
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 24  
 

Capstone: Cloud Computing"

April 29, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

24.2!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Goals for Today"
•  Distributed systems!

•  Cloud Computing programming paradigms!

•  Cloud Computing OS!

Note: Some slides and/or pictures in the following are"
adapted from slides Ali Ghodsi."

24.3!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Background of Cloud Computing"
•  1990: Heyday of parallel computing, multi-processors!

– 52% growth in performance per year!!

•  2002: The thermal wall!
– Speed (frequency) peaks, 

but transistors keep  
shrinking!

•  The Multicore revolution!
– 15-20 years later than  

predicted, we have hit  
the performance wall!

24.4!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

At the same time…"
•  Amount of stored data is exploding…!

4

Page 2

24.5!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Data Deluge"
•  Billions of users connected through the net!

– WWW, FB, twitter, cell phones, …!
– 80% of the data on FB was produced last year!

•  Storage getting cheaper!
– Store more data!!

24.6!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Solving the Impedance Mismatch"

•  Computers not getting faster, and
we are drowning in data!

– How to resolve the dilemma?!

•  Solution adopted by web-scale
companies!

– Go massively distributed  
and parallel!

24.7!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Enter the World of Distributed Systems"
•  Distributed Systems/Computing!

– Loosely coupled set of computers, communicating through
message passing, solving a common goal!

•  Distributed computing is challenging!
– Dealing with partial failures (examples?)!
– Dealing with asynchrony (examples?)!

•  Distributed Computing versus Parallel Computing?!
– distributed computing=parallel computing + partial failures!

24.8!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Dealing with Distribution"
•  We have seen several of the tools that help with

distributed programming!
– Message Passing Interface (MPI)!
– Distributed Shared Memory (DSM)!
– Remote Procedure Calls (RPC)!

•  But, distributed programming is still very hard!
– Programming for scale, fault-tolerance, consistency, …!
!

Page 3

24.9!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

The Datacenter is the new Computer"

•  “Program” == Web search, email,
map/GIS, …!

•  “Computer” == 10,000ʼs
computers, storage, network!

•  Warehouse-sized facilities and
workloads!

•  Built from less reliable
components than traditional
datacenters!

24.10!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Datacenter/Cloud Computing OS"
•  If the datacenter/cloud is the new computer!

– What is its Operating System?!
– Note that we are not talking about a host OS!

24.11!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Classical Operating Systems"
•  Data sharing!

–  Inter-Process Communication, RPC, files, pipes, …!

•  Programming Abstractions!
– Libraries (libc), system calls, …!

•  Multiplexing of resources!
– Scheduling, virtual memory, file allocation/protection, …!

24.12!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Datacenter/Cloud Operating System"
•  Data sharing!

– Google File System, key/value stores!

•  Programming Abstractions!
– Google MapReduce, PIG, Hive, Spark!

•  Multiplexing of resources!
– Apache projects: Mesos, YARN (MRv2), ZooKeeper,

BookKeeper, …!

Page 4

24.13!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Google Cloud Infrastructure"

•  Google File System (GFS), 2003!
– Distributed File System for entire
cluster	

–  Single namespace	

•  Google MapReduce (MR), 2004!
– Runs queries/jobs on data	
– Manages work distribution & fault-‐‑
tolerance	

– Colocated with file system	

•  Apache open source versions Hadoop DFS and Hadoop MR !
24.14!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

GFS/HDFS Insights "

•  Petabyte storage!
– Files split into large blocks (128 MB) and replicated across

several nodes!
– Big blocks allow high throughput sequential reads/writes!

•  Data striped on hundreds/thousands of servers!
– Scan 100 TB on 1 node @ 50 MB/s = 24 days!
– Scan on 1000-node cluster = 35 minutes!

24.15!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

GFS/HDFS Insights (2) "

•  Failures will be the norm!
– Mean time between failures for 1 node = 3 years	
– Mean time between failures for 1000 nodes = 1 day	

!
•  Use commodity hardware!

– Failures are the norm anyway, buy cheaper hardware!

•  No complicated consistency models!
– Single writer, append-only data!

24.16!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

MapReduce Insights"
•  Restricted key-value model!

– Same fine-grained operation (Map & Reduce) repeated
on big data!

– Operations must be deterministic"
– Operations must be idempotent/no side effects"
– Only communication is through the shuffle!
– Operation (Map & Reduce) output saved (on disk)!

Page 5

24.17!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

What is MapReduce Used For?"

•  At Google:!
–  Index building for Google Search!
– Article clustering for Google News!
– Statistical machine translation!

•  At Yahoo!:!
–  Index building for Yahoo! Search!
– Spam detection for Yahoo! Mail!

•  At Facebook:!
– Data mining!
– Ad optimization!
– Spam detection!

24.18!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

MapReduce Pros"
•  Distribution is completely transparent!

– Not a single line of distributed programming (ease, correctness)!

•  Automatic fault-tolerance"
– Determinism enables running failed tasks somewhere else again!
– Saved intermediate data enables just re-running failed reducers!

•  Automatic scaling"
– As operations as side-effect free, they can be distributed to any

number of machines dynamically!

•  Automatic load-balancing"
– Move tasks and speculatively execute duplicate copies of slow

tasks (stragglers)!

24.19!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

MapReduce Cons"
•  Restricted programming model!

– Not always natural to express problems in this model!
– Low-level coding necessary!
– Little support for iterative jobs (lots of disk access)!
– High-latency (batch processing)!

•  Addressed by follow-up research!
– Pig and Hive for high-level coding!
– Spark for iterative and low-latency jobs!

24.20!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Pig"
•  High-level language:!

– Expresses sequences of MapReduce jobs!
– Provides relational (SQL) operators 

(JOIN, GROUP BY, etc)!
– Easy to plug in Java functions!

•  Started at Yahoo! Research!
– Runs about 50% of Yahoo!ʼs jobs!

Page 6

24.21!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Example Problem"

Given user data in one file,
and website data in another,
find the top 5 most visited
pages by users aged 18-25!

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5
Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

24.22!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

In MapReduce"

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

24.23!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

In Pig Latin"

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Users	 	 	 	 =	 load	 ‘users’ as	 (name,	 age);	
Filtered	 =	 filter	 Users	 by	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 age	 >=	 18	 and	 age	 <=	 25;	 	
Pages	 	 	 	 =	 load	 ‘pages’ as	 (user,	 url);	
Joined	 	 	 =	 join	 Filtered	 by	 name,	 Pages	 by	 user;	
Grouped	 	 =	 group	 Joined	 by	 url;	
Summed	 	 	 =	 foreach	 Grouped	 generate	 group,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 count(Joined)	 as	 clicks;	
Sorted	 	 	 =	 order	 Summed	 by	 clicks	 desc;	
Top5	 	 	 	 	 =	 limit	 Sorted	 5;	
	
store	 Top5	 into	 ‘top5sites’;	

24.24!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Translation to MapReduce"

Notice how naturally the components of the job translate into Pig Latin."

Users	 =	 load	 …	
Filtered	 =	 filter	 …	 	
Pages	 =	 load	 …	
Joined	 =	 join	 …	
Grouped	 =	 group	 …	
Summed	 =	 …	 count()…	
Sorted	 =	 order	 …	
Top5	 =	 limit	 …	

Example from http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Job 1

Job 2

Job 3

Page 7

24.25!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Hive"
•  Relational database built on Hadoop!

– Maintains table schemas!
– SQL-like query language (which can also call Hadoop

Streaming scripts)!
– Supports table partitioning, 

complex data types, sampling, 
some query optimization!

•  Developed at Facebook!
– Used for many Facebook jobs!

24.26!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Spark Motivation"
Complex jobs, interactive queries and online processing
all need one thing that MR lacks:!

Efficient primitives for data sharing!

St
ag

e
1"

St
ag

e
2"

St
ag

e
3"

Iterative job"

Query 1"

Query 2"

Query 3"

Interactive mining"

Jo
b

1"

Jo
b

2"

…"

Stream processing"

24.27!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Spark Motivation"
Complex jobs, interactive queries and online processing
all need one thing that MR lacks:!

Efficient primitives for data sharing!

St
ag

e
1"

St
ag

e
2"

St
ag

e
3"

Iterative job"

Query 1"

Query 2"

Query 3"

Interactive mining"

Jo
b

1"

Jo
b

2"

…"

Stream processing"

Problem: in MR, the only way to share data
across jobs is using stable storage  

(e.g. file system) è slow!"

24.28!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Examples"

iter. 1" iter. 2" . . ."

Input"

HDFS 
read"

HDFS 
write"

HDFS 
read"

HDFS 
write"

Input"

query 1"

query 2"

query 3"

result 1"

result 2"

result 3"

. . ."

HDFS 
read"

Opportunity: DRAM is getting cheaper è
use main memory for intermediate  

results instead of disks"

Page 8

24.29!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

iter. 1" iter. 2" . . ."

Input"

Goal: In-Memory Data Sharing"

Distributed 
memory"

Input"

query 1"

query 2"

query 3"

. . ."

one-time  
processing"

10-100× faster than network and disk" 24.30!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Solution: Resilient Distributed
Datasets (RDDs)"

•  Partitioned collections of records that can be stored in
memory across the cluster!

•  Manipulated through a diverse set of transformations
(map, filter, join, etc)!

•  Fault recovery without costly replication!
– Remember the series of transformations that built an

RDD (its lineage) to recompute lost data!

•  http://www.spark-project.org/ !

24.31!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Administrivia"
•  Project 4 !

– Design Doc due tonight (4/29) by 11:59pm, reviews Wed-Fri!
– Code due next week Thu 4/9 by 11:59pm!

•  Final Exam Review!
– Monday 5/6, 2-5pm in 100 Lewis Hall!

•  My RRR week office hours!
– Monday 5/6, 1-2pm and Wednesday 5/8, 2-3pm!

•  CyberBunker.com 300Gb/s DDoS attack against Spamhaus!
– 35 yr old Dutchman “S.K.” arrested in Spain on 4/26!
– Was using van with “various antennas” as mobile office!

24.32!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

5min Break"

Page 9

24.33!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

•  Rapid innovation in datacenter computing frameworks!
•  No single framework optimal for all applications"
•  Want to run multiple frameworks in a single datacenter!

– …to maximize utilization!
– …to share data between frameworks!

Pig

Datacenter Scheduling Problem "

Dryad

Pregel

Percolator

CIEL"

24.34!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Hadoop

Pregel

MPI
Shared	 cluster	

Today:	 static	 partitioning	 Dynamic	 sharing	

Where We Want to Go"

24.35!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Solution: Apache Mesos"

Mesos	

Node	 Node	 Node	 Node	

Hadoop	 Pregel	
…	

Node	 Node	

Hadoop	

Node	 Node	

Pregel	
…	

•  Mesos is a common resource sharing layer over which
diverse frameworks can run!

•  Run multiple instances of the same framework!
–  Isolate production and experimental jobs!
– Run multiple versions of the framework concurrently!

•  Build specialized frameworks targeting particular
problem domains!

– Better performance than general-purpose abstractions!
24.36!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Mesos Goals"

•  High utilization of resources!
•  Support diverse frameworks (current & future)!
•  Scalability to 10,000ʼs of nodes!
•  Reliability in face of failures!

http://incubator.apache.org/mesos/ !

Resulting design: Small microkernel-like
core that pushes scheduling  

logic to frameworks"

Page 10

24.37!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Mesos Design Elements"
• Fine-grained sharing:!

– Allocation at the level of tasks within a job!
–  Improves utilization, latency, and data locality!

• Resource offers:!
– Simple, scalable application-controlled scheduling

mechanism!

24.38!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Element 1: Fine-Grained
Sharing"

Framework 1"

Framework 2"

Framework 3"

Coarse-Grained Sharing (HPC):! Fine-Grained Sharing (Mesos):!

+ Improved utilization, responsiveness, data locality "
Storage System (e.g. HDFS)" Storage System (e.g. HDFS)"

Fw. 1"

Fw. 1"Fw. 3"

Fw. 3" Fw. 2"Fw. 2"

Fw. 2"

Fw. 1"

Fw. 3"

Fw. 2"Fw. 3"

Fw. 1"

Fw. 1" Fw. 2"Fw. 2"

Fw. 1"

Fw. 3" Fw. 3"

Fw. 3"

Fw. 2"

Fw. 2"

24.39!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Element 2: Resource Offers"
• Option: Global scheduler!

– Frameworks express needs in a specification language,
global scheduler matches them to resources!

+ Can make optimal decisions!
– Complex: language must support all framework
needs!
– Difficult to scale and to make robust!
– Future frameworks may have unanticipated needs!

24.40!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Element 2: Resource Offers"
•  Mesos: Resource offers!

– Offer available resources to frameworks, let them pick which
resources to use and which tasks to launch 
"

+  Keeps Mesos simple, lets it support future frameworks!
-  Decentralized decisions might not be optimal!

!

Page 11

24.41!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Mesos Architecture"

MPI job"

MPI
scheduler"

Hadoop job"

Hadoop
scheduler"

Allocation
module!

Mesos"
master"

Mesos slave"
MPI

executor!

Mesos slave"
MPI

executor!

task"task"

Resource
offer"

Pick framework to
offer resources to"

24.42!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Mesos Architecture"

MPI job"

MPI
scheduler"

Hadoop job"

Hadoop
scheduler"

Allocation
module!

Mesos"
master"

Mesos slave"
MPI

executor!

Mesos slave"
MPI

executor!

task"task"

Resource
offer"

Pick framework to
offer resources to"

 Resource offer = 
 list of (node, availableResources)!
!
 E.g. { (node1, <2 CPUs, 4 GB>),!
 (node2, <3 CPUs, 2 GB>) }!

24.43!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Mesos Architecture"

MPI job"

MPI
scheduler"

Hadoop job"

Hadoop
scheduler"

Allocation
module!

Mesos"
master"

Mesos slave"
MPI

executor!
Hadoop
executor!

Mesos slave"
MPI

executor!

task"task"

Pick framework to
offer resources to"

task"
Framework-

specific
scheduling"

Resource
offer"

Launches and
isolates executors"

24.44!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Deployments"
1,000ʼs of nodes running over a dozen
production services !
!

Genomics researchers using Hadoop and
Spark on Mesos!
!

Spark in use by Yahoo! Research!
!

Spark for analytics!
"

Hadoop and Spark used by machine
learning researchers!

Page 12

24.45!4/29/2013! Anthony D. Joseph CS162 ©UCB Spring 2013!

Summary"
•  Cloud computing/datacenters are the new computer!

– Emerging “Datacenter/Cloud Operating System”
appearing!

•  Pieces of the DC/Cloud OS!
– High-throughput filesystems (GFS/HDFS)!
– Job frameworks (MapReduce, Spark, Pregel)!
– High-level query languages (Pig, Hive)!
– Cluster scheduling (Apache Mesos)!

