's identity and their public key Q2: True False X A server must store a user's password in plaintext form so it can be checked against a submitted password Q3: True X False Two-factor authentication uses a second authentication password Q4: True False X Worms require human intervention to propagate Q5: True X False Using a type-safe language eliminates the risk of buffer overflows

22.38

