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Goals for Today"
•  Remote Procedure Call!

•  Examples using RPC and caching!
– Distributed File Systems!
– World-Wide Web!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz."
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Remote Procedure Call"
•  Raw messaging is a bit too low-level for programming!

•  Another option: Remote Procedure Call (RPC)!
– Looks like a local procedure call on client:!
  file.read(1024); 
– Translated automatically into a procedure call on remote 

machine (server)!

•  Implementation:!
– Uses request/response message passing “under the covers”!
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RPC Details"
•  Client and server use “stubs” to glue pieces together!

– Client stub is responsible for “marshalling” arguments and 
“unmarshalling” the return values!

– Server-side stub is responsible for “unmarshalling” arguments 
and “marshalling” the return values!

•  Marshalling involves (depending on system) converting 
values to a canonical form, serializing objects, copying 
arguments passed by reference, etc.!

– Needs to account for cross-language and cross-platform 
issues !

!
•  Technique: compiler generated stubs!

–  Input: interface definition language (IDL)!
» Contains, among other things, types of arguments/return!

– Output: stub code in the appropriate source language!
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RPC Information Flow"
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RPC Binding"
•  How does client know which machine to send RPC?!

– Need to translate name of remote service into network endpoint 
(e.g., host:port)!

– Binding: the process of converting a user-visible name into a 
network endpoint!

»  This is another word for “naming” at network level!
»  Static: fixed at compile time!
» Dynamic: performed at runtime!

•  Dynamic Binding!
– Most RPC systems use dynamic binding via name service!
– Why dynamic binding?!

»  Access control: check who is permitted to access service!
»  Fail-over: If server fails, use a different one!
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Cross-Domain Communication/Location 
Transparency"•  How do address spaces communicate with one another?!

– Shared Memory with Semaphores, monitors, etc…!
– File System!
– Pipes (1-way communication)!
–  “Remote” procedure call (2-way communication)!

•  RPCʼs can be used to communicate between address spaces 
on different machines or the same machine!

– Services can be run wherever itʼs most appropriate!
– Access to local and remote services looks the same!

•  Examples of modern RPC systems:!
– CORBA (Common Object Request Broker Architecture)!
– DCOM (Distributed COM)!
– RMI (Java Remote Method Invocation)!
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Microkernel Operating Systems"
•  Example: split kernel into application-level servers using RPC!

– File system looks remote, even though on same machine!

•  Why split the OS into separate domains?!
– Fault isolation: bugs are more isolated (build a firewall)!
– Enforces modularity: allows incremental upgrades of pieces of 

software (client or server)!
– Location transparent: service can be local or remote!

»  For example in the X windowing system: Each X client can be on a 
separate machine from X server; Neither has to run on the machine 
with the frame buffer!
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Problems with RPC"
•  Handling failures!

– Different failure modes in distributed system than on a single 
machine!

– Without RPC a failure within a procedure call usually meant 
whole application would crash/die!

– With RPC a failure within a procedure call means remote 
machine crashed, but local one could continue working!

– Answer? Distributed transactions can help!

•  Performance!
– Cost of Procedure call « same-machine RPC « network RPC!
– Means programmers must be aware they are using RPC (so 

much for transparency!) !
» Caching can help, but may make failure handling even more 

complex!
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Distributed File Systems"

•  Distributed File System: !
– Transparent access to files stored on a remote disk!

•  Naming choices (always an issue):!
– Hostname:localname: Name files explicitly!

» No location or migration transparency!
– Mounting of remote file systems!

»  System manager mounts remote file system 
by giving name and local mount point!

»  Transparent to user: all reads and writes  
look like local reads and writes to user 
e.g. /users/sue/foo→/sue/foo on server!

– A single, global name space: every file  
in the world has unique name!

»  Location Transparency: servers  
can change and files can move  
without involving user!
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Simple Distributed File System"

•  EVERY read and write gets forwarded to server!

•  Advantage: Server provides completely consistent view of 
file system to multiple clients!

•  Problems?  Performance!!
– Going over network is slower than going to local memory!
– Server can be a bottleneck!
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Server" cache"
F1:V1"F1:V2"

Use Caching to Reduce Network Load"
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•  Advantage: if open/read/write/close can be done locally, donʼt 
need to do any network traffic…fast!!

•  Problems: !
– Failure:!

» Client caches have data not committed at server!
– Cache consistency!!

» Client caches not consistent with server/each other!
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write(f1)"
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read(f1)→V1"

→OK"
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read(f1)→V2"

Crash!!
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Failures"

•  What if server crashes? Can client wait until server comes 
back up and continue as before?!

– Any data in server memory but not on disk can be lost!
– Shared state across RPC: What if server crashes after seek? 

Then, when client does “read”, it will fail!
– Message retries: suppose server crashes after it does UNIX “rm 

foo”, but before acknowledgment?!
» Message system will retry: send it again!
» How does it know not to delete it again? (could solve with two-

phase commit protocol, but NFS takes a more ad hoc approach)!
•  Stateless protocol: A protocol in which all information required 

to process a request is passed with request!
– Server keeps no state about client, except as hints to help 

improve performance (e.g. a cache)!
– Thus, if server crashes and restarted, requests can continue 

where left off (in many cases)!
•  What if client crashes?!

– Might lose modified data in client cache!

Crash!"
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Network File System (NFS)"
•  Three Layers for NFS system!

– UNIX file-system interface: open, read, write, close calls + file 
descriptors!

– VFS layer: distinguishes local from remote files!
» Calls the NFS protocol procedures for remote requests!

– NFS service layer: bottom layer of the architecture!
»  Implements the NFS protocol!

•  NFS Protocol: RPC for file operations on server!
– Reading/searching a directory !
– Manipulating links and directories !
– Accessing file attributes/reading and writing files!

•  Write-through caching: Modified data committed to serverʼs 
disk before results are returned to the client !

– Lose some of the advantages of caching!
– Time to perform write() can be long!
– Need some mechanism for readers to eventually notice 

changes! (more on this later)!
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NFS Continued"
•  NFS servers are stateless; each request provides all 

arguments require for execution!
– E.g. reads include information for entire operation, such as 
ReadAt(inumber,position), not Read(openfile) 

– No need to perform network open() or close() on file – each 
operation stands on its own!

•  Idempotent: Performing requests multiple times has same 
effect as performing it exactly once!

– Example: Server crashes between disk I/O and message send, 
client resend read, server does operation again!

– Example: Read and write file blocks: just re-read or re-write file 
block – no side effects!

– Example: What about “remove”?  NFS does operation twice and 
second time returns an advisory error !

•  Failure Model: Transparent to client system!
–  Is this a good idea?  What if you are in the middle of reading a 

file and server crashes? !
– Options (NFS Provides both):!

» Hang until server comes back up (next week?)!
» Return an error. (Of course, most applications donʼt know they are 

talking over network)!
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Schematic View of NFS 
Architecture "
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•  NFS protocol: weak consistency!
– Client polls server periodically to check for changes!

»  Polls server if data hasnʼt been checked in last 3-30 seconds 
(exact timeout it tunable parameter).!

»  Thus, when file is changed on one client, server is notified, but 
other clients use old version of file until timeout.!

– What if multiple clients write to same file? !
»  In NFS, can get either version (or parts of both)!
» Completely arbitrary!!
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Client"

cache"
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F1:V1"

F1:V2"
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No: (F1:V2)"
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NFS Pros and Cons"
•  NFS Pros:!

– Simple, Highly portable!
•  NFS Cons:!

– Sometimes inconsistent!!
– Doesnʼt scale to large # clients!

» Must keep checking to see if caches out of date!
»  Server becomes bottleneck due to polling traffic!
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Administrivia"
•  Updated Project 4 spec and skeleton will be posted by 

Friday!

•  Final Exam Review!
– Monday 5/6, 2-5pm in 100 Lewis Hall!

•  Final Exam!
– Friday 5/17, 8-11am in 1 Pimentel!
– All material from the course!

» With slightly more focus on second half, but you are still 
responsible for all the material!

– Two sheets of notes, both sides!
– Dumb calculator allowed!
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•  Q1: True _  False _  RPC requires special networking 
support and functionality!

•  Q2: True _  False _  The client and server for RPC must use 
the same hardware architecture (e.g., little endian) !

•  Q3: True _  False _  Local procedure call << same-machine 
RPC << remote machine RPC!

•  Q4: True _  False _  NFS provides weak client-server data 
consistency!

!
!
!

Quiz 23.1: RPC and NFS"
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5min Break"
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•  Q1: True _  False _  RPC requires special networking 
support and functionality!

•  Q2: True _  False _  The client and server for RPC must use 
the same hardware architecture (e.g., little endian) !

•  Q3: True _  False _  Local procedure call << same-machine 
RPC << remote machine RPC!

•  Q4: True _  False _  NFS provides weak client-server data 
consistency!

Quiz 23.1: RPC and NFS"

X!

X!

X!

X!
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Andrew File System"
•  Andrew File System (AFS, late 80ʼs) → DCE DFS (commercial 

product)!
•  Callbacks: Server records who has copy of file!

– On changes, server immediately tells all with old copy!
– No polling bandwidth (continuous checking) needed!

•  Write through on close!
– Changes not propagated to server until close()!
– Session semantics: updates visible to other clients only after the 

file is closed!
»  As a result, do not get partial writes: all or nothing!!
»  Although, for processes on local machine, updates visible 

immediately to other programs who have file open!
•  In AFS, everyone who has file open sees old version!

– Donʼt get newer versions until reopen file!
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Andrew File System (conʼt)"
•  Data cached on local disk of client as well as memory!

– On open with a cache miss (file not on local disk):!
» Get file from server, set up callback with server !

– On write followed by close:!
»  Send copy to server; tells all clients with copies to fetch new 

version from server on next open (using callbacks)!
•  What if server crashes? Lose all callback state!!

– Reconstruct callback information from client: go ask everyone 
“who has which files cached?”!

•  AFS Pro: Relative to NFS, less server load:!
– Disk as cache ⇒ more files can be cached locally!
– Callbacks ⇒ server not involved if file is read-only!

•  For both AFS and NFS: central server is bottleneck!!
– Performance: all writes→server, cache misses→server!
– Availability: Server is single point of failure!
– Cost: server machineʼs high cost relative to workstation!
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World Wide Web"
•  Key idea: graphical front-end to RPC protocol!

•  What happens when a web server fails?!
– System breaks!!
– Solution: Transport or network-layer redirection !

»  Invisible to applications!
» Can also help with scalability (load balancers)!
» Must handle “sessions” (e.g., banking/e-commerce)!

•  Initial version: no caching!
– Didnʼt scale well – easy to overload servers!
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WWW Caching"
•  Use client-side caching to reduce number of 

interactions between clients and servers and/or reduce 
the size of the interactions:!

– Time-to-Live (TTL) fields – HTTP “Expires” header from 
server!

– Client polling – HTTP “If-Modified-Since” request 
headers from clients!

– Server refresh – HTML “META Refresh tag” causes 
periodic client poll!

•  What is the polling frequency for clients and servers? !
– Could be adaptive based upon a pageʼs age and its rate 

of change!
•  Server load is still significant!!
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WWW Proxy Caches"
•  Place caches in the network to reduce server load!

– But, increases latency in lightly loaded case!
– Caches near servers called “reverse proxy caches” !

» Offloads busy server machines!
– Caches at the “edges” of the network called “content 

distribution networks”!
» Offloads servers and reduce client latency!

•  Challenges:!
– Caching static traffic easy, but only ~40% of traffic!
– Dynamic and multimedia is harder!

» Multimedia is a big win: Megabytes versus Kilobytes!
– Same cache consistency problems as before!

•  Caching is changing the Internet architecture!
– Places functionality at higher levels of comm. protocols!
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Conclusion"
•  Remote Procedure Call (RPC): Call procedure on 

remote machine!
– Provides same interface as procedure!
– Automatic packing and unpacking of arguments without 

user programming (in stub)!

•  Distributed File System: !
– Transparent access to files stored on a remote disk!

» NFS uses caching for performance!

•  Cache Consistency: Keeping contents of client 
caches consistent with one another!

– If multiple clients, some reading and some writing, how do 
stale cached copies get updated?!

– NFS: check periodically for changes!

•  WWW: Caching to load balance, reduce latency/costs!
– Server and edge caches!


