
CS164: Programming Assignment 1
SkimDecaf Interpreter

Assigned: Wednesday, September 1, 2004
Due: Thursday, September 9, 2004, at noon

August 28, 2004

1 Introduction

Overview

In this assignment, you will write an interpreter for SkimDecaf, a small subset of the Decaf lan-
guage, which is itself a subset of Java. Decaf is the programming language for which you are
going to write a compiler in this course.

In this assignment, you will, for the first time, implement a programming language (ok, if you
wrote a Scheme interpreter in CS61A, then this is already your second language). This interpreter
will give you the satisfaction of executing program in your own execution environment, and will
prepare you for writing a compiler in the rest of the semester.

Also, you will get practice with tools you will need during the semester: Java, Eclipse, CVS, design
patterns, and our remote testing infrastructure.

On this project, you will work alone. On future project assignments, you will work in pairs.

What you are going to learn

First, you are going to learn how programs are represented in a compiler or interpreter. As a programmer,
you think of programs as the text-based source code. Programs are entered into the compiler as
text because text files are programmer-friendly. They are not compiler-friendly, though. In com-
pilers and interpreters, programs are represented as abstract syntax trees (ASTs), because on these
trees we can formulate program interpenetration and translation as convenient tree traversals.

If programs expressed as ASTs are not programmer-friendly, how will you enter them into the
compiler? Using a parser. In this assignment, you will translate SkimDecaf programs (source text)
into ASTs using a parser built in the Eclipse IDE. You will develop a similar parser yourself in PA2
and PA3.

Second, you will also write a pretty-printer for ASTs. The pretty-printer takes a SkimDecaf AST as
input and prints the program as SkimDecaf source text. The pretty-printer can be viewed as a

1

translator from ASTs to source text. This may sound difficult, but all the pretty printer will do is
traverse the AST and print each statement and expression as it reaches it.

Third, you are going to write an interpreter for SkimDecaf ASTs. The interpreter takes a SkimDecaf AST
as input and runs it. This may sound difficult, but an interpreter is a surprisingly simple program.
An interpreter traverses the AST, executing each statement and expression as it reaches it.

The interpreter is based on a traversal of the AST, just like the interpreter, but the traversal order is
different. For example, the interpreter may traverse the body of a while loop several times, or zero
times, based on the loop exit condition, but the pretty-printer will traverse the loop body exactly
once.

Fourth, you will get familiar with the tools you’ll need in the rest of the semester:

• Java and Eclipse. All programming will be done in Java using the Eclipse IDE. Eclipse runs
on many platforms, including Windows, Mac OS, Linux, Solaris, and so you can run Eclipse
both in the lab and at home.

• ASTs. Rather than rolling our own ASTs, we will use the AST library that comes with Eclipse,
in its Java Development Toolkit (JDT). Eclipse uses these ASTs for things like syntax error
highlighting and name completion. By relying on these ASTs, you will see a little bit of how
a well-designed industrial compiler looks like inside.

• Design Patterns. We will use one design pattern (visitor) extensively this semester. In this
asignment, you will learn how to program AST traversals with this pattern.

• CVS. We will use CVS as our version control system. It will be used for submitting assign-
ments, for coding collaboration within your team, and for remote testing.

• Remote testing. To help you find bugs in your project solutions (and thus to score more points
on your assignments), we will allow you to compare your solutions against our reference
solution, by running test inputs on our solution.

2 The Assignment

Your goal in PA1 is to

1. implement a pretty-printer for SkimDecaf,

2. implement an interpreter for SkimDecaf, and

3. develop a sufficient collection of test cases to test the pretty-printer and
the interpreter.

The interpreter must implement the language according to the specification
given in Section 2.1. The pretty-printer must follow the rules in Section 2.2.
How your code and test cases must be organized and submitted is described
in Section 4.

2

2.1 SkimDecaf Language Definition

SkimDecaf is a subset of Java that supports only integer variables, arithmetic expressions, assign-
ments, if statements, and while statements. (When reading the details that follow it’s useful to
recall the difference between expressions and statements.)

Data Types. SkimDecaf has only one data type, 32-bit signed integers. (You can implement this
data type using Java’s int.)

Variables. There are no declarations in SkimDecaf (that is, both int x; and int x = 3; are
illegal in SkimDecaf. All variables have global scope. Programs can use any variable name at any
time. It is as if all possible variables are declared as global ints.

When a variable is evaluated, the result is the current value of that variable. If the variable has not
yet been assigned, the interpreter sets the variable to 1, returns a result of 1, and prints a warning
message:

Warning: variable ’x’ has not been assigned

substituting the name of the variable for x. For purposes of this rule, assigning to a variable does
not count as evaluating it. For example, if the first statement in a program is x = 3;, this does
not generate a warning.

Assignment. The assignment expression assigns a new value to a variable, just as in Java. SkimDe-
caf does not support any of the compound assignments such as +=. The left-hand side of an
assignment operator is always a variable name, which is a SimpleNamep AST node.

The result of evaluating an assignment expression is the value of the right-hand side. The follow-
ing line of code sets x to 3, then prints 3:

print(x = 3);

Print. SkimDecaf does not support method calls, except for a call to a built-in method print
that prints the decimal representation of its single argument, followed by a newline. You will
implement print by invoking Java’s System.out.println(int). The syntax of print is as
if print were a Java method declared like this:

public static void print(int x);

Note that since print is a method call that does not return a value, it must not be nested inside
another expression. Compilers normally include a semantic check phase which would detect this
problem when the program is compiled. However, interpreters, such as the one in PA1, often do
not detect these errors until the program actually does something illegal. So, if a program attempts
to use the value of a print expression, the interpreter must throw a VoidValueException. For
example, the following code would result in a VoidValueException:

a = 3 + print(10);

3

The exception VoidValueException is defined by the interpreter, and already exists in the
starter kit. This exception will be caught by PA1.Mainwhich is also provided.

Arithmetic. SkimDecaf has four binary arithmetic operators: addition, subtraction, multiplica-
tion, and division. When evaluating these operators, evaluate the left operand, then the right
operand, then apply the operator.

If the program attempts to divide by 0, the interpreter throws a DivideByZeroException. The
exception DivideByZeroException is defined by the interpreter. This exception is different
from the exception thrown by Java when the program divides by zero; this exception will be
caught in PA1.Main().

Statements. The if and while statements are just like their Java counterparts, except that the
conditional expressions evaluate to integers. Zero represents false, and any other value represents
true. The if statement optionally includes an else clause.

Also, any expression can be a statement. In particular, assignment and print expressions are often
used as statements.

Programs. A SkimDecaf program contains one class declaration and one method declaration (the
method must be static because SkimDecaf cannot create objects). It’s like a Java class with a main
method, and no other methods. Since there is only one class with one method, and the interpreter
simply runs the method, the interpreter will ignore the class name and the method name. The
names are still required by the language syntax, though. This makes the programs look more like
Java, and it will allow us to add multiple methods and method calls in later assignments.

Example. Consider the following (very poorly formatted) SkimDecaf program.

public class MainClass {
public static void Main() {
a = 10;
while (a) { a = a-1; print(a); }
}
}

Figure 1 (middle column) shows how the pretty-printer formats this SkimDecaf program. Note
that the pretty-printer fully parenthesizes arithmetic expressions. This is because the structure of
the AST determines the order of operations, and the pretty-printer indicates the order given in the
AST with parentheses. Some parentheses are clearly unnecessary, but we print all of them to keep
the pretty-printer simple.

Next, Figure 1 (left) shows the complete AST for this program, as output by the ASTPrinter class
included in the starter kit. The class prints out ASTs one node per line. Each line shows the name
of the class of the AST node. Lines for SimpleName nodes also show the identifier for the name.
Lines for NumberLiteral nodes show the exact text of the literal.

4

For illustration, Figure 2 shows an informal graphical representation of this AST (the graphical
view omits some nodes; compare it with the complete AST in Figure 1). You don’t need to print
the AST in this project; print it only to understand the AST layout. To print the AST, you need to
remove comments in three lines in PA1.Main.

Finally, Figure 1 (right) shows the shows the output from the pretty-printer and the interpreter. We
provide the MainClass example in the starter kit, but note that the starter kit program skeletons
do not contain enough functionality to either pretty-print or interpret the MainClass example.

2.2 Pretty-Printer

The output must meet these requirements:

• Each statement is printed on a separate line.

• The body of an if or while statement is indented by four spaces from the first line.

• The body of an if or while statement is always surrounded by curly braces. The opening
curly brace is on the same line as the if or while. The closing curly brace is on a line by itself.

• A print statement is formatted like this: print(expr);.

• Arithmetic expressions are fully parenthesized. For example, print (3 + (4 * 5)), not
3 + 4 * 5. This will ensure your pretty-printed code matches the meaning of the AST.

• Whitespace within a line is up to you.

2.3 Test Cases

To help you find bugs in your project solutions (and thus to score more points on your assign-
ments), we will allow you to compare your solutions against our reference solution. We won’t
show you the source code of the solution, of course, but we’ll allow you to remotely run our
compiler (or interpreter, as the case may be).

The idea is that you write test cases (that is, inputs for testing the compiler or interpreter) for
your solution and submit them via CVS to your account on the instructional machines. A script
will pick up these test cases from your CVS repository, run your test cases on our solution, then
on your solution, and compare the two outputs. After that, we will let you know if there is a
mismatch. If there is, there is a bug either in your solution or in our solution (the latter is possible
but somewhat less likely).

We call this approach remote testing.

You will need to learn more about the remote testing infrastructure on the course web page, under
Software. Remote testing is a recently developed part of the course, and so you should check the
web site often for updates and bug fixes.

One important thing to remember with remote testing is that if you want to use Eclipse on your
home machine, you will have to install one cs164-specific Eclipse plugin. The plugin is available
on our web site, and the install process is very easy.

5

CompilationUnit
TypeDeclaration

SimpleName "MainClass"
MethodDeclaration

PrimitiveType
SimpleName "Main"
Block

ExpressionStatement
Assignment

SimpleName "a"
NumberLiteral "10"

WhileStatement
SimpleName "a"
Block

ExpressionStatement
Assignment

SimpleName "a"
InfixExpression

SimpleName "a"
NumberLiteral "1"

ExpressionStatement
MethodInvocation

SimpleName "print"
SimpleName "a"

public class MainClass {
public static void Main() {

a = 10;
while(a) {

a = (a-1);
print(a);

}
}

}

9
8
7
6
5
4
3
2
1
0

ASTPrinter Pretty-printer Interpreter
output output output

Figure 1: Output for the AST in Figure 1

Figure 2: An example of an AST.

6

3 Implementation Notes

3.1 The starter kit

We’ve provided you with a starter kit. It contains source code for:

• A READMEfile that explains how to use the kit and how to find the places you need to modify
in the skeleton code. Read this file first!

• a skeleton of the interpreter, including sample code that handles print and integer literals.
You will extend this code to implement a complete interpreter for SkimDecaf.

• a skeleton of the pretty-printer. You will extend this code to implement a complete pretty-
printer.

• ASTPrinter, a class that prints out ASTs. You can use this class to view ASTs created by
the Eclipse parser. Viewing ASTs for a few Java programs will help you understand the
structure of the AST.

• A main method PA1.Main() that runs the interpreter and pretty-printer. You can modify
this class as you wish, e.g., for debugging, but don’t add any new functionality into it, be-
cause the TA’s will overwrite it with their own file (similar to this one) when testing your
assignment.

• Examples showing how to create an AST using Java code (in TestCases.java). These
example will help you understand how the parser constructs the AST, which will in turn
help you understand the AST data structure.

• The util package containing a wrapper for invoking the Eclipse Java parser and a class
with error reporting methods that you should use instead of rolling your own. Read the files
in the util package before using them. Demo the package with the DemoHarness.javafile.

The starter kit is available on the web at

http://www-inst.eecs.berkeley.edu/˜cs164/starters/PA1.zip.

It is also accessible on your instructional Unix account at ˜cs164/public html/starters/PA1.zip.

The kit is designed to work with Eclipse version 3.0, which is the version of Eclipse installed on
the instructional machines. Eclipse is the Java IDE that you will use for project development in
this course.

You can download Eclipse 3.0 for your home machines from www.eclipse.org. Remember to
install also the remote testing plugin from our web site.

3.2 Importing the starter kit

To import the starter kit into Eclipse:

7

1. Start Eclipse. Just type ’eclipse’ in your Unix shell window.

2. The starter kit uses assert, which is a Java 1.4 feature, so you need to make sure Eclipse
is configured to use Java 1.4. In the menu bar, select Window/Preferences. In the tree pane
on the left of the Preferences dialog, select Java/Compiler. In the pane on the right, select
Use the Compliance and Classfiles tab. Make sure Compiler compliance level is set to 1.4.
Click OK.

3. Create a new project named PA1. (Go to File/New/Project and select Java, then click on Next
and name the project PA1.)

4. In the menu bar select File/Import....

5. Select the import source Zip file.

6. Under From zip file, select the starter kit. If you are using your instructional account, use
/home/ff/cs164/public html/starters/PA1.zip. If you are using another system,
use the path where you saved the starter kit.

7. Make sure the project PA1 is selected for Into folder.

8. Check Overwrite resources without warning. The starter kit overwrites the starting files for
project PA1, so you will get some warnings if you do not check this.

9. Click Finish.

10. Set the command line argument for your program. This argument specifies the SkimDecaf
program to interpret. In the menu bar, go to Run/Run.../Arguments. Set the argument
to tests/sample.decaf. Later, after you implement more functionality, you will change the
name to another SkimDecaf file in tests.

11. Run the starter program by opening the file Main.java in the editor and selecting Run/Run
As.../Java Appplication.

3.3 Eclipse JDT

You must use the Eclipse JDT AST for this project. JDT stands for Java Development Tools. Eclipse
is a generic IDE that can be configured for any programming language. JDT configures Eclipse to
run as a Java IDE.

Working with the Eclipse JDT AST will give you the chance to see how the principles explained in
lecture are used in a real-world programming tool. Also, this experience will help you if you ever
create your own Eclipse plugins.

The JDT AST is implemented in the Java package org.eclipse.jdt.core.dom. You can find
documentation for it in Eclipse by going to Help / Help Contents / JDT Plug-in Developer Guide
/ Reference / API Reference / org.eclipse.jdt.core.dom. Or simply place the cursor on the name of
the class you want to learn about and press F3 to see its source code, or F4 to see its class hierarchy.

The class ASTNode is the top-level class in the AST node class hierarchy. Most of the other classes
in this package are subclasses of ASTNode for specific expression and statement nodes.

8

The AST node classes have no public constructors. Instead, AST objects are created by calling
methods on a special factory class AST. Factory is a general term for a class or method used to
create objects. For example, the method AST.newAssignment() creates a new assignment node.

You will not need to use all the AST node types in this project. The ones you will need are:

AST Node Type SkimDecaf Usage Notes
CompilationUnit the root of the AST compilation unit is a different name for a

source file
TypeDeclaration class declaration In Java, this is used for class declarations

and interface declarations, but SkimDecaf has
only a class declaration.

MethodDeclaration method declaration
Block list of statements A compound statement enclosed in curly

braces. The bodies of if, while, and else are
always Block AST nodes.

ExpressionStatement expression statement Any expression is a legal statement, called an
expression statement. The expression is usu-
ally a print or assignment expression, but any
expression is legal. For example, the state-
ment 3 + 4; is useless but legal.

IfStatement if statement
WhileStatement while statement
MethodInvocation print expression In SkimDecaf the prit expression is a method

call with one argument.
Assignment assignment expression
InfixExpression arithmetic expression
SimpleName variable name
NumberLiteral integer literal

To see how these nodes are to qbe connected to form a legal AST, write a simple SkimDecaf pro-
gram and run it through the Eclipse q parser and view the AST created by the parser with the
ASTPrinter class.

3.4 The Visitor Pattern

You will use the Visitor pattern to interpret and pretty-print AST nodes. The Visitor pattern is an
instance of something called a design pattern.

Design patterns were introduced to help communicate experience in designing object-oriented
software. Programmers encounter similar design problems over and over again. Similar problems
usually have similar solutions, although the details vary. Thus, experienced programmers can
recognize a familiar problem and apply a variation of the familiar solution to that problem. Design
patterns are meant to allow new programmers to benefit from this experience.

According to the classic reference Design Patterns, by Erich Gamma, et. al., a design pattern has
four parts: a name, so we can easily talk about it; a problem statement; a generic solution to the
problem; and the consequences of the applying the pattern.

9

We provide a brief explanation of the Visitor pattern, using the visitor provided with the Eclipse
JDT AST as an example. You can find more information in the deign pattern book, as well as in
the Lab Section notes (to be posted on the web site).

• Pattern Name. Visitor.

• Problem. Imagine a large, complex class hierarchy, such as a hierarchy of AST nodes. Now
imagine that we need to implement several operations on the hierarchy. In our example the
operations are pretty-printing and interpretation. The traditional object-oriented solution is
to add a method for each operation. For example, every class would have a prettyPrint
method and an interp method. Unfortunately, this scatters the code for each operation
among many classes, making it hard to understand. Also, it interleaves the code for the
different operations. Finally, we don’t want to modify the classes directly, because they are
part of the Eclipse JDT. We would have to redo our modifications every time a new version
of Eclipse came out.

• Solution. Instead of adding methods to the class hierarchy, we will create a class for each
operation. This class, called a visitor class, has a method for each type in the hierarchy. In
the example, there is a method for each AST node type. The Interpreter class looks like
this:

class Interpreter extends ASTVisitor {
public boolean visit(Assignment n) {

...
}
public boolean visit(WhileStatement n) {

...
}
...

}

This class knows how to interpret every class in the AST hierarchy using the appropriate
method. Also, all the visitors extend ASTVisitor, so they have a uniform interface.

Now, we need only add an accept method to each class in the AST hierarchy. It looks like
this:

class WhileStatement {
...
public void accept(ASTVisitor n) {

n.visit(this);
}
...

}

Now, we can apply any visitor to the hierarchy, and we can easily create new visitors without
modifying the hierarchy.

10

• Consequences. Visitor has two main benefits: it makes it easy to add new operations, and it
encapsulates each operation in a separate chunk of code. A minor benefit is that the visitor
object provides a convenient place to maintain state during the operation. The main disad-
vantage is that it becomes harder to add new classes to the hierarchy. Adding a new class
requires adding a new method to each visitor. Another disadvantage is that the classes in the
hierarchy must expose enough functionality to support the visitors, breaking encapsulation.
For example, in a standard object-oriented solution the Eclipse designers might have kept
the list of statements in a block as private data. Since they used the Visitor pattern, they had
to create a public statements()method to provide this information to visitors.

In our case, the main disadvantage, that Visitor makes it harder to add new classes, does not
apply. The Java language (as well as SkimDecaf) has a well-known specification that changes
very little, so new AST classes will rarely need to be added.

The designers of Eclipse foresaw the need for AST visitors, so they provided a visitor interface,
ASTVisitor, and accept methods for each node type.

There are a few details to be aware of in using the Eclipse visitors. First, in a vanilla visitor, the
visit methods all return void. In Eclipse, they return a Boolean value which can be used to control
traversal of the AST. If the visit method returns true, accept will automatically visit the children
of the current node. You need finer control over the traversal order, so all of your visit methods
will return false. Your visit methods will traverse the AST by calling accept on child nodes.

Second, ASTVisitor is an abstract class, so if you extend it directly, you will need to write a visit
method for every AST node type, including many you do not need for your project. Instead,
extend GenericVisitor, which implements do-nothing methods for each node type.

4 Requirements

General Requirements

All code must be in the files provided in the starter kit. You may not create new files. If you want
to create a new class, create it as an inner class in one of the starter kit files.

All code must be in a Java package named edu.berkeley.cs164.interp. This package has
been created for you in the starter kit.

Interpreter

The interpreter must be in a class called Interpreter, which must extend GenericVisitor.
The interpreter must interpret SkimDecaf according to the language definition in this handout.

Pretty-Printer

The pretty-printer must be in a class called PrettyPrinter,which must extendGenericVisitor.

11

Handing in the Assignment

You will submit the assignment using CVS. Recall that you will use CVS also to upload your
solution and test cases for remote testing. To submit your solution, you will check in your solution
exactly as for remote testing, except that you will include in your project a file named DONE,
which will tell our scripts that this is your final check in. The file named DONE should reside at
the top level of your directory hierarchy.

12

