
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 23  
 

Remote Procedure Call"

April 24, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

23.2!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  Remote Procedure Call!

•  Examples using RPC and caching!
– Distributed File Systems!
– World-Wide Web!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz."

23.3!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Remote Procedure Call"
•  Raw messaging is a bit too low-level for programming!

•  Another option: Remote Procedure Call (RPC)!
– Looks like a local procedure call on client:!
 file.read(1024);
– Translated automatically into a procedure call on remote

machine (server)!

•  Implementation:!
– Uses request/response message passing “under the covers”!

23.4!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

RPC Details"
•  Client and server use “stubs” to glue pieces together!

– Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values!

– Server-side stub is responsible for “unmarshalling” arguments
and “marshalling” the return values!

•  Marshalling involves (depending on system) converting
values to a canonical form, serializing objects, copying
arguments passed by reference, etc.!

– Needs to account for cross-language and cross-platform
issues !

!
•  Technique: compiler generated stubs!

–  Input: interface definition language (IDL)!
» Contains, among other things, types of arguments/return!

– Output: stub code in the appropriate source language!

Page 2

23.5!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

RPC Information Flow"

Client"
(caller)"

Server"
(callee)"

Packet"
Handler"

Packet"
Handler"

call"

return"

send"

receive"

send"

receive"

return"

call"

N
etw

ork"N
et

w
or

k"

Client"
Stub"

bundle"
args"

bundle"
ret vals"

unbundle"
ret vals"

Server"
Stub"

unbundle"
args"

Machine A"

Machine B"

23.6!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

RPC Binding"
•  How does client know which machine to send RPC?!

– Need to translate name of remote service into network endpoint
(e.g., host:port)!

– Binding: the process of converting a user-visible name into a
network endpoint!

»  This is another word for “naming” at network level!
»  Static: fixed at compile time!
» Dynamic: performed at runtime!

•  Dynamic Binding!
– Most RPC systems use dynamic binding via name service!
– Why dynamic binding?!

»  Access control: check who is permitted to access service!
»  Fail-over: If server fails, use a different one!

23.7!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Cross-Domain Communication/Location
Transparency"•  How do address spaces communicate with one another?!

– Shared Memory with Semaphores, monitors, etc…!
– File System!
– Pipes (1-way communication)!
–  “Remote” procedure call (2-way communication)!

•  RPCʼs can be used to communicate between address spaces
on different machines or the same machine!

– Services can be run wherever itʼs most appropriate!
– Access to local and remote services looks the same!

•  Examples of modern RPC systems:!
– CORBA (Common Object Request Broker Architecture)!
– DCOM (Distributed COM)!
– RMI (Java Remote Method Invocation)!

23.8!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Microkernel Operating Systems"
•  Example: split kernel into application-level servers using RPC!

– File system looks remote, even though on same machine!

•  Why split the OS into separate domains?!
– Fault isolation: bugs are more isolated (build a firewall)!
– Enforces modularity: allows incremental upgrades of pieces of

software (client or server)!
– Location transparent: service can be local or remote!

»  For example in the X windowing system: Each X client can be on a
separate machine from X server; Neither has to run on the machine
with the frame buffer!

App App

file system Windowing
Networking VM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Page 3

23.9!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Problems with RPC"
•  Handling failures!

– Different failure modes in distributed system than on a single
machine!

– Without RPC a failure within a procedure call usually meant
whole application would crash/die!

– With RPC a failure within a procedure call means remote
machine crashed, but local one could continue working!

– Answer? Distributed transactions can help!

•  Performance!
– Cost of Procedure call « same-machine RPC « network RPC!
– Means programmers must be aware they are using RPC (so

much for transparency!) !
» Caching can help, but may make failure handling even more

complex!

23.10!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Distributed File Systems"

•  Distributed File System: !
– Transparent access to files stored on a remote disk!

•  Naming choices (always an issue):!
– Hostname:localname: Name files explicitly!

» No location or migration transparency!
– Mounting of remote file systems!

»  System manager mounts remote file system 
by giving name and local mount point!

»  Transparent to user: all reads and writes  
look like local reads and writes to user 
e.g. /users/sue/foo→/sue/foo on server!

– A single, global name space: every file  
in the world has unique name!

»  Location Transparency: servers  
can change and files can move  
without involving user!

Network"
Read File"

Data"
Client" Server"

mount"
coeus:/sue"

mount"
adj:/prog"

mount"
adj:/jane"

23.11!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Simple Distributed File System"

•  EVERY read and write gets forwarded to server!

•  Advantage: Server provides completely consistent view of
file system to multiple clients!

•  Problems? Performance!!
– Going over network is slower than going to local memory!
– Server can be a bottleneck!

Client"

Server"

Read (RPC)"
Return (Data)"

Client"

Write (RPC)"

ACK"
cache"

23.12!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Server" cache"
F1:V1"F1:V2"

Use Caching to Reduce Network Load"
Read (RPC)"

Return (Data)"

Write (RPC)"

ACK"

Client"

cache"

Client"

cache"

•  Advantage: if open/read/write/close can be done locally, donʼt
need to do any network traffic…fast!!

•  Problems: !
– Failure:!

» Client caches have data not committed at server!
– Cache consistency!!

» Client caches not consistent with server/each other!

F1:V1"

F1:V2"

read(f1)"

write(f1)"

→V1"
read(f1)→V1"
read(f1)→V1"

→OK"

read(f1)→V1"

read(f1)→V2"

Crash!!

Page 4

23.13!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Failures"

•  What if server crashes? Can client wait until server comes
back up and continue as before?!

– Any data in server memory but not on disk can be lost!
– Shared state across RPC: What if server crashes after seek?

Then, when client does “read”, it will fail!
– Message retries: suppose server crashes after it does UNIX “rm

foo”, but before acknowledgment?!
» Message system will retry: send it again!
» How does it know not to delete it again? (could solve with two-

phase commit protocol, but NFS takes a more ad hoc approach)!
•  Stateless protocol: A protocol in which all information required

to process a request is passed with request!
– Server keeps no state about client, except as hints to help

improve performance (e.g. a cache)!
– Thus, if server crashes and restarted, requests can continue

where left off (in many cases)!
•  What if client crashes?!

– Might lose modified data in client cache!

Crash!"

23.14!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Network File System (NFS)"
•  Three Layers for NFS system!

– UNIX file-system interface: open, read, write, close calls + file
descriptors!

– VFS layer: distinguishes local from remote files!
» Calls the NFS protocol procedures for remote requests!

– NFS service layer: bottom layer of the architecture!
»  Implements the NFS protocol!

•  NFS Protocol: RPC for file operations on server!
– Reading/searching a directory !
– Manipulating links and directories !
– Accessing file attributes/reading and writing files!

•  Write-through caching: Modified data committed to serverʼs
disk before results are returned to the client !

– Lose some of the advantages of caching!
– Time to perform write() can be long!
– Need some mechanism for readers to eventually notice

changes! (more on this later)!

23.15!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

NFS Continued"
•  NFS servers are stateless; each request provides all

arguments require for execution!
– E.g. reads include information for entire operation, such as
ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file – each
operation stands on its own!

•  Idempotent: Performing requests multiple times has same
effect as performing it exactly once!

– Example: Server crashes between disk I/O and message send,
client resend read, server does operation again!

– Example: Read and write file blocks: just re-read or re-write file
block – no side effects!

– Example: What about “remove”? NFS does operation twice and
second time returns an advisory error !

•  Failure Model: Transparent to client system!
–  Is this a good idea? What if you are in the middle of reading a

file and server crashes? !
– Options (NFS Provides both):!

» Hang until server comes back up (next week?)!
» Return an error. (Of course, most applications donʼt know they are

talking over network)!
23.16!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Schematic View of NFS
Architecture "

Page 5

23.17!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  NFS protocol: weak consistency!
– Client polls server periodically to check for changes!

»  Polls server if data hasnʼt been checked in last 3-30 seconds
(exact timeout it tunable parameter).!

»  Thus, when file is changed on one client, server is notified, but
other clients use old version of file until timeout.!

– What if multiple clients write to same file? !
»  In NFS, can get either version (or parts of both)!
» Completely arbitrary!!

cache"
F1:V2"

Server"
Write (RPC)"

ACK"

Client"

cache"

Client"

cache"

F1:V1"

F1:V2"

F1:V2"

NFS Cache consistency"

F1 still ok?"
No: (F1:V2)"

23.18!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

NFS Pros and Cons"
•  NFS Pros:!

– Simple, Highly portable!
•  NFS Cons:!

– Sometimes inconsistent!!
– Doesnʼt scale to large # clients!

» Must keep checking to see if caches out of date!
»  Server becomes bottleneck due to polling traffic!

23.19!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia"
•  Updated Project 4 spec and skeleton will be posted by

Friday!

•  Final Exam Review!
– Monday 5/6, 2-5pm in 100 Lewis Hall!

•  Final Exam!
– Friday 5/17, 8-11am in 1 Pimentel!
– All material from the course!

» With slightly more focus on second half, but you are still
responsible for all the material!

– Two sheets of notes, both sides!
– Dumb calculator allowed!

23.20!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ RPC requires special networking
support and functionality!

•  Q2: True _ False _ The client and server for RPC must use
the same hardware architecture (e.g., little endian) !

•  Q3: True _ False _ Local procedure call << same-machine
RPC << remote machine RPC!

•  Q4: True _ False _ NFS provides weak client-server data
consistency!

!
!
!

Quiz 23.1: RPC and NFS"

Page 6

23.21!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

23.22!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Q1: True _ False _ RPC requires special networking
support and functionality!

•  Q2: True _ False _ The client and server for RPC must use
the same hardware architecture (e.g., little endian) !

•  Q3: True _ False _ Local procedure call << same-machine
RPC << remote machine RPC!

•  Q4: True _ False _ NFS provides weak client-server data
consistency!

Quiz 23.1: RPC and NFS"

X!

X!

X!

X!

23.23!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Andrew File System"
•  Andrew File System (AFS, late 80ʼs) → DCE DFS (commercial

product)!
•  Callbacks: Server records who has copy of file!

– On changes, server immediately tells all with old copy!
– No polling bandwidth (continuous checking) needed!

•  Write through on close!
– Changes not propagated to server until close()!
– Session semantics: updates visible to other clients only after the

file is closed!
»  As a result, do not get partial writes: all or nothing!!
»  Although, for processes on local machine, updates visible

immediately to other programs who have file open!
•  In AFS, everyone who has file open sees old version!

– Donʼt get newer versions until reopen file!

23.24!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Andrew File System (conʼt)"
•  Data cached on local disk of client as well as memory!

– On open with a cache miss (file not on local disk):!
» Get file from server, set up callback with server !

– On write followed by close:!
»  Send copy to server; tells all clients with copies to fetch new

version from server on next open (using callbacks)!
•  What if server crashes? Lose all callback state!!

– Reconstruct callback information from client: go ask everyone
“who has which files cached?”!

•  AFS Pro: Relative to NFS, less server load:!
– Disk as cache ⇒ more files can be cached locally!
– Callbacks ⇒ server not involved if file is read-only!

•  For both AFS and NFS: central server is bottleneck!!
– Performance: all writes→server, cache misses→server!
– Availability: Server is single point of failure!
– Cost: server machineʼs high cost relative to workstation!

Page 7

23.25!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

World Wide Web"
•  Key idea: graphical front-end to RPC protocol!

•  What happens when a web server fails?!
– System breaks!!
– Solution: Transport or network-layer redirection !

»  Invisible to applications!
» Can also help with scalability (load balancers)!
» Must handle “sessions” (e.g., banking/e-commerce)!

•  Initial version: no caching!
– Didnʼt scale well – easy to overload servers!

23.26!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

WWW Caching"
•  Use client-side caching to reduce number of

interactions between clients and servers and/or reduce
the size of the interactions:!

– Time-to-Live (TTL) fields – HTTP “Expires” header from
server!

– Client polling – HTTP “If-Modified-Since” request
headers from clients!

– Server refresh – HTML “META Refresh tag” causes
periodic client poll!

•  What is the polling frequency for clients and servers? !
– Could be adaptive based upon a pageʼs age and its rate

of change!
•  Server load is still significant!!

23.27!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

WWW Proxy Caches"
•  Place caches in the network to reduce server load!

– But, increases latency in lightly loaded case!
– Caches near servers called “reverse proxy caches” !

» Offloads busy server machines!
– Caches at the “edges” of the network called “content

distribution networks”!
» Offloads servers and reduce client latency!

•  Challenges:!
– Caching static traffic easy, but only ~40% of traffic!
– Dynamic and multimedia is harder!

» Multimedia is a big win: Megabytes versus Kilobytes!
– Same cache consistency problems as before!

•  Caching is changing the Internet architecture!
– Places functionality at higher levels of comm. protocols!

23.28!4/24/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Conclusion"
•  Remote Procedure Call (RPC): Call procedure on

remote machine!
– Provides same interface as procedure!
– Automatic packing and unpacking of arguments without

user programming (in stub)!

•  Distributed File System: !
– Transparent access to files stored on a remote disk!

» NFS uses caching for performance!

•  Cache Consistency: Keeping contents of client
caches consistent with one another!

– If multiple clients, some reading and some writing, how do
stale cached copies get updated?!

– NFS: check periodically for changes!

•  WWW: Caching to load balance, reduce latency/costs!
– Server and edge caches!

