
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 22  
 

Security (II)"

April 22, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

22.2!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Recap: Security Requirements in Distributed Systems"

•  Authentication !
–  Ensures that a user is who is claiming to be!

•  Data integrity !
–  Ensure that data is not changed from source to destination or after

being written on a storage device !

•  Confidentiality !
–  Ensures that data is read only by authorized users!

•  Non-repudiation!
–  Sender/client canʼt later claim didnʼt send/write data!
– Receiver/server canʼt claim didnʼt receive/write data!

!

22.3!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Recap: Digital Certificates"

Alice!

Certificate!
Authority!

{Alice, } !

(offline) identity verification!

E({ , Alice}, Kverisign_private)!
Digital certificate!

D(E({ , Alice}, Kverisign_private), Kverisign_public) = !{Alice, } !

•  How do you know is Aliceʼs public key?!
•  Main idea: trusted authority signing binding between Alice and

its private key!

Bob!

22.4!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  Host Compromise!

– Attacker gains control of a host!

•  Denial-of-Service!
– Attacker prevents legitimate users from gaining service!

•  Attack can be both!
– E.g., host compromise that provides resources for

denial-of-service!

Page 2

22.5!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Host Compromise"
•  One of earliest major Internet security incidents!

–  Internet Worm (1988): compromised almost every BSD-
derived machine on Internet!

•  Today: estimated that a single worm could compromise
10M hosts in < 5 min using a zero-day exploit!

•  Attacker gains control of a host!
– Reads data!
– Compromises another host!
– Launches denial-of-service attack on another host!
– Erases data!

22.6!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Definitions"

•  Worm!
– Replicates itself usually using buffer overflow attack!

•  Virus!
– Program that attaches itself to another (usually trusted)

program or document!
•  Trojan horse!

– Program that allows a hacker a back door to compromised
machine!

•  Botnet (Zombies)!
– A collection of programs running autonomously and

controlled remotely!
– Can be used to spread out worms, mounting DDoS attacks!

22.7!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Trojan Example"
•  Nov/Dec e-mail message sent containing holiday message and

a link or attachment!
•  Goal: trick user into opening link/attachment (social engineering)!

•  Adds keystroke logger or turns into zombie !
•  How? Typically by using a buffer overflow exploit!

22.8!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Buffer Overflow"
•  Part of the request

sent by the attacker too
large to fit into buffer
program uses to hold it!

•  Spills over into
memory beyond the
buffer!

•  Allows remote attacker
to inject executable
code!

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);
 . . .
}
void munch(char *packet) {
 int n;
 char cookie[512];
 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);
 . . .
}

Page 3

22.9!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

Stack
X + 200

22.10!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

Stack

X

get_cookie()’s
stack frame

X + 200

22.11!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

Stack

X

X - 4

get_cookie()’s
stack frame

X + 200

22.12!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Normal Execution"

void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

cookie

n

Stack

X

X - 4

X - 8

X - 520

get_cookie()’s
stack frame

X + 200

Page 4

22.13!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

cookie

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back
to munch()

strcpy()’s stack …

get_cookie()’s
stack frame

X + 200

22.14!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back
to munch()

get_cookie()’s
stack frame

X + 200

cookie value read
from packet

22.15!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

cookie value read
from packet

n

Stack

X

X - 4

X - 8

X - 520

get_cookie()’s
stack frame

X + 200

22.16!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

Stack

X

X - 4

get_cookie()’s
stack frame

X + 200

Page 5

22.17!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Normal Execution"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

Stack

X

get_cookie()’s
stack frame

X + 200

22.18!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Buffer Overflow"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

cookie

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back
to munch()

strcpy()’s stack …

get_cookie()’s
stack frame

X + 200

22.19!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example: Buffer Overflow"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

return address back
to get_cookie()

n

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back
to munch()

get_cookie()’s
stack frame

X + 200 cookie
value
read
from
packet

22.20!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

get_cookie()’s
stack frame

return address back
to get_cookie()

Example: Buffer Overflow"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

<Doesn’t Matter>

Stack

X

X - 4

X - 8

X - 520

X - 524
return address back
to munch()

X + 200

<Doesn’t Matter>

X

Executable
Code

Page 6

22.21!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

get_cookie()’s
stack frame

return address back
to get_cookie()

Example: Buffer Overflow"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

<Doesn’t Matter>

Stack

X

X - 4

X - 8

X - 520

X + 200

<Doesn’t Matter>

X

Executable
Code

22.22!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

get_cookie()’s
stack frame

return address back
to get_cookie()

Example: Buffer Overflow"
void get_cookie(char *packet) {
 . . . (200 bytes of local vars) . . .
 munch(packet);

 . . .

}

void munch(char *packet) {

 int n;
 char cookie[512];

 . . .

 code here computes offset of cookie in
packet, stores it in n

 strcpy(cookie, &packet[n]);

 . . .

}

Stack

X

X - 4

X + 200

X

Executable
Code Now branches to code read in from

the network

From here on, machine falls
under the attacker’s control

22.23!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Automated Compromise: Worms"
•  When attacker compromises a host, they can instruct it

to do whatever they want!

•  Instructing it to find more vulnerable hosts to repeat the
process creates a worm: a program that self-replicates
across a network!
•  Often spread by picking 32-bit Internet addresses at

random to probe …!
•  … but this isnʼt fundamental!

•  As the worm repeatedly replicates, it grows exponentially
fast because each copy of the worm works in parallel to
find more victims!

22.24!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Worm Spreading"

f = (e K(t-T) – 1) / (1+ e K(t-T))

•  f – fraction of hosts infected
•  K – rate at which one host

can compromise others
•  T – start time of the attack

T

f

t

1

Page 7

22.25!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Worm Examples"
•  Morris worm (1988)!

•  Code Red (2001)!
– 369K hosts in 10 hours!

•  MS Slammer (January 2003)!

!
•  Theoretical worms!

•  Zero-day exploit, efficient infection and propagation!
•  1M hosts in 1.3 sec!
•  $50B+ damage!

! !! 22.26!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Morris Worm (1988)"

•  Infect multiple types of machines (Sun 3 and VAX)!
– Was supposed to be benign: estimate size of Internet !

•  Used multiple security holes including !
– Buffer overflow in fingerd
– Debugging routines in sendmail
– Password cracking!

•  Intend to be benign but it had a bug!
– Fixed chance the worm wouldnʼt quit when reinfecting a

machine à number of worm on a host built up
rendering the machine unusable!

22.27!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Code Red Worm (2001)"

•  Attempts to connect to TCP port 80 (i.e., HTTP port) on a
randomly chosen host!

•  If successful, the attacking host sends a crafted HTTP GET
request to the victim, attempting to exploit a buffer overflow !

•  Worm “bug”: all copies of the worm use the same random
generator and seed to scan new hosts!

– DoS attack on those hosts!
– Slow to infect new hosts !

•  2nd generation of Code Red fixed the bug!!
–  It spread much faster!

22.28!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

MS SQL Slammer (January 2003)"
•  Uses UDP port 1434 to exploit a buffer overflow in MS

SQL server !
– 376-bytes plus UDP and IP headers: one packet!

•  Effect!
– Generate massive amounts of network packets !
– Brought down as many as 5 of the 13 internet root name

servers!

•  Others!
– The worm only spreads as an in-memory process: it

never writes itself to the hard drive !
»  Solution: close UDP port on firewall and reboot !

Page 8

22.29!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

MS SQL Slammer (January 2003)"

(From http://www.f-secure.com/v-descs/mssqlm.shtml)!

Europe
(Monday)!

Initial attack! US
(Monday)!

22.30!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Hall of Shame"

•  Software that have had many stack overflow bugs:!
– BIND (most popular DNS server)!

– RPC (Remote Procedure Call, used for NFS)!
» NFS (Network File System), widely used at UCB!

– Sendmail (most popular UNIX mail delivery software)!

–  IIS (Windows web server)!

– SNMP (Simple Network Management Protocol, used to
manage routers and other network devices)!

22.31!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Potential Solutions"
•  Donʼt write buggy software!

– Program defensively – validate all user-provided inputs!
– Use code checkers (slow, incomplete coverage)!

•  Use Type-safe Languages (Java, Perl, Python, …)!
– Eliminate unrestricted memory access of C/C++!

•  Use HW support for no-execute regions (stack, heap)!

•  Leverage OS architecture features!
– Address space randomization – randomize memory

layout !
– Compartmentalize programs !

»  E.g., DNS server doesnʼt need total system access!

•  Add network firewalls!
22.32!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ A digital certificate provides a binding
between a hostʼs identity and their public key!

•  Q2: True _ False _ A server must store a userʼs password
in plaintext form so it can be checked against a submitted
password !

•  Q3: True _ False _ Two-factor authentication uses a
second authentication password!

•  Q4: True _ False _ Worms require human intervention to
propagate!

•  Q5: True _ False _ Using a type-safe language eliminates
the risk of buffer overflows!

!
!
!

Quiz 22.1: Security"

Page 9

22.33!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia"
•  Next lecture changed to RPC and distributed file systems!

•  Final Exam – Friday 5/17, 8-11am in 1 Pimentel!
– Review: Monday 5/6, 2-5pm in 100 Lewis Hall!
– All material from the course!

» With slightly more focus on second half, but you are still
responsible for all the material!

– Two sheets of notes, both sides!
– Dumb calculator allowed!

•  Should be working on Project 4!
– Last one!!

22.34!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

22.35!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ A digital certificate provides a binding
between a hostʼs identity and their public key!

•  Q2: True _ False _ A server must store a userʼs password
in plaintext form so it can be checked against a submitted
password !

•  Q3: True _ False _ Two-factor authentication uses a
second authentication password!

•  Q4: True _ False _ Worms require human intervention to
propagate!

•  Q5: True _ False _ Using a type-safe language eliminates
the risk of buffer overflows!

!
!
!
!

Quiz 22.1: Security"

X!

X!

X!

X!

X!

22.36!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Firewall"

•  Security device whose goal is to
prevent computers from outside to
gain control to inside machines!

•  Hardware or software!

Firewall"

Internet"

Attacker"

Page 10

22.37!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Firewall (contʼd)"
•  Restrict traffic between Internet and devices (machines)

behind it based on!
– Source address and port number!
– Payload !
– Stateful analysis of data !

•  Examples of rules!
– Block any external packets not for port 80 (i.e., HTTP port)!
– Block any email with an attachment!
– Block any external packets with an internal IP address!

»  Ingress filtering!

22.38!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Firewalls: Properties"

•  Easier to deploy firewall than secure all internal hosts!

•  Doesnʼt prevent user exploitation/social networking
attacks!

•  Tradeoff between availability of services (firewall passes
more ports on more machines) and security!

–  If firewall is too restrictive, users will find way around it, thus
compromising security!

– E.g., tunnel all services using port 80!

22.39!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Denial of Service"

•  Huge problem in current Internet !
– Major sites attacked: Yahoo!, Amazon, eBay, CNN,

Microsoft !
– 12,000 attacks on 2,000 organizations in 3 weeks!
– Some more that 600,000 packets/second or 300 Gb/s!!
– Almost all attacks launched from compromised hosts!

•  General Form!
– Prevent legitimate users from gaining service by

overloading or crashing a server!
– E.g., SYN attack!

22.40!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Effect on Victim"
•  Buggy implementations allow unfinished connections

to eat all memory, leading to crash!

•  Better implementations limit the number of unfinished
connections!

– Once limit reached, new SYNs are dropped!

•  Effect on victimʼs users!
– Users canʼt access the targeted service on the victim

because the unfinished connection queue is full à DoS!

Page 11

22.41!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

SYN Attack  
 

(Recap: 3-Way Handshaking)"

•  Goal: agree on a set of parameters: the start
sequence number for each side!

– Starting sequence numbers are random.!

Client (initiator)" Server"

SYN, SeqNum = x"

SYN and ACK, SeqNum = y and Ack = x + 1"

ACK, Ack = y + 1"

22.42!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

SYN Attack"

•  Attacker: send at max rate TCP SYN with random
spoofed source address to victim!

– Spoofing: use a different source IP address than own!
– Random spoofing allows one host to pretend to be many!

•  Victim receives many SYN packets!
– Send SYN+ACK back to spoofed IP addresses!
– Holds some memory until 3-way handshake completes!

» Usually never, so victim times out after long period (e.g., 3
minutes)!

22.43!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Solution: SYN Cookies"

•  Server: send SYN-ACK with sequence number y, where !
– y = HMAC(client_IP_addr, client_port, server_key)!
– HMAC(): Hash Message Authentication Code!

•  Client: send ACK containing y+1!

•  Sever: !
– verify if y = HMAC(client_IP_addr, client_port, server_key)!
–  If verification passes, allocate memory!

•  Note: server doesnʼt allocate any memory if the clientʼs
address is spoofed!

22.44!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Other Denial-of-Service Attacks"
•  Reflection!

– Cause one non-compromised host to attack another!
– E.g., host A sends DNS request or TCP SYN with source

V to server R. R sends reply to V!

Reflector (R)!

Internet!

Attacker (A)!
R!V!

Victim (V)!

Page 12

22.45!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Other Denial-of-Service Attacks"
•  Reflection!

– Cause one non-compromised host to attack another!
– E.g., host A sends DNS request or TCP SYN with source

V to server R. R sends reply to V!

Reflector (R)!

Internet"

Attacker (A)!

V!R!

Victim (V)!

22.46!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Identifying and Stop Attacking Machines"

•  Develop techniques for defeating spoofed source
addresses!

!
•  Egress filtering!

– A domainʼs border router drop outgoing packets which
do not have a valid source address for that domain!

–  If universal, could abolish spoofing!

•  IP Traceback!
– Routers probabilistically tag packets with an identifier!
– Destination can infer path to true source after receiving

enough packets!

22.47!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Distributed Denial-of-Service Attacks"
Zombie botnet used to generate  
massive traffic flows/packet rates!

March 19, 2013: Spamhaus hit with !
300 Gb/s DDoS attack by Cyberbunker !

22.48!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Stepping Stone Compromise"
•  Todayʼs most sophisticated attacks!

– Multi-step/compromise attack!

•  RSA SecurID token!
–  2-factor authentication device!
– Code changes every few seconds!
– Data on codes stolen in March 2011!

•  760 companies attacked using stolen SecurID info!
–  20% of Fortune 100!
– Charles Schwabb & Co., Cisco Systems, eBay, European Space

Agency, Facebook, Freddie Mac, Google, General Services
Administration, IBM, Intel Corp., IRS, MIT, Motorola, Northrop
Grumman, Verisign, VMWare, Wachovia, Wells Fargo, …!

–  http://krebsonsecurity.com/2011/10/who-else-was-hit-by-the-rsa-
attackers/ !

Page 13

22.49!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Advanced Persistent
Threats

http://blogs.rsa.com/rivner/anatomy-of-an-attack/ 22.50!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Advanced Persistent
Threats

http://blogs.rsa.com/rivner/anatomy-of-an-attack/

22.51!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Advanced Persistent
Threats

http://blogs.rsa.com/rivner/anatomy-of-an-attack/ 22.52!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Advanced Persistent
Threats

http://blogs.rsa.com/rivner/anatomy-of-an-attack/

Page 14

22.53!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Advanced Persistent
Threats

http://blogs.rsa.com/rivner/anatomy-of-an-attack/ 22.54!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Advanced Persistent
Threats

http://blogs.rsa.com/rivner/anatomy-of-an-attack/

22.55!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary"
•  Security is one of the biggest problem today!

•  Host Compromise!
– Poorly written software!
– Partial solutions: better OS security architecture, type-

safe languages, firewalls!

•  Denial-of-Service!
– No easy solution: DoS can happen at many levels!
– DDoS attacks can be very difficult to defeat!

22.56!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Additional Notes on Public Key
Cryptography  

(Not required for Final Exam) "

Page 15

22.57!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Generating Public and Private Keys"

•  Choose two large prime numbers p and q (>1500
256 bit long) and multiply them: n = p*q

•  Chose encryption key e such that e and (p-1)*(q-1)
are relatively prime!

•  Compute decryption key d as!
 d = e-1 mod ((p-1)*(q-1))
(equivalent to d*e = 1 mod ((p-1)*(q-1)))

•  Public key consist of pair (n, e)!
•  Private key consists of pair (d, n)!
!

22.58!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

RSA Encryption and Decryption"
•  Encryption of message block m: !

–  c = me mod n

•  Decryption of ciphertext c: !
– m = cd mod n

22.59!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example (1/2)"

•  Choose p = 7 and q = 11 à n = p*q = 77!

•  Compute encryption key e: (p-1)*(q-1) = 6*10 = 60 à
chose e = 13 (13 and 60 are relatively prime numbers)!

•  Compute decryption key d such that 13*d = 1 mod 60 à
d = 37 (37*13 = 481)!

!

22.60!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example (2/2)"
•  n = 77; e = 13; d = 37!

•  Send message block m = 7!

•  Encryption: c = me mod n = 713 mod 77 = 35!

•  Decryption: m = cd mod n = 3537 mod 77 = 7!

Page 16

22.61!4/22/2013! Anthony D. Joseph CS162 ©UCB Spring 2013! 61

Properties"
•  Confidentiality!
•  A receiver A computes n, e, d, and sends out (n, e) !

–  Everyone who wants to send a message to A uses (n, e) to
encrypt it!

•  How difficult is to recover d ? (Someone that can do
this can decrypt any message sent to A!)!

•  Recall that!
d = e-1 mod ((p-1)*(q-1))

•  So to find d, you need to find primes factors p and q
–  This is provable hard !

