CS 162 Nachos Tutorial

DOCTOR FUN e

_FARUEY

made available on the Internet for personal viewing only.

chicago.edu
ssed herein are not those of the University of Chicago

ity of North Carolina.

o
[
>
|55
u
v
(3]
1

£

20
[

3

g
>

=
=~
I

[N

b
>
m

(a]

-

o~

o
-~

£

0
| =
>
a
5]

U

©

dgfl @midway.

Opinions expr:
or the Univers

This cartoon i

“This is the planet where nachos rule."

Image courtesy of Thomas Andersen: http://www.cs.washington.edu/homes/tom/nachos/




Outline

* What is Nachos?
— Capabilities, purpose, history

e How does it work?
* How do I get started?




What is Nachos?

* An instructional operating system

* Includes many facets of a real OS:
— Threads
— Interrupts
— Virtual Memory
— 1/O driven by interrupts

* You can (and will) modity and extend it




What else is Nachos?

e Nachos also contains some hardware
simulation.

— MIPS processor

¢ Can handle MIPS code in standard COFF,
except for floating point instructions

* You can (and will) write code in C, compile it
to MIPS and run it on Nachos.

— Console
— Network interface
— Timer




Why Nachos?

* What better way to learn how an OS
works than by building one?

e Much easier and more reasonable to
build a simulated one in Java

e Skeleton code allows us to work on,
replace, or upgrade one piece at a time.




History of Nachos

* Originally created here at Berkeley in
1992 in C++

* By Wayne A. Christopher, Steven J.
Procter, and Thomas E. Anderson

e Used at many universities

* Rewritten in Java by Daniel Hettena

— Now simpler, easier to grade, type-safe,
portable, and more students now know
Java.




How are we using it?

e Two Nachos assignments - “Phases”
® Phase 1 - Threading

* Phase 2 - Multiprogramming




How does Nachos work?

e Entirely written in Java

* Broken into Java packages:

— nac|
— nac|
— nac|
— nac|
— nac|

— nac

nos.ag (autograder classes)
nos.machine (most of the action)
nos.network (PPhase 4)
nos.security (tracks priviledge)
nos.threads (Phase 1)

nos.userprog (Phase 2)

— nacl

nos.vim (Phase 3)




Booting Nachos

* When you run Nachos, it starts in
nachos.machine.Machine.main

¢ Machine.main initializes devices -
interrupt controller, timer, MIPS
processor, console, file system

* Passes control to the autograder.

e AutoGrader will create a kernel and
start it (this starts the OS)




The Machine!

e nachos.machine.Machine

* Kicks off the system, and provides
access to various hardware devices:

— Machine.interrupt()
— Machine.timer()

— Machine.console()
— Machine.networkLink()




Interrupt Controller

* Kicks off hardware interrupts

* nachos.machine.Interrupt class
maintains an event queue, clock

* Clock ticks under two conditions:
— One tick for executing a MIPS instruction
— Ten ticks for re-enabling interrupts

o After any tick, Interrupt checks for
pending interrupts, and runs them.

e Calls device event handler, not software
interrupt handler




Interrupt Controller (cont.)

e Important methods, accessible to other
hardware simulation devices:

— schedule() takes a time, handler
— tick() takes a boolean (1 or 10 ticks)

— checkIfDue() invokes due interrupts
— enable()

— disable()

e All hardware devices depend on
interrupts - they don' t get threads.




Timer

e nachos.machine.Timer

 Hardware device causes interrupts
about every 500 ticks (not exact)

* Important methods:

— getTime() tells many ticks so far

— setInterruptHandler() tells the timer what
to do when it goes oft

* Provides preemption




Serial Console

e Java interface nachos.machine.SerialConsole
e Contains methods:

— readByte() returns one byte (or -1) and waits to
interrupt when it has more

— writeByte() takes one byte and waits to interrupt
when its ready for more

— setInterruptHandlers() tells the console who to call
when it receives data or finishes sending data
* Normally implemented by
nachos.machine.StandardConsole, hooked up
to stdin and stdout




Other Hardware Devices

e Disk
— Didn’ t make the jump to Java from C++,

we don’ t use it for our Nachos
assignments

e Network Link

— Similar to console, but packet based.
— Used for Phase 4.
— You should be able to figure it out by then.




The Kernel

e Abstract class nachos.machine.Kernel

e Important methods

— initialize() initializes the kernel, duh!

— selfTest() performs test (not used by ag)

— run() runs any user code (none for 1st phase)
— terminate() Game over. Never returns.

e Each Phase will have its own Kernel
subclass

Oh, how I hated the kernel, with his wee beady eyes, and
smug look on his face! “Oh, you' re gonna buy my chicken!”




Threading

* Happens in package nachos.threads

e All Nachos threads are instances of
nachos.thread.KThread (or subclass)

e KThread has status
— New, Ready, Running, Blocked, Finished

e Every KThread also has a
nachos.machine. TCB

* Internally implemented by Java threads




Running threads

* Create a java.lang.Runnable(), make a
Kthread, and call fork().

e Example:

class Sprinter implements Runnable {
public void run () {

// run real fast

Sprinter s = new Sprinter();
new KThread(s) .fork();




Scheduler

e Some subclass of
nachos.machine.Scheduler

* Creates ThreadQueue objects which
decide what thread to run next.

¢ Defaults to RoundRobinScheduler
* Specified in Nachos configuration file




Nachos Configuration

* nachos.cont file lets you specity many
options
— which clases to use for Kernel, Scheduler
— whether to be able to run user progs
— etc.

 Different one for each project.




How to get started

* Go to class web page
* Download and install nachos package

* Read the README, make sure you can
make projl OK

* The first phase will be posted soon with
detailed instructions for first Nachos
assignment




Advice

* One step at a time. Get a little bit
working. Then a little more. Then a
little more, etc.

* Find a good tool, including a debugger,
and use it. One choice - Eclipse.




For More Information

e README file in the installation has lots
of good stuft

* See the Class Web Page for intros,
background, and the code itself.

* Read the code! You can see exactly
what is going on.




