
1

Mining Jungloids to Cure
Programmer Headaches

Dave Mandelin, Lin Xu, Ras Bodik UC Berkeley
Doug Kimelman IBM

Motivation: the price of code reuse

• Inherently, reusable code has complex APIs. Why?
– Many classes and methods
– Indirection
– Many options

• Simple tasks often require arcane code — jungloids
– Example. In Eclipse IDE, parsing a Java file into an AST
– simple: a handle for the Java file (object of type IFile)
– simple: what we want (object of type CompilationUnit)
– hard: finding the parser

• took hours of documentation/code browsing

ICompilationUnit cu = JavaCore.createCompilationUnitFrom(javaFile);
CompilationUnit ASTroot = AST.parseCompilationUnit(cu, false);

First key observation

• Part 1: Headache task requirements can usually be
described by a 1-1 query:

“What code will transform a (single) object of (static)
type A into a (single) object of (static) type B?”

• Our experiments:
– 12 out of 16 queries are of such single-source, single-

target, static-type nature

• Same example:
– type A: IFile, type B: CompilationUnit

ICompilationUnit cu = JavaCore.createCompilationUnitFrom(javaFile);
CompilationUnit ASTroot = AST.parseCompilationUnit(cu, false);

First key observation (cont’d)

• Part 2: Most 1-1 queries are correctly answered
with 1-1 jungloids

• 1-1 jungloid: an expression with single-input, single-
output operations:
– field access; instance method calls with 0 arguments;

static method and constructor calls with one argument ;
array element access.

• Our experiments:
– 9 out of 12 such 1-1 queries are 1-1 jungloids
– Others require operations with k inputs

ICompilationUnit cu = JavaCore.createCompilationUnitFrom(javaFile);
CompilationUnit ASTroot = AST.parseCompilationUnit(cu, false);

Prospector: a jungloid assistant tool

• Prospector: a programmer’s “search engine”
– mine API implementation and sample client code
– search a jungloid “database”
– paste the result into programmers code

• User experience:
– similar to code assist in Eclipse or .Net
– editor cursor position specifies both target type B and

context from which the source type A is drawn

• Soundness guarantees?
– such as “does the mined jungloid do the work I intend?”
– no such guarantees, of course (because the query doesn’t

specify the full intention)

Program representation

• The representation is defined to support 1-1
jungloid mining
– A directed graph where each path is a 1-1 jungloid
– Vertices: pointer types (instances and arrays)
– Edges: well-typed expressions with single pointer-typed

input and single pointer-typed output

• A small part of our representation:

JavaEditor IWorkbenchPartSite Shell

ISourceViewer StyledText

.getSite() .getShell()

.getTextWidget()

.ge
tV

iew
er(

) .getShell()

2

Second key observation

The jungloid that answers a 1-1 query “How do I get
from A to B?” typically corresponds to the shortest
path from A to B.

– Fewer steps are fewer chances to
• throw an exception
• return semantically unrelated objects
• confuse the programmer

JavaEditor IWorkbenchPartSite Shell
.getSite() .getShell()

ISourceViewer StyledText
.getTextWidget()

.ge
tV

iew
er(

) .getShell()

IViewPartInputProvider UserInputWizardPage

String

JFormattedTextField

Object MouseMotionListener

EventListenerProxy

Experiment (shortest-path jungloids)

Result:
– in 10 out of 10 queries, shortest path produced correct

code

Breakdown:
9 found best code (in 3, path length = 1, but code non-

trivial)
1 found correct code, but the graph contains a subjectively

better jungloid of equal length

Conclusions:
– shortest path a very good heuristic for finding correct

jungloids
– offering k shortest jungloids likely to find the best jungloid

The downcast problem

• Problem: Java code is full of downcasts
– containers return Objects
– type depends on configuration files or other input

IStructuredSelection ssel = (IStructuredSelection) sel;
ICompilationUnit cu = (ICompilationUnit) ssel.getFirstElement();
CompilationUnit ast = AST.parseCompilationUnit(cu, false);

CompilationUnitICompilationUnit

IStructuredSelection Object

.getFirstElement()

AST.parseCompilationUnit(_, false)

.getFirstElement()

ActionContext ac = new ActionContext(sel);
char[] char_ary = ac.toString().toCharArray();
CompilationUnit resultVar = AST.parseCompilationUnit(char_ary);

The subtype mining algorithm

• Mining a code base
– Mine sample API client code base to find valid casts
– Assumption: Code base contains the scenario the user wants

• Goal: for A.f() declared to return object of T, find a
superset of possible dynamic subtypes
– Superset ensures that the correct jungloid is in the graph

• Idea: mine invocation sites of A.f(), find casts reached by
return value

• Algorithm: flow insensitive, interprocedural inference
– (T) e1 → T ∈ types[e1]
– e1 instanceof T → T ∈ types[e1]
– types[e1] ∈ types[(e0 ? e1 : e2)]
– T x = e1 → types[x] ⊆ types[e1]

The big picture

• Prospector architecture
– cast miner
– shortest path searcher
– representation
– UI

TODO (goal of slide is to use the architecture to recap how
prospector works)

Summary

• Two key observations
– many headache scenarios are searches for 1-1 jungloids
– most jungloids can be found with “k-shortest paths” over a

simple program representation based on declared types +
static cast mining

• Under the hood
– new program representation
– cast mining
– memory footprint reduction (graph clustering)

• Prospector status
– for Java under Eclipse
– to be available … Summer 2004

3

Future work

• Semantics
Q: Is this jungloid semantically valid?
A: Model checking

• Types
Q: Can we mine more kinds of jungloids?
A: Java 1.5 generics
A: Inferring polymorphic types
A: Inferring input types
A: Typestates

• Plenty more…

Future work

• Graph-theoretic considerations:
– breaking 2-cycles (conversion from A to B and back)
– high-degree nodes may need special handling.
– assign weights regarding probabilities that expressions will

succeed, and use weighted SP.
• Generalize the downcast problem

– into a more general inference of narrower types.
• Modeling and inferring generics/polymorphic types

– legacy code
• k-shortest path results

– ranking
– clustering

• Dynamic techniques
– finding downcasts controlled by configuration data

