
 Page 1/14

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Spring 2013 Anthony D. Joseph

Midterm Exam Solutions
March 13, 2013

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 28

2 25

3 17

4 15

5 15

TOTAL 100

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 2/14

1. (28 points total) True/False and short answer questions:
a. (12 points) True/False and Why? CIRCLE YOUR ANSWER.

i) The four conditions that must hold in order for deadlock to occur are: Hold-
and-wait, circular waiting, starvation and mutual exclusion.

TRUE FALSE
Why? (One sentence)
FALSE. Starvation is not a condition for deadlock. It should be no
preemption. The correct answer was worth 1 points and the justification
was worth an additional 2 points.

ii) The main advantage of multilevel page tables is that they use page table
memory efficiently.

TRUE FALSE
Why? (One sentence)
TRUE. Multilevel page tables use memory more efficiently for sparse
address spaces than single level tables. The correct answer was worth 1
points and the justification was worth an additional 2 points.

iii) In the Nachos priority scheduler, if a HIGH priority thread is waiting for a
LOW priority thread to release a lock, but there are NO OTHER THREADS in
the system, the LOW priority thread's effective priority should be LOW.

TRUE FALSE
Why? (One sentence)
FALSE. Priority locks always donate priority when appropriate,
independent of the number of threads in the system. The correct answer
was worth 1 points and the justification was worth an additional 2 points.

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 3/14

iv) In Nachos, a thread's effective priority can only change when it is waiting on a
thread queue.

TRUE FALSE
Why? (One sentence)
FALSE. A thread’s effective priority can also change if it owns a
resource. The correct answer was worth 1 points and the justification was
worth an additional 2 points.

b. (16 points) Short Answer Questions:

i) (4 points) Give a two to three sentence brief description of the difference
between starvation and deadlock.
Starvation implies that a thread cannot make progress because other threads
are using resources it needs. Starvation can be recovered from if, for example,
the other processes finish. Deadlock is a circular wait without preemption that
can never be recovered from.

ii) (4 points) When using the Banker’s algorithm for resource allocation, if the

system is in an unsafe state, will it always eventually deadlock? Briefly (1-2
sentences) state why or why not.
No, because processes may not request their total possible resources, and may
release some resources before acquiring others. Full credit was given for
saying the Banker’s algorithm does not allow a system to enter an unsafe
state.

iii) (4 points) In two to three sentences briefly discuss why caching is increasingly

important in modern computer systems, and why it is of particular concern to
the operating system.
Caching is important because the performance gaps in the memory hierarchy
are increasing: CPU to memory, memory to disk, etc. Increasing capacity
means we can cache more at higher levels of the hierarchy.

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 4/14

iv) (4 points) In two to three sentences briefly explain why the space shuttle failed

to launch on April 10, 1981.
As described in Garman’s “The Bug Heard 'round the World,” paper, due to
software changes, the PASS could with low probability (1 in 67) incorrectly
initialize the system time. This resulted in the PASS being one cycle out of
synchronization with the BFS. This caused the first shuttle launch to abort 20
minutes prior to the scheduled launch. The bug points out the challenges of
building and maintaining real-time systems, even when hundreds of
programmers are involved and hundreds of hours are spent on testing.

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 5/14

2. (25 points) Synchronization primitives: Consider a machine with hardware support for
a single thread synchronization primitive, called Compare-And-Swap (CAS).
Compare-and-swap is an atomic operation, provided by the hardware, with the
following pseudocode:

int compare_and_swap(int *a, int old, int new) {
 if (*a == old) {

*a = new;
return 1;

 } else {
return 0;

 }
}

Your first task is to implement the code for a simple spinlock using compare-and-
swap. You are not allowed to assume any other hardware or kernel support exists
(e.g., disabling interrupts). You may assume your spinlock will be used correctly (i.e.,
no double release or release by a thread not holding the lock)

a. (3 points) Fill in the code for the spinlock data structure.

struct spinlock { /* Fill in */

int value = 0;
We deducted one point for extraneous statements.

}

b. (4 points) Fill in the code for the acquire data function.
void acquire(struct spinlock *lock) { /* Fill in */

while (cas(&lock->value, 0, 1) == 0)

; /* spin */
We deducted two points for extraneous statements, two points for a missing while

and four points if your solution did not work.

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 6/14

}

c. (4 points) Fill in the code for the release data function.
void release(struct spinlock *lock) { /* Fill in */

lock->value = 0;

We deducted two points for extraneous statements, one point for an unnecessary
Compare-and-Swap (stores of a word are atomic), and four points if your solution did
not work.

}

After completing your implementation, you realize that using a spinlock is inefficient
for applications that may hold the lock for a long time. You consider using the
following two primitives to implement more efficient locks: atomic_sleep and
wake.

atomic_sleep is an atomic operation, provided by the hardware, with the
following pseudocode:

void atomic_sleep(struct *lock, int *val1, int val2){
val1 = val2; / set val1 to val2 */
enqueue(lock); /* put current thread on a
 lock’s wait queue*/
sleep(); /* put current thread to sleep */

}

wake is non-atomic with the following pseudocode:

void wake(struct lock *lock){
dequeue(); /* remove a thread (if any) from lock’s
 wait queue and add it to the
 scheduler’s ready queue */

}

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 7/14

Your second task is to reimplement your lock code more efficiently using
atomic_sleep and wake. You may use Compare-And-Swap if you want. You are
not allowed to assume any other hardware or kernel support exists (e.g., disabling
interrupts).

d. (4 points) Fill in the code for the new lock data structure.
struct lock { /* Fill in */

int guard = 0;
int value = 0;
Queue queue = NIL;
We deducted two points for a missing guard or value and one point for extraneous

variables.

}

e. (5 points) Fill in the code for the new acquire data function.
void acquire(struct lock *lock) { /* Fill in */

while (1) {
while (cas(&lock->guard, 0, 1) == 0);
if (value == 1) {
 atomic_sleep(&lock, &lock->guard, 0);
} else {
 lock->value = 1;
 lock->guard = 0;
 return;
}

}
We expected solutions that used a spinlock on a guard for protecting the lock

variable, and atomic_sleep for efficient waiting for the lock. We deducted two points
for extraneous statements, two points for not setting the lock variable, one point for a
missing outer while loop, 2 points for a missing guard, 2 points for not sleeping, one
point for misusing the guard, and one point for a dangerous double release of the
guard in acquire and release.

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 8/14

}

f. (5 points) Fill in the code for the new release data function.

void release(struct lock *lock) { /* Fill in */

while (cas(&lock->guard, 0, 1) == 0);
lock->value = 0;
wake(&lock);
lock->guard = 0;
We deducted two points for extraneous statements, two points for no guard, two

points for failing to wake a waiting thread, and two points if your solution had other
errors, such as not releasing the lock.

}

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 9/14

3. (17 points total) Memory management:

a. (7 points) Consider a memory system with a cache access time of 10ns and a
memory access time of 200ns, including the time to check the cache. What hit rate
H would we need in order to achieve an effective access time 10% greater than
the cache access time? (Symbolic and/or fractional answers are OK)

Effective Access Time: Te = H * Tc + (1 – H) * Tm,

where Tc = 10ns, Te = 1.1 * Tc , and Tm = 200ns.

Thus, (1.1)(10) = 10H + (1 – H)200

11 = 10H + 200 – 200H
-189 = -190H
H = 189/190

We awarded 4 pts for the correct formula and 3 pts for the correct answer. Many
students missed the fact that the miss time includes both the memory access time and
the cache access time. If the formula was missing the cache access time, we deducted
two points – if the answer based upon this incorrect formula was correct, we did not
deduct any additional points.

b. (10 points) Suppose you have a 47-bit virtual address space with a page size of 16
KB and that page table entry takes 8 bytes. How many levels of page tables would
be required to map the virtual address space if every page table is required to fit
into a single page? Be explicit in your explanation and show how a virtual address
is structured.

A 1-page page table contains 2,048 or 211 PTEs (23 *211 = 214 bytes), pointing to
211 pages (addressing a total of 211 * 214 = 225 bytes). Adding a second level
yields another 211 pages of page tables, addressing 211 * 211 * 214 = 236 bytes.
Adding a third level yields another 211 pages of page tables, addressing 211 * 211 *
211 * 214 = 247 bytes. So, we need 3 levels.

The correct answer is worth 5 pts. Correct reasoning is worth up to 5 pts (1 pt for
identifying that there are 211 PTEs per page, 2 pts for describing how page tables
are nested, and 2 pts based upon the quality of the argument).

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 10/14

11 bit page 11 bit page 11 bit page 14 bit offset

Phys.
Mem

211

PTEs

1st level
page table

211
PTEs

2nd level
page tables

211
PTEs

3rd level
page tables

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 11/14

4. (15 points total) Concurrency control: Building H2O2.
The goal of this exercise is for you to create a monitor with methods Hydrogen()
and Oxygen(), which wait until a Hydrogen Peroxide molecule (H2O2) can be
formed and then return. Don’t worry about actually creating the Hydrogen Peroxide
molecule; instead only need to wait until two hydrogen threads and two oxygen
threads can be grouped together. For example, if two threads call Hydrogen, another
thread calls Oxygen, and then a fourth thread calls Oxygen, the fourth thread should
wake up the first three threads and they should then all return.

a. (3 points) Specify the correctness constraints. Be succinct and explicit in your

answer.

1) Each hydrogen thread waits to be grouped with one other hydrogen and two
oxygen threads before returning.

2) Each oxygen thread waits for another oxygen thread and two other hydrogens
before returning.

3) Only one thread access shared state at a time
3 good answers received 1 point each. Full three points if the two correctness
constraints for hydrogen and oxygen were CORRECTLY combined into one
constraint. We deducted one point if there was no shared state constraint.

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 12/14

b. (12 points) Observe that there is only one condition any thread will wait for (i.e., a

hydrogen peroxide molecule being formed). However, it will be necessary to
signal hydrogen and oxygen threads independently, so we choose to use two
condition variables, waitingH and waitingO.
State variable description Variable name Initial value
Number of waiting hydrogen threads wH 0
Number of waiting oxygen threads wO 0
Number of active hydrogen threads aH 0
Number of active oxygen threads aO 0

You start with the following code:

 Hydrogen() {
 wH++;
 lock.acquire();
 while (aH == 0) {
 if (wH >= 2 && wO >= 2) {
 wH-=2; aH+=2;
 wO-=2; aO+=2;
 waitingH.broadcast();
 waitingO.broadcast();
 } else {
 waitingH.wait(&lock);
 lock.acquire();
 }
 }
 aH--;
 lock.release();
 }

 Oxygen() {
 wO++;
 lock.acquire();
 while (aO == 0) {
 if (wH >= 2 && wO >= 2) {
 wH-=2; aH+=2;
 wO-=2; aO+=2;
 waitingH.signal();
 waitingH.signal();
 waitingO.signal();
 } else {
 waitingO.wait(&lock);
 }
 }
 aO--;
 lock.release();
 }

For each method, say whether the implementation either (i) works, (ii) doesn’t work,
or (iii) is dangerous – that is, sometimes works and sometimes doesn’t. If the
implementation does not work or is dangerous, explain why (there maybe several

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 13/14

errors) and briefly show how to fix it so it does work. Also, list and fix any
inefficiencies. You do not have to reimplement the methods.

i. Hydrogen()

Nine points total. Correctness: 1 point for saying the routine is either (ii) doesn’t
work or (iii) dangerous – depending on your answer for bug #2 below. Two
points for each of three bugs and associated fixes (if the bugs mentioned implied a
fix, then full credit was given):
1. Counter: The state variable wH is modified outside of a critical section
2. Potential deadlock: the thread attempts to reacquire the lock after waiting (when it

already holds the lock). Depending on the implementation of locks, this could be a no-op
or could deadlock.

3. Inefficient: The Hydrogen broadcast should be a signal.
4. Inefficient: The Oxygen broadcast should be two signals.
We took off 1 point for any additional bugs, since there were no others, except for a complete
rewrite of the implementation – which was not what we were looking for.

ii. Oxygen()

Three points total. Correctness: One point for (iii) dangerous.
Two points for each reason:
1. Counter: State variable wO modified outside of a critical section.

CS 162 Spring 2013 Midterm Exam March 13, 2013
Solutions

 Page 14/14

5. (15 points total) Scheduling. Consider the following processes, arrival times, and CPU

processing requirements:
Process Name Arrival Time Processing Time

1 0 4
2 2 3
3 5 3
4 6 2

For each scheduling algorithm, fill in the table with the process that is running on the
CPU (for timeslice-based algorithms, assume a 1 unit timeslice). For RR and SRTF,
assume that an arriving thread is run at the beginning of its arrival time, if the scheduling
policy allows it. Also, assume that the currently running thread is not in the ready queue
while it is running. The turnaround time is defined as the time a process takes to complete
after it arrives.

Time FIFO RR SRTF
0

1 1 1

1

1 1 1

2

1 2 1

3

1 1 1

4

2 2 2

5

2 3 2

6

2 4 2

7

3 1 4

8

3 2 4

9

3 3 3

10

4 4 3

11

4 3 3

Average
Turnaround
Time

((4-0)+(7-2)+
(10-5)+(12-
6))/ 4 = 5

((8-0)+(9-2)+
(12-5)+(11-
6))/4 = 6.75

((4-0)+(7-2)+
(12-5)+(9-6))/4=
4.75

Each column is worth 5 points: 3 for correctness of the schedule (we deducted
1/2/3 points if you made minor/intermediate/major mistakes), and 2 for the
average Turnaround time (1 point was deducted for minor errors).

