
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 25  
 

Capstone: P2P Systems, 
Review"

May 1, 2013!
Anthony D. Joseph!

http://inst.eecs.berkeley.edu/~cs162!

Lec 25.2!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

P2P Traffic"
•  2004: some Internet Service Providers (ISPs) claimed that

over 50% of their traffic was peer-to-peer traffic!

Lec 25.3!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

P2P Traffic"
•  Today, around 18-20% (North America)!
•  Big chunk now is video entertainment (e.g., Netflix, iTunes)!

Lec 25.4!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Peer-to-Peer Systems "
•  What problem does P2P try to solve?!

– Provide highly scalable, cost effective (i.e., free!)
services, e.g.,!

» Content distribution (e.g., Bittorrent)!
»  Internet telephony (e.g., Skype)!
»  Video streaming (e.g., Octoshape)!
» Computation (e.g., SETI@home)!

•  Key idea: leverage “free” resources of users (that use
the service), e.g.,!

– Network bandwidth!
– Storage!
– Computation!

Page 2

Lec 25.5!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

The Lookup Problem"

Internet"
(CyberSpace!)"

N1"
N2"

N3"

N6"

N5"
N4"

Publisher"

Key=“title”"
Value=MP3 data…" Client"

Lookup(“title”)"

?"

Lec 25.6!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

How Did it Start?"

•  A killer application: Napster (1999)!
– Free music over the Internet!

•  Use (home) user machines to store and distribute songs!

!

Internet!

Lec 25.7!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Model"
•  Each user stores a subset of files!
•  Each user has access (can download) files from all

users in the system!

A!
B!

C!

D!

E!
F!

Lec 25.8!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Main Challenge"
•  Find a “good” node storing a specified file!
•  By “good” we mean:!

– Has correct content!
– Can get content from quickly!
– …!

A!
B!

C!

D!

E!
F!

E?!

Page 3

Lec 25.9!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Other Challenges"
•  Scale: up to hundred of thousands or millions of

machines !

•  Dynamicity: machines can come and go at any time!

•  Heterogeneity: nodes with widely different resources
and connectivity !

Lec 25.10!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Napster"
•  Implements a centralized lookup/directory service that maps

files (songs) to machines currently in the system!

•  How to find a file (song)?!
– Query the lookup service à return a machine that stores the

required file!
» Ideally this is the closest/least-loaded machine!

– Download (ftp/http) the file!

•  Advantages: !
– Simplicity, easy to implement sophisticated search engines on

top of a centralized lookup service!
•  Disadvantages:!

– Robustness, scalability (?)!

Lec 25.11!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Napster: Example"
1)  A client (initiator) contacts directory service to get file “C”!
2)  Directory service returns a (possible) close by and lightly

loaded peer (m5) storing “C”!
3)  Client contacts directly m5 to get file “C” !

m3!
m4! m5! m6!

m7!
m8!

m9!

m2!

m1!

A"

B"

B"C"
C"
D"

A: m3"
B: m1, m7"
C: m5, m8"
D: m8"
…"

C?!

initiator!

m5!

C?!

C"

Directory !
service!

Lec 25.12!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

The Rise and Fall of Napster"
•  Founded by Shawn Fanning, John

Fanning, and Sean Parker!
•  Operated between June 1999 and July

2001!
– More than 26 million users (February

2001)!

•  Several high profile songs were leaked
before being released:!

– Metallicaʼs “I Disappear” demo song !
– Madonnaʼs “Music” single!

•  But, also helped made some bands
successful (e.g., Radiohead, Dispatch)!

•  (Reemerged as music store in 2008)!

(Source: http://en.wikipedia.org/wiki/
File:Napster_Unique_Users.svg)!

Page 4

Lec 25.13!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

The Aftermath"
•  “Recording Industry Association of America (RIAA)

Sues Music Startup Napster for $20 Billion” –
December 1999!

•  “Napster ordered to remove copyrighted material”
– March 2001!

•  Main legal argument: "
– Napster owns the lookup service, so it is directly

responsible for disseminating copyrighted material!

Lec 25.14!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Summary: Centralized Lookup
(Napster)"

Publisher@"

Client"
Lookup(“title”)"

N6"
N9"

N7"

DB" N8"

N3"N2"N1"

SetLoc(“title”,N4)"

Simple, but O(N) state and a single point of failure"

Key=“title”"
Value=MP3 data…"

N4"

Lec 25.15!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Gnutella (2000)"
•  What problem does it try to solve?!

– Get around the legal vulnerabilities by getting rid of the
centralized directory service!

•  Main idea: Flood the request to peers in the system
to find file!

Lec 25.16!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Gnutella (2000)"

•  How does request flooding work?!
– Send request to all neighbors!
– Neighbors recursively send request to their neighbors!
– Eventually a machine that has the file receives the request,

and it sends back the answer!

•  Advantages:!
– Totally decentralized, highly robust!

•  Disadvantages:!
– Not scalable; the entire network can be swamped with

requests (to alleviate this problem, each request has a TTL)!
»  TTL (Time to Leave): request dropped when TTL reaches 0 !

Page 5

Lec 25.17!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Gnutella: Time To Live (TTL)"

•  When the client (initiator) sends a request, it associates
a TTL with the request!

•  When a node forwards the request it decrements the
TTL!

•  When TTL reaches 0, the request is no longer forwarded!
•  Typically, Gnutella uses TTL = 7!

•  Example: TTL = 3!

TTL = 3! TTL = 2! TTL = 1! TTL = 0!

Stop forwarding !
request!

initiator!

Lec 25.18!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Gnutella: Example"
•  Assume a client (initiator) asks for file “C”!
•  Assume TTL=2!

C"

C"A"

B"

B"

D"

initiator!

Lec 25.19!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Gnutella: Example"
•  Initiator send request to its neighbor(s)…!
•  … which recursively forward the request to their neighbors!
•  At the 3rd hop request is dropped!

C"

C"A"

B"

B"

D"

initiator!

C ?"

Lec 25.20!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Gnutella: Example"
•  If node has the requested file it sends a reply back !

– along the reverse path of the request, or!
– directly to initiator !

C"

C"A"

B"

B"

D"

initiator!

C ?"

m"
m"m"m"

Page 6

Lec 25.21!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Gnutella: Example"
•  Initiator request file “C” from node “m”!

–  Initiator may pick one of several machines if receive multiple
replies!

C"

C"A"

B"

B"

D"

initiator!

C"

m"

Lec 25.22!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Two-Level Hierarchy"
•  What problem does it try to solve?!

–  Inefficient search!
– Heterogeneous nodes!
– Dynamicity!

•  Main idea: organize the p2p system in a two level
hierarchy!

– Flooding happens only at the top level!

Lec 25.23!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Two-Level Hierarchy"
•  KaZaa, and subsequent versions of Gnutella!
•  Leaf nodes are connected to a small number of ultrapeers

(supernodes)!

C"

A"

B" B"

D"

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

Leaf nodes

Ultrapeer
nodes

m1!

Lec 25.24!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Two-Level Hierarchy"
•  Each ultra-peer builds a directory for the

content stored at its peers!

C"

A"

B" B"

D"

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

B: m2, m3!
D: m4!
…!

B: m7!
D: m8!
…!

C: m10, m11!
…!

C: m13!
…!

A: m15!
C: m17!
…!

Leaf nodes

Ultrapeer
nodes

m1!

Page 7

Lec 25.25!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Gnutella: Example"
•  Query: A leaf sends query to its ultrapeers!
•  If ultrapeer has requested content in its directory, the

ultrapeer replies immediately!

C"

A"

B" B"

D"

initiator!

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

B: m2, m3!
D: m4!
…!

B: m7!
D: m8!
…!

C: m10, m11!
…!

C: m13!
…!

A: m15!
C: m17!
…!

m2"

B?"

Lec 25.26!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Gnutella: Example"
•  Query: A leaf sends query to its ultrapeers!
•  If ultrapeer doesnʼt have content in its directory, the

ultrapeer floods other ultrapeers!

C"

A"

B" B"

D"

initiator!

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

B: m2, m3!
D: m4!
…!

B: m7!
D: m8!
…!

C: m10, m11!
…!

C: m13!
…!

A: m15!
C: m17!
…!

m15"

A?"

A
?"

A?"

m
15"

Lec 25.27!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Example: Oct 2003 Crawl on Gnutella"

Ultrapeer nodes
Leaf nodes

Lec 25.28!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Summary: Flooded queries
(Gnutella)"

N4"Publisher@"

Client"

N6"

N9"

N7"

N8"

N3"

N2"N1"

Robust, but worst case O(N) messages per lookup"
 Two-level hierarchy helps, but only reduces N!

Key=“title”"
Value=MP3 data…"

Lookup(“title”)"
N5"

Page 8

Lec 25.29!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Research Community View of Peer-to-Peer"

•  Old View: !
– A bunch of flakey high-school students stealing music!

•  New View:!
– A philosophy of systems design at extreme scale!
– Probabilistic design when it is appropriate!
– New techniques aimed at unreliable components!
– A rethinking (and recasting) of distributed algorithms!
– Use of Physical, Biological, and Game-Theoretic techniques to

achieve guarantees!
Lec 25.30!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

•  Highly scalable protocol for routing to a name or node!
–  “rule-based” incremental routing towards destination ID!
–  each node has small set of outgoing routes, e.g. prefix routing!
–  log (n) neighbors per node, log (n) hops from any X to Y!

•  2001: Tapestry, CAN, Chord, Pastry; many others followed!

Structured Peer-to-Peer Overlays"

To: ABCD

ID: ABCD

ID: AEDC

ID: ABAA

ID: ABCB

Lec 25.31!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Recall: Distributed Hash Tables (DHTs)"
•  Distribute (partition) a hash table data structure across a

large number of servers!
– Also called, key-value store!

!
•  Two operations!

– put(key, data); // insert “data” identified by “key”!
– data = get(key); // get data associated to “key” !

key, value

…"

Lec 25.32!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Recall: DHTs (contʼd)"
•  Lookup service: given a key (ID), map it to node n!

n = lookup(key);!

•  Can invoke put() and get() at any node m!
! !!

!m.put(key, data) { !
!n = lookup(key); // get node “n” mapping “key”!
!n.store(key, data); // store data at node “n”!

!}!

!data = m.get(key) { !
!n = lookup(key); // get node “n” storing data associated to “key” !
!return n.retrieve(key); // get data stored at “n” associated to
“key” !

!}!

Page 9

Lec 25.33!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Chord Lookup Service"

•  Associate to each node and item a unique key in the  
uni-dimensional space 0..2m-1!

– Partition this space across N machines with IDs from 0..2m-1!
– Each key is mapped to the node with the smallest ID larger

than the key (consistent hashing)!

•  Design approach: decouple correctness from efficiency"

•  Properties !
– Routing table size (# of other nodes a node needs to know

about) is O(log(N)), where N is the number of nodes!
– Guarantees that a file is found in O(log(N)) steps!

Lec 25.34!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Consistent hashing [Karger 97]"

N32"

N90"

N105"

K80"

K20"

K5"

Circular 160-bit"
ID space"

Key 5"
Node 105"

A key is stored at its successor: node with next higher ID"

Lec 25.35!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

“N90 has K80”"

Basic lookup"

N32"

N90"

N105"

N60"

N10"
N120"

K80"

“Where is key 80?”"

Lec 25.36!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Simple lookup algorithm"

Lookup(my-id, key-id)
 n = my successor

 if my-id < n < key-id

 call Lookup(id) on node n // next hop
 else

 return my successor // done

•  Correctness depends only on successors !!

Page 10

Lec 25.37!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

“Finger Table” Allows log(N)-time Lookups"

N80"

½"¼"

1/8"

1/16"
1/32"
1/64"
1/128"

Lec 25.38!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Finger i Points to Successor of n+2i

N80"

½"¼"

1/8"

1/16"
1/32"
1/64"
1/128"

112
N120"

Lec 25.39!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Lookup with Fingers"
Lookup(my-id, key-id)
 look in local finger table for

 highest node n s.t. my-id < n < key-id

 if n exists

 call Lookup(id) on node n // next hop
 else

 return my successor // done

Lec 25.40!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Lookups take O(log(N)) hops"

N32"

N10"

N5"

N20"

N110"

N99"

N80"

N60"

Lookup(K19)"

K19

Page 11

Lec 25.41!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Announcements"
•  Project 4 Code due next week Thu 4/9 by 11:59pm!

– Final design doc and group evals due Fri 4/10 by 11:59pm!

•  My RRR week office hours!
– Monday 5/6, 1-2pm and Wednesday 5/8, 2-3pm in 449 Soda!

•  Final Exam: Friday 5/17, 8-11am in 1 Pimentel!
– Review: Monday 5/6, 2-5pm in 100 Lewis Hall!
– All material from the course: lectures, sections, projects,

hand outs!
» With more focus on second half (~30%/~70%), but you are still

responsible for all the material!
– Two sheets of notes, both sides!
– Dumb calculator allowed!

Lec 25.42!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

5min Break"

Lec 25.43!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Joining: Linked List Insert of Node N36"

N36"

N40"

N25"

1. Lookup(36)"
K30
K38

Lec 25.44!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Join (2)"

N36"

N40"

N25"

2. N36 sets its own"
successor pointer"

K30
K38

Page 12

Lec 25.45!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Join (3)"

N36"

N40"

N25"

3. Copy keys 26..36"
from N40 to N36"

K30"
K38"

K30"

Lec 25.46!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Join (4)"

N36"

N40"

N25"

4. Set N25ʼs successor"
pointer"

Update finger pointers in the background"
Correct successors produce correct lookups"

K38"

K30"

Lec 25.47!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Challenge: Failures Might Cause  
 Incorrect Lookup"

N120"

N113"

N102"

N80"

N85"

N80 doesnʼt know correct successor, so incorrect lookup"

N10"

Lookup(90)"

Lec 25.48!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Solution: successor lists"

•  Each node knows r immediate successors!
– After failure, will know first live successor!
– Correct successors guarantee correct lookups with

some probability!

•  Many systems use a “leaf set”!
– The set of nodes around the “root” node that can handle

all of the data/queries that the root nodes might handle!

•  When node fails:!
– Leaf set can handle queries for dead node!
– Leaf set queried to recreate missing data!
– Leaf set used to reconstruct new leaf set!

Page 13

Lec 25.49!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Lookup with Leaf Set"

0…"

10…"

110…"

111…"

Lookup ID"

Source"

Response"

•  Assign IDs to nodes!
– Map hash values to

node with closest ID!
•  Leaf set is successors

and predecessors!
– All thatʼs needed for

correctness!
•  Routing table matches

successively longer
prefixes!

– Allows efficient lookups!

Lec 25.50!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

AT&T"
Qwest"

BBN"

Alter"

GTE"

Global"
Xing"

Level3"

Decentralized Object Location & Routing"

•  Server “publishes” object in infrastructure like a yellow-pages!
–  Objectʼs root node determined by Hash(object name)!
–  Overlay distributes location pointers to log (n) nodes towards Root!

•  Clients route messages towards objectʼs root node!
–  Message routes towards root, redirect when location pointer found!

Lec 25.51!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Stability Under Extreme Circumstances"

(May 2003: 1.5 TB over 4 hours)!
DOLR Model generalizes to many simultaneous apps!

! Lec 25.52!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Summary: Routed Queries  
(Tapestry, Chord, CAN, ...) 

"

N4"Publisher@"
Client"

N6"

N9"

N7"

N8"

N3"
N2"

N1"

Lookup(“title”)"
Key=“title”"
Value=MP3 data…"

N5"

Can be O(log N) messages per lookup (or even O(1))"
Potentially complex routing state and maintenance."

Page 14

Lec 25.53!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

P2P Summary"

•  The key challenge of building wide area P2P systems is
a scalable and robust directory service!

•  Solutions!
– Naptser: centralized location service!
– Gnutella: broadcast-based decentralized location service!
– CAN, Chord, Tapestry, Pastry: intelligent-routing

decentralized solution !
» Guarantee correctness!

Lec 25.54!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

CS162: Summary"
•  OS functions:!

– Manage system resources!
– Provide services: storage, networking, … !
– Provide a VM abstraction to processes/users: give illusion

to each process/user that is using a dedicated machine!

•  Challenges!
– Virtualize system resources!

»  Virtual Memory (VM): address translation, demand paging!
» CPU scheduling!

– Arbitrate access to resources and data!
» Concurrency control, synchronization !
» Deadlock prevention, detection!

Lec 25.55!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Key Concept: Synchronization"
•  Allow multiple processes to share data!
•  Why it is challenging?!

– Want high utilization: need fine grain sharing!
– Avoid non-determinism!

•  Many primitives/mechanisms!
– Locks, Semaphores, Monitors (condition variables)!

•  Many examples:!
– Producer-consumer (bounded buffer, flow control)!
– Reader/Writer problem!
– Transactions!

 Most likely concept youʼll use in your job!
Lec 25.56!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

OS is Evolving"

•  Vast majority of apps are distributed today!
– E.g., mail, Facebook/Twitter, Skype, Google docs, …!

•  More and more OSes integrate remote services!
– E.g., iOS (iCloud), Chrome OS (Google Drive), Windows 8

(SkyDrive)!

•  One example in this class (project 4): reliable and consistent
key-value store!

– Give you taste of challenges of building a distributed system!
– Why hard?!

» Nodes can fail: may lose data, render service unavailable!
» Network can get congested or partitioned: slow/unavailable service !
»  Scale: a p2p network can consists of million of nodes !!

Page 15

Lec 25.57!5/1/2013! Anthony D. Joseph CS162 ©UCB Fall 2012!

Conclusion"

•  OS inherently covers many topics!
– More and more services migrate into OS (e.g., networking,

search)!
•  If you want to focus on some of these topics!

– Database class (CS 186)!
– Networking class (EE 122)!
– Security class (CS 161)!
– Software engineering class (CS 169)!

•  If you want to focus on OS!
– Advanced OS class, CS 194 (John Kubiatowicz), Spring 2014!
– Undergraduate research projects in the AMP Lab!

»  Akaros and Mesos projects !

!

