CS162
Operating Systems and
Systems Programming
Lecture 24

Berkeley Data Analytics Stack (BDAS)

April 26th, 2017
Prof. Ion Stoica
http://cs162.eecs.Berkeley.edu

Data Deluge

- Billions of users connected through the net
 - WWW, FB, twitter, cell phones, …
 - 80% of the data on FB was produced last year
 - FB building Exabyte ($2^{60} \approx 10^{18}$) data centers

- It’s all happening online – could record every:
 - Click, ad impression, billing event, server request, transaction, network msg, fault, fast forward, pause, skip, …

- User Generated Content (Web & Mobile)
 - Facebook, Instagram, Yelp, TripAdvisor, Twitter, YouTube, …

Data Grows Faster than Moore’s Law

Projected Growth

<table>
<thead>
<tr>
<th>Year</th>
<th>Increase over 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>10</td>
</tr>
<tr>
<td>2012</td>
<td>20</td>
</tr>
<tr>
<td>2013</td>
<td>30</td>
</tr>
<tr>
<td>2014</td>
<td>40</td>
</tr>
<tr>
<td>2015</td>
<td>50</td>
</tr>
</tbody>
</table>

- Moore’s Law
- Particle Accel.
- DNA Sequencers

And Moore’s law is ending!!

The Big Data Solution: Cloud Computing

- One machine can not process or even store all the data!

- Solution: distribute data over cluster of cheap machines

- Cloud Computing provides:
 - Illusion of infinite resources
 - Short-term, on-demand resource allocation
 - Can be much less expensive than owning computers
 - Access to latest technologies (SSDs, GPUs, …)
What Can You do with Big Data?

Crowdsourcing + Physical modeling + Sensing + Data Assimilation

http://traffic.berkeley.edu

The Berkeley AMPLab

• January 2011 – 2016
 – 8 faculty
 – > 50 students
 – 3 software engineer team
• Organized for collaboration

The Berkeley AMPLab

• Governmental and industrial funding:

Goal: Next generation of open source data analytics stack for industry & academia: Berkeley Data Analytics Stack (BDAS)

Generic Big Data Stack

Processing Layer

Resource Management Layer

Storage Layer
Hadoop Stack

Hive Pig Storm Impala Giraph
HadoopMR

Yarn

HDFS

BDAS Stack

Spark Streaming Spark Core Mesos Hadoop Yarn
Spark
SparkR GraphX Mllib Velox
SparkSQL

Succinct Sample Clean 3rd party
Tachyon
HDFS, S3, Ceph, ...

Today’s Lecture

Spark Streaming Spark Core Mesos Hadoop Yarn
Succinct Sample Clean SparkR GraphX Mllib Velox
SparkSQL

Succinct Tachyon
HDFS, S3, Ceph, ...

Summary

• Mesos
• Spark
Summary

- Mesos
- Spark

A Short History

- Started at UC Berkeley in Spring 2009
 - A class project of cs294 (Cloud Computing: Infrastructure, Services, and Applications)

- Open Source: 2010

- Apache Project: 2011

- Today: one of the most popular cluster resource management systems (OS for datacenters)

Motivation

- Rapid innovation in cloud computing (aka 2008)

- No single framework optimal for all applications
- Each framework runs on its dedicated cluster or cluster partition

Computation Model: Frameworks

- A framework (e.g., Hadoop, MPI) manages one or more jobs in a computer cluster
- A job consists of one or more tasks
- A task (e.g., map, reduce) is implemented by one or more processes running on a single machine

```
Job 1: tasks 1, 2, 3, 4
Job 2: tasks 5, 6, 7
```
One Framework Per Cluster Challenges

- Inefficient resource usage
 - E.g., Hadoop cannot use available resources from Pregel’s cluster
 - No opportunity for stat. multiplexing
- Hard to share data
 - Copy or access remotely, expensive
- Hard to cooperate
 - E.g., Not easy for Pregel to use graphs generated by Hadoop

Need to run multiple frameworks on same cluster

Solution: Apache Mesos

- Common resource sharing layer
 - Abstracts (“virtualizes”) resources to frameworks
 - Enable diverse frameworks to share cluster

Fine Grained Resource Sharing

- Task granularity both in time & space
 - Multiplex node/time between tasks belonging to different jobs/frameworks
- Tasks typically short; median \(\approx 10\) sec, minutes
- Why fine grained?
 - Improve data locality
 - Easier to handle node failures

Mesos Goals

- High utilization of resources
- Support diverse frameworks (existing & future)
- Scalability to 10,000’s of nodes
- Reliability in face of node failures
- Focus of this talk: resource management & scheduling
Approach: Global Scheduler

- Organization policies
- Resource availability
- Job requirements
 - Response time
 - Throughput
 - Availability
 - ...

Job requirements

- Task DAG
- Inputs/outputs

Job execution plan

Approach: Global Scheduler

- Organization policies
- Resource availability
- Job requirements
- Job execution plan
 - Task DAG
 - Inputs/outputs

Task schedule

Estimates

- Advantages: can achieve optimal schedule
- Disadvantages:
 - Complexity → hard to scale and ensure resilience
 - Hard to anticipate future frameworks’ requirements
 - Need to refactor existing frameworks
Our Approach: Distributed Scheduler

- Advantages:
 - Simple → easier to scale and make resilient
 - Easy to port existing frameworks, support new ones
- Disadvantages:
 - Distributed scheduling decision → not optimal

Resource Offers

- Unit of allocation: resource offer
 - Vector of available resources on a node
 - E.g., node1: <1CPU, 1GB>, node2: <4CPU, 16GB>
- Master sends resource offers to frameworks
- Frameworks select which offers to accept and which tasks to run

Push task scheduling to frameworks

Mesos Architecture: Example

Slaves continuously send status updates about resources

Framework executors launch tasks and may persist across tasks

Framework scheduler selects resources and provides tasks

Why does it Work?

- A framework can just wait for an offer that matches its constraints or preferences!
 - Reject offers it does not like
- Example: Hadoop’s job input is blue file

Accept: both S2 and S3 store the blue file

(task1:[S2:<…, S3:<…>], task1:[S1:<…, S2:<…>])

(task1:[S2:<…, S3:<…>], task1:[S1:<…, S2:<…>])
Dynamic Resource Sharing

- 100 node cluster

![Graph showing resource sharing over time.]

Apache Mesos Today

- Hundreds of contributors
- Hundreds of deployments in productions
 - E.g., Twitter, GE, Apple
 - Managing 10K node datacenters!
- Mesosphere, startup to commercialize Apache Spark

Administrivia

- Midterm #3 grades published
 - Regrade request deadline Wednesday 5/3 at midnight
 - Will open regrading tomorrow, Thursday, 4/27
 - Please only submit regrade requests for grading errors!
- Project 3
 - Code due Monday 5/1
 - Final report due Wednesday 5/5

BREAK
Summary

- Mesos
- Spark

A Short History

- Started at UC Berkeley in 2009
- Open Source: 2010
- Apache Project: 2013
- Today: most popular big data project

What Is Spark?

- Parallel execution engine for big data processing
- Easy to use: 2-5x less code than Hadoop MR
 - High level API's in Python, Java, and Scala
- Fast: up to 100x faster than Hadoop MR
 - Can exploit in-memory when available
 - Low overhead scheduling, optimized engine
- General: support multiple computation models

General

- Unifies batch, interactive comp.

Spark Core

Spark SQL
General

• Unifies batch, interactive, streaming comp.

Spark SQL Spark Streaming Spark Core

General

• Unifies batch, interactive, streaming comp.
• Easy to build sophisticated applications
 – Support iterative, graph-parallel algorithms
 – Powerful APIs in Scala, Python, Java

Spark SQL Spark Streaming MLlib GraphX Spark Core

Easy to Write Code

WordCount in 3 lines of Spark

WordCount in 50+ lines of Java MR

Fast: Time to sort 100TB

2013 Record: Hadoop
 2100 machines
 72 minutes

2014 Record: Spark
 207 machines
 23 minutes

Also sorted 1PB in 4 hours

Source: Daytona GraySort benchmark, sortbenchmark.org
Large-Scale Usage

Largest cluster: 8000 nodes
Largest single job: 1 petabyte
Top streaming intake: 1 TB/hour
2014 on-disk sort record

RDD: Core Abstraction

Write programs in terms of distributed datasets and operations on them

- Resilient Distributed Datasets (RDDs)
 - Collections of objects distr. across a cluster, stored in RAM or on Disk
 - Built through parallel transformations
 - Automatically rebuilt on failure

Operations
- Transformations (e.g. map, filter, groupBy)
- Actions (e.g. count, collect, save)

Operations on RDDs
- Transformations f(RDD) => RDD
 - Lazy (not computed immediately)
 - E.g. “map”
- Actions:
 - Triggers computation
 - E.g. “count”, “saveAsTextFile”

Working With RDDs

```scala
textFile = sc.textFile("SomeFile.txt")
```
Working With RDDs

```
linesWithSpark = textFile.filter(lambda line: "Spark" in line)
```

```
textFile = sc.textFile("SomeFile.txt")
```

```
linesWithSpark = textFile.filter(lambda line: "Spark" in line)
```

```
linesWithSpark.count() 74
linesWithSpark.first()  # Apache Spark
```

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns
Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
```
Load error messages from a log into memory, then interactively search for various patterns.

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
```

Example: Log Mining
Load error messages from a log into memory, then interactively search for various patterns:

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
```

Example: Log Mining
Load error messages from a log into memory, then interactively search for various patterns.

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```
Language Support

Python

```python
lines = sc.textFile(...) 
lines.filter(lambda s: "ERROR" in s).count()
```

Scala

```scala
val lines = sc.textFile(...) 
lines.filter(x => x.contains("ERROR")).count()
```

Java

```java
JavaRDD<String> lines = sc.textFile(...) 
lines.filter(new Function<String, Boolean>()
    .call(String s) {
        return s.contains("error");
    }) .count();
```

Expressive API

Standalone Programs

- Python, Scala, & Java

Interactive Shells

- Python & Scala

Performance

- Java & Scala are faster due to static typing
- …but Python is often fine

Expressive API

- map
- reduce

- filter
- count
- groupBy
- fold
- sort
- reduceByKey
- union
- groupByKey
- join
- cogroup
- leftOuterJoin
- cross
- rightOuterJoin
- zip

Fault Recovery

RDDs track lineage information that can be used to efficiently reconstruct lost partitions
Fault Recovery Example

• Two-partition RDD \(A = \{A_1, A_2\} \) stored on disk
 1) filter and cache \(\rightarrow \) RDD \(B \)
 2) join \(\rightarrow \) RDD \(C \)
 3) aggregate \(\rightarrow \) RDD \(D \)

Fault Recovery Example

• \(C_1 \) lost due to node failure before reduce finishes

Fault Recovery Example

• \(C_1 \) lost due to node failure before reduce finishes
 • Reconstruct \(C_1 \), eventually, on different node
Spark Streaming: Motivation

- Many important apps must process large data streams at second-scale latencies
 - Site statistics, intrusion detection, online ML
- To build and scale these apps users want:
 - Integration: with offline analytical stack
 - Fault-tolerance: both for crashes and stragglers

How does it work?

- Data streams are chopped into batches
 - A batch is an RDD holding a few 100s ms worth of data
- Each batch is processed in Spark

Streaming Word Count

```scala
val lines = context.socketTextStream("localhost", 9999)
val words = lines.flatMap(_ => split(_))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
```

create DStream from data over socket
split lines into words
count the words
print some counts on screen
start processing the stream
Word Count

Benefits for Users

- High performance data sharing
 - Data sharing is the bottleneck in many environments
 - RDD’s provide in-place sharing through memory

- Applications can compose models
 - Run a SQL query and then PageRank the results
 - ETL your data and then run graph/ML on it

- Benefit from investment in shared functionality
 - E.g. re-usable components (shell) and performance optimizations

Many Recent Development

- RDDs → Dataframes, and DatSets
 - Distributed collection of data grouped into named columns (i.e. RDD with schema)
 - Think about R and Python Pandas dataframes

- Project Tungsten
 - Fully managed memory; allowed by Dataframe/DatSets schema
 - Code generation
 - Vectorized processing

- Structured streams
 - Adding Dataframe API and optimizations to streaming
Apache Spark Today

- > 1,500 contributors
- > 300K committers world wide
- > 100K students trained

- 1,000s deployments in productions
 - Virtually every large enterprise
 - Available in all clouds (e.g., AWS, Google Compute Engine, MS Azure)
 - Distributed by IBM, Cloudera, Hortonworks, Oracle

- Databricks, startup to commercialize Apache Spark

Summary

- Server → Datacenter
- OS → Datacenter OS (e.g., Apache Mesos)
- Applications → Big data / ML applications (e.g., Apache Spark)

- AMPLab
 - Massive success in industry, ...
 - and, academia: faculty at MIT, Stanford, Cornell, etc

- New lab starting: RISELab

RISELab
(Real-time Intelligent Secure Execution)

From batch data to advanced analytics

RISELab
From live data to real-time decisions

AMPLab
unified engine across data sources, workloads and environments