
CS164: Programming Assignment 4
includes Written Assignment 7!

SkimDecaf Semantic Analysis and Code Generation

Assigned: Monday, October 25, 2003
WA7 Due: Thursday, Nov 4, 2004, at before class

PA4 Due: Monday, November 8, 2004, at 11:59 PM

Start Early!

October 25, 2004

1 Introduction

Overview

In this assignment, you will implement both the semantic analyzer and the code generator for
SkimDecaf, a non-object-oriented subset of Decaf. (You will implement the remaining Decaf fea-
tures in PA5.) At the end of this assignment, you will have a complete compiler for a sufficiently
powerful language. If interested, you will be able to compare the performance of your generated
code with that of your PA1 interpreter.

Somewhat unusually, you will first implement a (simple) code generator, and only then a semantic
analyzer, followed by the full code generator. The purpose of this reordering is to show you where
and why semantic analysis is needed.

The assignment has again been broken into several steps. After you get familiar with generating
x86 code for SkimDecaf ’s language features, you will complete this assignment in three steps.

1. You will first implement code generation for those Decaf features which don’t require any se-
mantic analysis. (In this step, you will assume that your compiler is fed only correct SkimDe-
caf programs.)

2. Next, you will add semantic analysis needed to generate code for the remaining SkimDecaf
features. (You will still assume correct input programs.)

3. Finally, you will implement semantic checks that are needed to ensure that a semantically
illegal SkimDecaf program doesn’t (i) crash your compiler; (ii) make your compiler generate
incorrect code; or (iii) cause an error in the assembler or the linker.

1

On this project, you will work in pairs or alone. You are allowed to form different teams than those
in previous programming assignments, but you are not allowed to disband a team in the middle
of a project assignment. You must submit a file named PARTNERS, which should list the login
names of the both partners. The PARTNERS file has a specific format, which you must follow
exactly. Handling in will be done as in the previous paojects; watch the website for updates. The
failure to submit the PARTNERS file will result in a (small) penalty.

This assignment differs from the previous three in two ways:

• Written Assignment 6: While working on this programming assignment, you will have to
work on WA7, which is due earlier than PA4! In WA7, you will have to answer ten (10)
questions about the design of your compiler. You can find these questions in Step 1 and
Step 3 of this handout. The assignment will be turned in as a hard-copy as usual.

• The starter kit. The starter kit is minimal. Besides examples of how to generate x86 code, the
starter kit will contain only one class, with methods for printing the various error messages
from the semantic checker.

Optimania. As mentioned above, at the end of PA4, you’ll be able to compare the performance of
your code with that of your interpreter. This benchmarking is optional in PA4, but it may motivate
you to implement a better code generator and/or an optimizer. Producing an efficient code in
PA4 may pay off in PA5, which will include an Optimania contest in which you can earn extra
credits for fast-running code (only if this code is also correct). If you are interested in participating
in Optimania, you may want to start implementing optimizations already in PA4. Be careful,
though: Grading of PA4 is going to be very strict as to the correctness of the generated code. So,
if your optimizer and optimized code generator is not fully debugged, don’t submit it as part of
your PA4 solution.

What you are going to learn and why it is useful

First, you are going to learn how to generate assembly code for a procedural language. In doing
so, you will learn that a simple code generator is very inefficient, and you will quite likely spot
many opportunities for optimizations of the generated code.

Second, you will learn hands-on what facts the semantic analysis collects, and why the code gen-
erator cannot (in many case) do its job without the semantic analyzer.

2 Getting the Project Files

The starter kit is available on the web at:

http://www-inst.eecs.berkeley.edu/˜cs164/starters/PA4.zip

You can also get the starter kit from your Unix account at:

˜cs164/public html/starters/PA4.zip .

2

Usage of the starter kit is the same as PA1. Please to refer to the PA1 handout for information on
how to import the zip file into a new project.

The solution to PA3 (which includes the lexer) is available at:

http://www-inst.eecs.berkeley.edu/˜cs164/starters/PA3solution.jar

We are distributing our solution as a jar file containing all the necessary classes, as well as the
source code. Do the following to get the jar imported into your project:

1. Download the jar file to your PA4 project directory. Refresh the project in Eclipse so it sees
the jar file.

2. In Eclipse, right-click on the project and go to Properties, then Java Build Path in the dialog,
and then the Libraries tab. Click the Add JARs button, and choose the PA3solution.jar
file.

3. Right-click on PA3solution.jar in the Package Explorer, and then go to Properties, then
Java Source Attachment. Click the Workspace button, and select PA3solution.jar again.
Now you should be able to view the available source code in the jar.

4. See the source of Main in the edu.berkeley.cs164.parser package to see how to in-
voke the parser.

3 SkimDecaf Language Specification

In this project, you are going to implement a complete compiler for a subset of Decaf. This subset
is similar to SkimDecaf, the language of PA1, but it’s not identical. Still, we are going to refer to
the language of PA4 as SkimDecaf.

This section lists the language features that you are to implement in this assignment. Further
clarifications and requirements are given in Section 4. Read that section carefully.

As you will notice, SkimDecaf contains no “object-oriented” language features of Decaf, such as
object fields and inheritance. You will implement those in PA5.

SkimDecaf is described in two steps. First, we constrain Decaf into SkimDecaf by listing Decaf ’s
syntactic features that SkimDecaf does not support. In doing this, we refer to the Decaf grammar
in PA3. Obviously, you are to implement only those language features that are in SkimDecaf gram-
mar. Note, however, that the PA3 parser provided by us parses the entire Decaf language, and so
it will not alert you when your input programs contain a non-SkimDecaf feature.

Second, we list semantic properties of SkimDecaf programs that are not specified by the SkimDecaf
grammar.

SkimDecaf syntax. The SkimDecaf language is a subset of Decaf. Specifically, SkimDecaf ’s grammar
is identical to the Decaf grammar in PA3, except for the following:

• A legal SkimDecaf program contains only one class definition. This class is named Program .
Clearly, the Program class cannot extend another class, so the keyword extends is not
supported.

3

• All fields in a class definition must be static .

• All methods in a class definition must be static .

• A SkimDecaf program may not contain the “dot” operator. That is, a method call consists
only of the method name, and a 〈SIMPLEEXPR〉 must be an 〈ID〉.

• SkimDecaf does not support the new keywords. That is, a SkimDecaf program cannot create
non-static objects (i.e., objects that reside in the heap).

• SkimDecaf does not support the this keyword. As a result, a field may not have the same
name as a formal argument or a local variable, otherwise, you would never be able to access
those fields, since their name would be hidden.

• The keyword null is not supported.

SkimDecaf semantics:

• Each method must end with a return statement. Specifically, the last statement of the outer-
most block in the method body must be a return statement.

• The class Program must contain a method main , which is the program’s entry point. This
method must be static, void, and have no arguments.

• The types that can appear in declarations are int , boolean , and String . The only ex-
ception is the type Program , which may appear as the name of the only SkimDecaf class
definition.

• The print statement has one argument which can be of type int , boolean , or String .
Except for boolean arguments, the print statement behaves as expected: it prints the values
of the integer, or the content of the string (without the surrounding quotes), respectively.
Note that this is an exception to the ”no overloading rule” above, but it’s OK because print
will be a bulit in method, so you can handle it differently from regular methods. For boolean
arguments, the print statement prints 1 for a true argument, and 0 for a false argument.

• The type of a string literal is String . SkimDecaf provides exactly one operation on strings:
the print statement. Other operations, such as equality comparison or concatenation, are not
supported. However, strings may be used in fields, method call arguments, and method call
return values. The run-time representation of strings is up to you. It’s probably a good idea
to follow the string code generation scheme of the gcc compiler (see below).

4 Project Steps

In this programming assignment, the starter kit contains nearly no skeleton code. The starter
kit provides only one class, named SemanticError , that you will have to use for printing type-
checker’s error messages. We also provide a few example files on how to generate assembly code.
All provided files are described below.

4

Requirements In contrast to previous programming assignments, we are only providing a very
bare-bones starter kit. Since you will have to write a fully functional compiler, all we require that
your compiler compiles a SkimDecaf file into an assembly file. Specifically, when your compiler is
invoked as follows

java Main inputfile outputfile

it must compile the file named inputfile into a file outputfile .

Step 0 – Getting familiar with the x86 assembly language.

In this step, you are going to get familiar with the target language of your compiler, the x86 as-
sembler. You will also learn tools for compiling and debugging x86 assembler programs. In this
step, you will write no code for your compiler yet, and you will not answer any WA7 questions.

You don’t need to master the x86 assembly language; you only need to know enough to write a
code generator that will translate your SkimDecaf programs into x86 programs that will compile
and run correctly. Since your code generator will produce a simple code, you will be able to get by
with knowing maybe two dozen assembly instructions and directives. Furthermore, you will be
able to see what assembly code to generate by translating your writing your Decaf programs into
C (an easy task even if you don’t know C) and then translating the C programs to x86 assembly
with a C compiler.

x86 Machines. The instructional Solaris/SPARC machines on which you have been developing
your compilers (e.g., solar.cs and cory.cs) run on SPARC processors, and so they cannot execute
the x86 code that your compiler will generate. To compile and run your x86 code, you will have
to log in to one of the many instructional Solaris/x86 machines:

coralsea.cs, decatur.cs, triton.cs, trenton.cs, johnfk.cs, iwojima.cs, intrepid.cs, hornet.cs,
halsey.cs, fulton.cs, johnpaul.cs, leahy.cs, lincoln.cs, nautilus.cs, nimitz.cs, merrimac.cs,
skipjack.cs, saratoga.cs, ruebenj.cs, obannon.cs, midway.cs, monitor.cs, somers.cs, tarawa.cs,
angeles.cs, america.cs, belknap.cs, brooke.cs, chasseur.cs, clermont.cs.

The need to compile and run the generated code on a different machine should not complicate
your development process: all you need to do is to create a terminal (shell) window in which
you remotely login to an x86 machine, using ssh; since the Solaris/SPARC machine that runs
your Eclipse process and the Solaris/x86 machine share the file system, you won’t have to ftp the
generated code to your Solaris/x86 machine. If you are working from home, then you will have to
use sftp to move your code to the Solaris/x86 machines (unless you have a Solaris/x86 machine
at home).

Note regarding NFS. The instructional machines use NFS to share your files across different ma-
chines. One issue with NFS is that after you save a file on one machine, there is occasionally a
delay of several seconds before the save reaches other machines. During this time, if you try to
read or execute the file on a second machine, it may read the old version.

If you want to develop your compiler on your home Windows/x86 or Linux/x86 machine, see the
Be Careful notes below.

5

Compiling and running x86 programs. Your generated x86 programs will have the file extension
.s . The starter kit contains an example x86 program in file sample.s . This program shows one
possible way of translating the provided SkimDecaf program simple.decaf into x86.

To compile an assembly program into an executable format, you will use the C compiler gcc .
Execute the compiler from a shell as follows:

gcc simple.s

This command will create the executable file named a.out (a.exe on Windows).

Normally, the C compiler compiles a C program into an executable program. In the command
shown above, the C compiler recognizes from the file extension that the argument file is already
in an assembly form, and so the compiler merely assembles it into an executable file. The com-
piler also links your assembly file with C libraries. We will use the C library function printf to
implement the SkimDecaf statement print .

To run the executable SkimDecaf program produced by gcc, run from a shell window

./a.out

Debugging x86 programs. To debug your code generator, you may want to run your executable
program from the gdb debugger. From this debugger, you can single-step machine instructions
of the program, print the executable program in disassembled format, as well as examine the
contents of machine registers. You will find the following gdb commands handy:

• To start the debugger, run the following command from a shell window: gdb ./a.out .
This will start the debugger and load into it your executable program.

• To run the executable program from within the debugger, use the gdb command run . After
the program terminates, you can run it again. Just enter run again.

• Before you run the program, you may want to set a breakpoint at the entry point of a proce-
dure. Use the gdb command break main where main could be the name of any procedure.

• To single-step the execution (instruction by instruction), use the stepi command.

• To print the executable code in a disassembled format, use the gdb command x . For example,
x /10i main will print 10 instructions starting at the address with the label main , which
is where the code of the method main starts. Pressing ENTER will print the following 10
instructions.

After you executed the x command with the /...i format argument, you can run x without
the format. For example, you can print the instruction at the beginning of main with x
main . The print the next instruction, just press ENTER.

• You can print registers much like you print variables. For example, to print eax, use print
$eax . To print 8 words with addresses just before esp, use x/8x $esp-32 (examine 8
hexwords at $esp-32 ; use help x for more information on this command). To print all
registers, use info reg .

6

• To learn more about these and other gdb commands, use the handy command help .

• There are many useful gdb tutorials on the internet. Be aware, however, that you will be us-
ing almost exclusively the advanced features of gdb — those designed for debugging machine
code, at the instruction level. In contrast, the typical use of gdb is to debug C/C++ code, at
the statement level. Available tutorials reflect the typical usage. One tutorial that does cover
machine-code debugging is at

http://www.unknownroad.com/rtfm/gdbtut/gdbadvanced.html

Examining generated x86 code. To determine what assembly code to generate for a particular
SkimDecaf construct, you can again use the C compiler gcc . All you need to do is to write an
equivalent of your SkimDecaf program in the C language, and use gcc to translate the C program
into assembly using the following command:

gcc -S -O0 test.c

The -S option forces a compilation of the C program in the file test.c into assembly file test.s ,
as opposed to the executable code a.out . The -O0 option (spelled “o-zero”) turns off optimiza-
tions, so that gcc generates a simple code, giving you examples of what code you may want to
generate in your compiler.

Note that the code related to the activation record in main may differ from that code in other
functions, which is to say that the code generator may need to handle main differently.

Writing C-variants of your SkimDecaf programs is not difficult (doing the same for Decaf programs
in PA5 is going to be harder). See for example simple.decaf and the equivalent simple.c in
the starter kit. The internet offers several sites comparing Java and C. If you need more than that,
a nice tutorial on C (in Postscript format) can be found at

http://www.cs.mun.ca/˜paul/cs4751/material/c/cfj-two-page.ps

Developing your code on your home Windows/x86 machine. If you want to develop your Decaf
compiler on your home Windows/x86 machine, use Cygwin. Cygwin is “a Linux-like environ-
ment for Windows.” When downloading Cygwin onto your machine, download and install also
gcc and gdb, which come as part of cygwin. Cygwin can be found on www.cygwin.com .

Be careful: gcc for Windows/x86 generates a slightly different assembly code than gcc for So-
laris/x86 (this is because activation record formats and naming conventions differ slightly be-
tween Solaris and Windows). Consequently, after developing your Decaf compiler on Windows,
you will have to port your code generator to Solaris (because this is where we’ll grade your com-
piler and do remote testing). With good software design, porting your code generator should be
relatively straightforward.

A sample of changes that you’ll need to make when porting from Windows to Solaris (find these
changes by comparing the output of gcc -S on the two operating systems):

• Different pragmas (i.e., assembler directives) for introducing procedure names and for allo-
cating storage for static fields (which are represented as global variables in C).

7

• On Windows, code generator prepends the ’ ’ character to procedure names.

Developing your code on your home Linux/x86 machine. You can also develop your compiler
on a Linux machine. In the case of Linux, installing gcc and gdb should be unnecessary as these
two tools typically come pre-installed with Linux. Again, you’ll need to port your code genera-
tor to Solaris/x86, as this is where we’ll be doing all the grading. Test your ported code generator
thoroughly!

Classes to Modify:

None.

Other Files Needed:

simple.decaf A simple SkimDecaf program.
simple.c The same program translated (by hand) into C.
simple.s One alternative of what your compiler could generate when compiling

simple.decaf into x86. This file has been generated by gcc -S -O0 .
simple-annotated.s The same file, but annotated by us so that you can understand

which x86 instructions implement which SkimDecaf features.
See also the solution to WA5.

Step 1 – Code Generation without Semantic Analysis

In this step, you will implement code generation for those constructs of SkimDecaf that do not
require any semantic analysis. The pedagogical purpose of implementing (some) code generation
before semantic analysis is two-fold: (1) you will obtain a running compiler for an interesting sub-
set of SkimDecaf pretty soon; and (2) you will learn which language features can be code-generated
without semantic analysis, which cannot, and why this is so.

Specifically, your task is to determine which language features described in Section 3 of this hand-
out can be correctly implemented without semantic analysis.

In other words, you are trying to identify a subset of SkimDecaf such that you can take a program
that is correct and legal in this subset of SkimDecaf and your compiler with no semantic analysis
will be able to produce correct code for it. It is OK for your compiler to crash or generate bad code
for a an input program that either has a type error, or which in some way fails to adhere to the
subset of SkimDecaf you are defining.

What do we mean by “no semantic analysis”? This restriction means that your compiler in this
step will maintain no symbol tables, and will propagate no types through the AST. The code gen-
erator is, of course, allowed to visit declaration AST nodes and generate code for these nodes. In
other words, when you are emiting code for a statement, you will have to make some assumptions
about the types of variables in that statement, and you won’t be able to distinguish one variable
from another.

Try to implement as many features of Skim Decaf as you can without semantic analysis. You
will earn full credit for this part if you identify and correctly implement a maximal subset of Skim

8

Decaf, that is, if there is no way to add more features without semantic analysis. Note that different
teams may identify different maximal subsets. You will be graded on this step by your answers in
WA7 so please be thorough.

WA7: Answer the following questions. Justify your choice of SkimDecaf features that you are able
to implement without semantic analysis. Specifically, answer the following questions. For each
question, explain the reasons why a particular feature could be implemented without semantic
analysis. The answer to each bullet should be at most two-sentences long.

1. Which subset of types int , boolean , String does your semantic-analysis-free compiler
support in expression evaluation?

2. Which subset of types int , boolean , String does your semantic-analysis-free compiler
support in in the print statement?

3. Are you supporting procedure calls?

4. If yes, what are the limitations on your method calls? (Can calls have arguments? Can they
return values?)

5. What subset of SkimDecaf statements can you support?

6. Which of the following can you support (static fields, variables)?

7. Give an example of a feature that you could not support without semantic analysis, and
explain why.

Step 2 – Semantic Analysis for Code Generation

In this step, you will add that part of semantic analysis that’s needed to generate code for the
remaining SkimDecaf features. Like in Step 1, you will assume that your compiler is fed only
correct SkimDecaf programs. That is, the input programs will contain no type error from which
your compiler needs to recover. Consequently, you will implement no error checking (and print
no error messages) in this step.

Hints:

• Propagating type information in AST nodes. You may recall that the visitor implemented
in the AST hierarchy doesn’t support returning a value other than a boolean. In order to
propagate the type information during type checking, you can use the same trick as in PA1.

• Storing type information in AST nodes. To store the type of the AST node directly in this
node, you can use the methods setProperty and getProperty of the class ASTNode.

Step 3 – Full Semantic Analysis

In this step, you will complete the SkimDecaf compiler by implementing semantic checks that
discover semantic errors in incorrect SkimDecaf programs,

9

First, you are going to write input SkimDecaf programs that crash your compiler, the assembler,
and/or your generated code. These programs will convince you that a decent semantic analysis
is useful, and show you what kind of bugs you can find with a semantic checker.

You will then implement the semantic analysis.

Note: Correct implementation of the semantic checks constitutes a significant part of the grade for
this programming assignment.

WA7: Answer the following questions. For the following three questions, consider a compiler
that was built assuming that it would ever see only legal SkimDecaf programs (i.e., programs with
no type errors, no missing declarations, no double declarations).

1. Write a short SkimDecaf program that makes your SkimDecaf compiler misbehave (crash, or
terminate with an exception). Explain the reason for the crash.

2. Write a short SkimDecaf program that makes your assembler (gcc) print an error message.
Explain how it is possible that the error was propagated all the way to the assembler.

3. Write a short SkimDecaf program for which your compiler generates incorrect code. That is,
the generated code either crashes or otherwise computes an incorrect result.

Semantic Checks. You will have to implement the semantic checks shown below. Note that the
grammar symbols denoted with 〈SYMBOL〉 refer to the Decaf grammar in the PA3 handout. Also
note that since PA4 does not deal with any object-oriented features (in particular inheritance), the
phrase “the type T1 conforms to the type T2” should be interpreted in PA4 as “the type T1 equals
the type T2”. You will implement type conformance in PA5, which will deal with inheritance.

The semantic checks:

1. No identifier is declared twice in the same scope. This applies to method declarations as
well. i.e. no overloading; you can not declare two methods with the same name, even if
they have different parameters. However, method names are in a separate namespace from
fields, locals and parameters, so having a field with the same name as a method IS allowed.

2. No identifier is used unless it has been previously declared in an enclosing scope. In the
case of methods, you can use them before they are defined, but you can’t use a non-existent
method.

3. The program must contain exactly one class called Program . This class has a static method
called main that has no parameters and a void return type.

4. The number of arguments in a method call must be the same as the number of formals, and
the types of arguments in a method call must conform to the types of the formals.

5. If a method call is used as an expression, the method must return a result.

6. If a method is declared to return void, all return statements in it must not have an expression.

7. If a method is declared to return a non-void type, all return statements in it must have an
expression that conforms to the declared type of the method.

10

8. The expression in if and while must have type boolean .

9. The operands of 〈ARITHOP〉s, 〈RELOP〉s and the unary minus operator (−) must have type
int .

10. The operands of 〈EQOP〉s must have conforming types (i.e., either the first operant conforms
with the former or vice versa).

11. The operands of 〈CONDOP〉s and the logical not (!) must have type boolean .

12. The type of 〈EXPR〉s in an assignment must conform to the type of 〈LOCATION〉s.

13. The procedure must end with a return statement.

Printing the error messages. To print the error messages detected by your semantic checker, use
the provided class SemanticError . For input programs with multiple errors, you are required
to report at least one error, but you are not required to print more than one error. When passing
arguments for the SemanticError, please pass null for the ErrorPosition.

Handing in the Assignment

You will hand in this assignment the same way you did PA3.

Good luck!

11

