Symbol Tables and Static Checks

Lecture 14

cs164 Prof. Bodik, Fall 2004 1

The Compiler So Far

+ Lexical analysis
- Detects inputs with illegal tokens
- eg. main$ ()
* Parsing
- Detects inputs with ill-formed parse trees
* e.g.. missing semicolons

+ Semantic analysis
- Last “front end" phase
- Catches all remaining errors

cs164 Prof. Bodik, Fall 2004

A sample semantic analyzer

works in two phases
- ie., it traverses the AST created by the parser:

1. For each scope in the program:
process the declarations =
- add new entries fo the symbol table and
- report any variables that are multiply declared
process the statements =
- find uses of undeclared variables, and

- update the "ID" nodes of the AST to point to the
appropriate symbol-table entry.

2. Process all of the statements in the program again,

use the symbol-table information to determine the type of each
expression, and to find type errors.

cs164 Prof. Bodik, Fall 2004

Outline

+ How to build symbol tables

- How to use them to find
- multiply-declared and
- undeclared variables.

+ How to perform type checking

cs164 Prof. Bodik, Fall 2004

Introduction

* typical semantic errors:
- multiple declarations: a variable should be declared
(in the same scope) at most once
- undeclared variable: a variable should not be used
before being declared.

- type mismatch: type of the left-hand side of an
assignment should match the type of the right-
hand side.

- wrong arguments: methods should be called with
the right number and types of arguments.

cs164 Prof. Bodik, Fall 2004 4

Symbol Table = set of entries

* purpose:
- keep track of names declared in the program
- names of
« variables, classes, fields, methods,
+ symbol table entry:

- associates a name with a set of attributes, e.g.:
« kind of name (variable, class, field, method, etc)
+ type (int, float, etc)
* nesting level
+ memory location (i.e., where will it be found at runtime).

cs164 Prof. Bodik, Fall 2004 6

Scoping

+ symbol table design influenced by what kind of
scoping is used by the compiled language

+ In most languages, the same name can be
declared multiple times
- if its declarations occur in different scopes, and/or
- involve different kinds of names.

cs164 Prof. Bodik, Fall 2004

Scoping: example

+ Java: can use same hame for
- aclass,
- field of the class,
- a method of the class, and
- alocal variable of the method
< legal Java program:

class Test {

int Test;

Test() { double Test; }
}

cs164 Prof. Bodik, Fall 2004

Scoping: overloading

+ Java and C++ (but not in Pascal or C):
- can use the same name for more than one method

- as long as the number and/or types of parameters
are unique.

int add(int @, int b);
float add(float a, float b);

cs164 Prof. Bodik, Fall 2004

Scoping: general rules

+ The scope rules of a language:
- determine which declaration of a hamed object corresponds
to each use of the object.
- i.e., scoping rules map uses of objects fo their declarations.
+ C++and Java use static scoping.
- mapping from uses to declarations is made at compile time.
- C++ uses the "most closely nested" rule

+ ause of variable x matches the declaration in the most closely
enclosing scope such that the declaration precedes the use.

+ a deeply nested variable x hides x declared in an outer scope.
- in Java:
+ inner scopes cannot define variables defined in outer scopes

cs164 Prof. Bodik, Fall 2004

Scope levels

+ Each function has two or more scopes:
- one for the parameters,
- one for the function body,

- and possibly additional scopes in the function
+ for each forloop and
+ each nested block (delimited by curly braces)

cs164 Prof. Bodik, Fall 2004

Example (assume C++ rules)

void f(int k) { // kis a parameter

intk=0; // also a local variable (not legal in Java)
while (k) {

intk=1; // another local var, in a loop (not ok in Java)
}

}
- the outmost scope includes just the name "f", and
- function f itself has three (nested) scopes:
1. The outer scope for f just includes parameter k.

2. The next scope is for the body of f, and includes the variable k
that is initialized to O.

3. The innermost scope is for the body of the while loop, and
includes the variable k that is initialized to 1.

cs164 Prof. Bodik, Fall 2004

TEST YOURSELF #1

- This is a C++ program. Match each use to its declaration, or
say why it is a use of an undeclared variable.

class Foo {
int k=10, x=20;
void foo(int k) {
int a = x;
int x = k;
int b = x;
while (...) {
int x;

3
if (x ==k {intx=y;}
H

cs164 g%f Bodik, Fall 2004

Dynamic scoping

+ Not all languages use static scoping.
+ Lisp, APL, and Snobol use dynamic scoping.
+ Dynamic scoping:
- A use of avariable that has no corresponding
declaration in the same function corresponds to the

declaration in the most-recently-called still
active function.

cs164 Prof. Bodik, Fall 2004 14

Example

+ For example, consider the following code:
void mainQ) { f1Q; f20; }
void f1Q) { int x = 10; gQ; }
void f2(Q) { String x = "hello"; f3Q; gQ; }
void 3() { double x = 30.5; }

void g { print(x); }

cs164 Prof. Bodik, Fall 2004

TEST YOURSELF #2

1

Assuming that dynamic scoping is used, what is
output by the following program?

void mainQ { int x = 0; f1Q; 9Q; f20Q; }
void f1Q) { int x = 10; gO; }
void f2Q) { int x = 20; f1Q; 9Q; }

void g { print(x); }

cs164 Prof. Bodik, Fall 2004 16

Static vs dynamic scoping

- generally, dynamic scoping is a bad idea
+ can make a program difficult to understand
+ a single use of a variable can correspond to
- many different declarations
- with different types!

cs164 Prof. Bodik, Fall 2004

Used before declared?

+ can a name be used before they are defined?

- Java: a method or field name can be used before
the definition appears,
+ not true for a variable!

cs164 Prof. Bodik, Fall 2004 18

Example

class Test {
void fQ {

val = 0;
// field val has not yet been declared -- OK
90
// method g has not yet been declared -- OK
x =13
// var x has not yet been declared -- ERROR!
int x;

¥
void g {}

int val;

cs164 Prof. Bodik, Fall 2004

Simplification

+ From now on, assume that our language:
- uses static scoping
- requires that a//names be declared before they are used
does not allow multiple declarations of a hame in the same
scope
+ even for different kinds of names
- does allow the same name to be declared in multiple nested
scopes
+ but only once per scope
uses the same scope for a method's parameters and for the
local variables declared at the beginning of the method

* Rules in PA4/5 may differ slightly!

cs164 Prof. Bodik, Fall 2004 20

Symbol Table Implementations

+ Inaddition to the above simplification,
assume that the symbol table will be used to
answer two questions:

1. Given a declaration of a name, is there already a
declaration of the same name in the current scope
+ ie., is it multiply declared?

2. Given a use of a name, to which declaration does it
correspond (using the "most closely nested" rule),
or is it undeclared?

cs164 Prof. Bodik, Fall 2004

Note

+ The symbol table is only needed to answer
those two questions, i.e.

- once all declarations have been processed to build
the symbol table,

- and all uses have been processed to link each ID
node in the abstract-syntax tree with the
corresponding symbol-table entry,

- then the symbol table itself is no longer needed

+ because no more lookups based on name will be performed

cs164 Prof. Bodik, Fall 2004 22

What operation do we need?

*+ Given the above assumptions, we will need:

1. Look up a name in the current scope only
to check if it is multiply declared

2. Look up a name in the current and enclosing scopes
to check for a use of an undeclared name, and
to link a use with the corresponding symbol-table entry

3. Insert a new name into the symbol table with its attributes.

4. Do what must be done when a new scope is entered.
5. Do what must be done when a scope is exited.

cs164 Prof. Bodik, Fall 2004

Two possible symbol table implementations

1. alist of tables
2. atable of lists

+ For each approach, we will consider
- what must be done when entering and exiting a scope,
- when processing a declaration, and
- when processing a use.
- Simplification:
- assume each symbol-table entry includes only:
the symbol name
its type
the nesting level of its declaration

cs164 Prof. Bodik, Fall 2004 24

Method 1: List of Hashtables

The idea:
- symbol table = a list of hashtables,
- one hashtable for each currently visible scope.

When processing a scope S:

front of list end of list

o
declarations made in
scopes that enclose S

v
declarations
made in S

cs164 Prof. Bodik, Fall 2004

Example:
void f(int a, int b) {
double x;
while (...) {iInt X, y; ... }

}
void gO { fO; }

After processing declarations inside the while loop:

List of hashtables: the operations

1. On scope entry:
- increment the current level number and add a new
empty hashtable to the front of the list.
2.To process a declaration of x:

+ look up x in the first table in the list.

+ If it is there, then issue a "multiply declared variable"
error;

- otherwise, add x to the first table in the list.

cs164 Prof. Bodik, Fall 2004

< int.3 a:int, 2
) int’ 3 [b: int, 2 f: (int, int) = void, 1
Y- Int, x: double, 2
cs164 Prof. Bodik, Fall 2004 26
.. continued

3. To process a use of x:

look up x starting in the first table in the list;

if it is not there, then look up x in each successive table
in the list.

if it is not in any table then issue an "undeclared
variable" error.

4. On scope exit,

remove the first table from the list and
decrement the current level number.

cs164 Prof. Bodik, Fall 2004

Remember

method names belong into the hashtable for the
outermost scope
- not into the same table as the method's variables

For example, in the example above:

- method name f is in the symbol table for the outermost scope
- name f is 710t in the same scope as parameters a and b, and
variable x.

This is so that when the use of name f in method g is
processed, the name is found in an enclosing scope's table.

cs164 Prof. Bodik, Fall 2004

The running times for each operation:

1.Scope entry:

+ time fo initialize a new, empty hashtable;

+ probably proportional to the size of the hashtable.

2.Process a declaration:

+ using hashing, constant expected time (O(1)).

3.Process a use:

+ using hashing to do the lookup in each table in the list, the
worst-case time is O(depth of nesting), when every table in
the list must be examined.

4.Scope exit:

+ time fo remove a table from the list, which should be O(1) if
garbage collection is ignored

cs164 Prof. Bodik, Fall 2004

TEST YOURSELF #1

* Question 1: C++ does not use exactly the scoping
rules that we have been assuming.
- Inparticular, C++ does allow a function to have both a
parameter and a local variable with the same name
+ any uses of the name refer to the local variable

- Consider the following code. Draw the symbol table as it
would be after processing the declarations in the body of 7
under:

* the scoping rules we have been assuming
+ C++ scoping rules

< void g(int x, int a) { }
void f(int x, inty, int z) { inta, b, x; ... }

cs164 Prof. Bodik, Fall 2004

Method 2: Hashtable of Lists

+ the idea:

- when processing a scope S, the structure of the
symbol table is:

v |]

cs164 Prof. Bodik, Fall 2004

... continued

+ Question 2:

- Which of the four operations described above
* scope entry,
+ process a declaration,
* process ause,
+ scope exit

- would change (and how) if the following rules for

name reuse were used instead of C++ rules:

uses are for different kinds of names, and

declaration in a nested scope

cs164 Prof. Bodik, Fall 2004

+ the same name can be used within one scope as long as the

+ the same name cannot be used for more than one variable

Definition

+ there is just one big hashtable, containing an
entry for each variable for which there is
- some declaration in scope S or
- in a scope that encloses S.

+ Associated with each variable is a list of
symbol-table entries.

- The first list item corresponds to the most closely
enclosing declaration;

- the other list items correspond to declarations in
enclosing scopes.

cs164 Prof. Bodik, Fall 2004

Example

void f(int a) {
double x;
while (...) {int x, y; ... }
void gO { fO: }

¥

+ After processing the declarations inside the

while loop: [
y
o

cs164 Prof. Bodik, Fall 2004

Nesting level information is crutial

+ the level-number attribute stored in each list
item enables us to determine whether the
most closely enclosing declaration was made
- in the current scope or
- in an enclosing scope.

cs164 Prof. Bodik, Fall 2004

Hashtable of lists: the operations

1. On scope entry:
+ increment the current level number.
2.To process a declaration of x:

* look up x in the symbol table.
+ If x is there, fetch the level number from the first list
item.
+ If that level number = the current level then issue a
"multiply declared variable" error;

« otherwise, add a new item to the front of the list with
the appropriate type and the current level number.

cs164 Prof. Bodik, Fall 2004

... continue

1. To process a use of x:

+ look up x in the symbol table.

« If it is not there, then issue an "undeclared
variable" error.

2.0n scope exit:

+ scan all entries in the symbol table, looking at the
first item on each list. If that item's level number
= the current level number, then remove it from its
list (and if the list becomes empty, remove the
entire symbol-table entry). Finally, decrement the
current level number.

cs164 Prof. Bodik, Fall 2004 38

Running times

1.Scope entry:
+ time fo increment the level number, O(1).
2.Process a declaration:
+ using hashing, constant expected time (O(1)).
3.Process a use:
+ using hashing, constant expected time (O(1)).
4.5cope exit:
+ time proportional to the number of names in the symbol table
(or perhaps even the size of the hashtable if no auxiliary

information is maintained to allow iteration through the non-
empty hashtable buckets).

cs164 Prof. Bodik, Fall 2004

TEST YOURSELF #2

Assume that the symbol table is implemented using a
hashtable of lists.

Draw pictures to show how the symbol table changes
as each declaration in the following code is processed.

void g(int x, int a) {
double d;
while (...) {

int d, w;
double x, b;
if (...) { int a,b,c; }

3
while (...) { int x,y,z; }
3

cs164 Prof. Bodik, Fall 2004 40

Type Checking

the job of the type-checking phase is to:
- Determine the type of each expression in the program
- (each node in the AST that corresponds to an expression)
- Find type errors
The type rules of a language define
- how to determine expression types, and
- what is considered fo be an error.
The type rules specify, for every operator (including
assignment),
- what types the operands can have, and
- what is the type of the result.

cs164 Prof. Bodik, Fall 2004

Example

+ both C++ and Java allow the addition of an int
and a double, and the result is of type double.
+ However,

- C++ also allows a value of type double to be assigned
to a variable of type int,

- Java considers that an error.

cs164 Prof. Bodik, Fall 2004 42

TEST YOURSELF #3

+ List as many of the operators that can be
used in a Java program as you can think of
- don't forget to think about the logical and
relational operators as well as the arithmetic ones
+ For each operator,
- say what types the operands may have, and
- what is the type of the result.

cs164 Prof. Bodik, Fall 2004

Other type errors

the type checker must also
1. find type errors having fo do with the context of
expressions,
e.g., the context of some operators must be boolean,
2. type errors having to do with method calls.

Examples of the context errors:

- the condition of an /f statement

- the condition of a while loop

- the termination condition part of a for loop

Examples of method errors:

- calling something that is not a method

- calling a method with the wrong number of arguments

- calling a method with arguments of the wrong types
cs164 Prof. Bodik, Fall 2004

