
CS 164  Lecture 14  Fall 2004 1

Code Generation

Lecture 12

CS 164  Lecture 14  Fall 2004 2

The remote testing experiment.  It works!

Coverage - Score plot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50

Score

C
ov

er
ag

e

Series1
Poly. (Series1)

CS 164  Lecture 14  Fall 2004 3

Remote testing

• In PA1, if you 
achieved best 
coverage, you also 
got best score!

0.844
0.838
0.841
0.844
0.843
0.843
0.843
0.843

0.81428644
0.81428644
0.81428644
0.81428644

CS 164  Lecture 14  Fall 2004 4

From the cs164 newsgroup ☺

> I need a small website made.  I'm willing to pay for the work too.  
> So... if anyone is interested e-mail me at [deleted]@berkeley.edu.

CS164's guide to create a website:
1) Write a lexer
2) Write a lexer spec for some unknown, obscure language
3) Write a parser
4) Write the grammar for that obscure language
5) Write a code generator that generates HTML
6) ...
7) Profit! Now only you can maintain that website!

CS 164  Lecture 14  Fall 2004 5

The moral

• Essentially, the recommended strategy is to
– goal: no one can maintain your programs
– means: develop an obscure language for your programs

• But if this is your goal, why a new language?
– tons of unmaintainable Java programs written
– some even submitted as cs164 projects ☺
– I am sure you can succeed with just Java, too.

• A better road to profit
– develop a language: can be obscure, even horrible, but make 

sure it’s horibly useful, too (ex.: perl, C++, Visual Basic, latex)
– then publish books on this language ☺

CS 164  Lecture 14  Fall 2004 6

Lecture Outline

• Stack machines
• The MIPS assembly language
• The x86 assembly language
• A simple source language
• Stack-machine implementation of the simple 

language



CS 164  Lecture 14  Fall 2004 7

Stack Machines

• A simple evaluation model

• No variables or registers

• A stack of values for intermediate results

CS 164  Lecture 14  Fall 2004 8

Example of a Stack Machine Program

• Consider two instructions
– push i - place the integer i on top of the stack
– add - pop two elements, add them and put 

the result back on the stack
• A program to compute 7 + 5:

push 7
push 5
add

CS 164  Lecture 14  Fall 2004 9

Stack Machine. Example

• Each instruction:
– Takes its operands from the top of the stack 
– Removes those operands from the stack
– Computes the required operation on them
– Pushes the result on the stack

…stack

5
7
…

push 5

12
…

⊕
…

push 7

7

add

CS 164  Lecture 14  Fall 2004 10

Why Use a Stack Machine ?

• Each operation takes operands from the same 
place and puts results in the same place

• This means a uniform compilation scheme

• And therefore a simpler compiler

CS 164  Lecture 14  Fall 2004 11

Why Use a Stack Machine ?

• Location of the operands is implicit
– Always on the top of the stack

• No need to specify operands explicitly
• No need to specify the location of the result
• Instruction “add” as opposed to “add r1, r2”

⇒ Smaller encoding of instructions
⇒ More compact programs

• This is one reason why Java Bytecodes use a 
stack evaluation model

CS 164  Lecture 14  Fall 2004 12

Optimizing the Stack Machine

• The add instruction does 3 memory operations
– Two reads and one write to the stack
– The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register 
(called accumulator)
– Register accesses are faster

• The “add” instruction is now
acc ← acc + top_of_stack

– Only one memory operation!



CS 164  Lecture 14  Fall 2004 13

Stack Machine with Accumulator

Invariants
• The result of computing an expression is 

always in the accumulator
• For an operation op(e1,…,en) push the 

accumulator on the stack after computing 
each of e1,…,en-1
– The result of en is in the accumulator before op
– After the operation pop n-1 values

• After computing an expression the stack is as 
before

CS 164  Lecture 14  Fall 2004 14

Stack Machine with Accumulator. Example

• Compute 7 + 5 using an accumulator

…

acc

stack

5

7
…

acc ← 5

12

…

⊕

acc ← acc + top_of_stack
pop

…

7

acc ← 7
push acc

7

CS 164  Lecture 14  Fall 2004 15

A Bigger Example: 3 + (7 + 5)

Code                                Acc        Stack
acc ← 3                                  3               <init>
push acc                                 3               3, <init>
acc ← 7                                  7              3, <init>
push acc                                 7              7, 3, <init>
acc ← 5                                  5              7, 3, <init>
acc ← acc + top_of_stack     12             7, 3, <init>
pop                                        12              3, <init>
acc ← acc + top_of_stack     15             3, <init>
pop                                        15              <init>

CS 164  Lecture 14  Fall 2004 16

Notes

• It is very important that the stack is 
preserved across the evaluation of a 
subexpression
– Stack before the evaluation of 7 + 5 is  3, <init>
– Stack after the evaluation of 7 + 5 is 3, <init>
– The first operand is on top of the stack

CS 164  Lecture 14  Fall 2004 17

From Stack Machines to MIPS

• The compiler generates code for a stack 
machine with accumulator

• We want to run the resulting code on an x86 
or MIPS processor (or simulator)

• We implement stack machine instructions 
using MIPS instructions and registers

CS 164  Lecture 14  Fall 2004 18

MIPS assembly vs. x86 assembly 

• In PA4 and PA5, you will generate x86 code
– because we have no MIPS machines around
– and using a MIPS simulator is less exciting 

• In this lecture, we will use MIPS assembly
– it’s somewhat more readable than x86 assembly
– e.g. in x86, both store and load are called movl

• translation from MIPS to x86 trivial
– see the translation table in a few slides



CS 164  Lecture 14  Fall 2004 19

Simulating a Stack Machine…

• The accumulator is kept in MIPS register $a0
– in x86, it’s in %eax

• The stack is kept in memory
• The stack grows towards lower addresses

– standard convention on both MIPS and x86
• The address of the next location on the stack  

is kept in MIPS register $sp
– The top of the stack is at address $sp + 4
– in x86, its’ %esp

CS 164  Lecture 14  Fall 2004 20

MIPS Assembly

MIPS architecture
– Prototypical Reduced Instruction Set Computer 

(RISC) architecture
– Arithmetic operations use registers for operands 

and results
– Must use load and store instructions to use 

operands and results in memory
– 32 general purpose registers (32 bits each)

• We will use $sp, $a0 and $t1 (a temporary register)

CS 164  Lecture 14  Fall 2004 21

A Sample of MIPS Instructions

– lw reg1 offset(reg2)
• Load 32-bit word from address reg2 + offset into reg1

– add reg1 reg2 reg3
• reg1 ← reg2 + reg3

– sw reg1 offset(reg2)
• Store 32-bit word in reg1 at address reg2 + offset

– addiu reg1 reg2 imm
• reg1 ← reg2 + imm
• “u” means overflow is not checked

– li reg imm
• reg ← imm

CS 164  Lecture 14  Fall 2004 22

x86 Assembly

x86 architecture
– Complex Instruction Set Computer (CISC) 

architecture
– Arithmetic operations can use both registers and 

memory for operands and results
– So, you don’t have to use separate load and store 

instructions to operate on values in memory
– CISC gives us more freedom in selecting 

instructions (hence, more powerful optimizations)
– but we’ll use a simple RISC subset of x86

• so translation from MIPS to x86 will be easy

CS 164  Lecture 14  Fall 2004 23

x86 assembly

• x86 has two-operand instructions:
– ex.:  ADD dest, src dest := dest + src
– in MIPS: dest := src1 + src2

• An annoying fact to remember /
– different x86 assembly versions exists
– one important difference: order of operands
– the manuals assume

• ADD dest, src
– the gcc assembler we’ll use uses opposite order

• ADD src, dest

CS 164  Lecture 14  Fall 2004 24

Sample x86 instructions (gcc order of operands)

– movl offset(reg2), reg1
• Load 32-bit word from address reg2 + offset into reg1

– add reg2, reg1
• reg1 ← reg1 + reg2

– movl reg1 offset(reg2)
• Store 32-bit word in reg1 at address reg2 + offset

– add imm, reg1
• reg1 ← reg1 + imm
• use this for MIPS’ addiu

– movl imm, reg
• reg ← imm



CS 164  Lecture 14  Fall 2004 25

MIPS to x86 translation

movl imm, regli reg imm

add imm, reg1addiu reg1 reg1 imm

movl reg1 offset(reg2)sw reg1 offset(reg2)

add reg2, reg1add reg1 reg1 reg2

movl offset(reg2), reg1lw reg1 offset(reg2)

x86MIPS

CS 164  Lecture 14  Fall 2004 26

x86 vs. MIPS registers

%ebx$t

%ebp$fp

%esp$sp

%eax$a0

x86MIPS

CS 164  Lecture 14  Fall 2004 27

MIPS Assembly. Example.

• The stack-machine code for 7 + 5 in MIPS:
acc ← 7
push acc

acc ← 5
acc ← acc + top_of_stack

pop

li $a0 7
sw $a0 0($sp)
addiu $sp $sp -4
li $a0 5
lw $t1 4($sp)
add $a0 $a0 $t1
addiu $sp $sp 4

• We now generalize this to a simple language…
CS 164  Lecture 14  Fall 2004 28

Some Useful Macros

• We define the following abbreviation
• push $t                   sw $a0 0($sp)

addiu $sp $sp -4

• pop                         addiu $sp $sp 4

• $t ← top                lw $t 4($sp)

CS 164  Lecture 14  Fall 2004 29

A Small Language

• A language with integers and integer 
operations

P → D; P | D
D → def id(ARGS) = E;

ARGS → id, ARGS | id
E → int | id | if E1 = E2 then E3 else E4

| E1 + E2 | E1 – E2 | id(E1,…,En)

CS 164  Lecture 14  Fall 2004 30

A Small Language (Cont.)

• The first function definition f is the “main” 
routine

• Running the program on input i means 
computing f(i)

• Program for computing the Fibonacci numbers:
def fib(x) = if x = 1 then 0 else 

if x = 2 then 1 else  
fib(x - 1) + fib(x – 2)



CS 164  Lecture 14  Fall 2004 31

Code Generation Strategy

• For each expression e we generate MIPS code 
that:
– Computes the value of e in $a0
– Preserves $sp and the contents of the stack

• We define a code generation function cgen(e) 
whose result is the code generated for e

CS 164  Lecture 14  Fall 2004 32

Code Generation for Constants

• The code to evaluate a constant simply copies 
it into the accumulator:

cgen(i) = li $a0 i

• Note that this also preserves the stack, as 
required

CS 164  Lecture 14  Fall 2004 33

Code Generation for Add

cgen(e1 + e2) = 
cgen(e1) 
push $a0
cgen(e2)
$t1 ← top
add $a0 $t1 $a0
pop

• Possible optimization: Put the result of e1
directly in register $t1 ? 

CS 164  Lecture 14  Fall 2004 34

Code Generation for Add. Wrong!

• Optimization: Put the result of e1 directly in  $t1?

cgen(e1 + e2) = 
cgen(e1)
move $t1 $a0 
cgen(e2)
add $a0 $t1 $a0                     

• Try to generate code for : 3 + (7 + 5)

CS 164  Lecture 14  Fall 2004 35

Code Generation Notes

• The code for + is a template with “holes” for 
code for evaluating e1 and e2

• Stack-machine code generation is recursive
• Code for e1 + e2 consists of code for e1 and e2

glued together
• Code generation can be written as a recursive-

descent of the AST
– At least for expressions

CS 164  Lecture 14  Fall 2004 36

Code Generation for Sub and Constants

• New instruction: sub reg1 reg2 reg3
– Implements reg1 ← reg2 - reg3

cgen(e1 - e2) = 
cgen(e1) 
push $a0
cgen(e2)
$t1 ← top
sub $a0 $t1 $a0
pop



CS 164  Lecture 14  Fall 2004 37

Code Generation for Conditional

• We need flow control instructions

• New instruction: beq reg1 reg2 label
– Branch to label if reg1 = reg2
– x86: cmpl reg1 reg2

je label

• New instruction: b label
– Unconditional jump to label
– x86: jmp label

CS 164  Lecture 14  Fall 2004 38

Code Generation for If (Cont.)

cgen(if e1 = e2 then e3 else e4) = 
cgen(e1) 
push $a0
cgen(e2)
$t1 ← top
pop
beq $a0 $t1 true_branch

false_branch:
cgen(e4)
b end_if

true_branch:
cgen(e3)

end_if:

CS 164  Lecture 14  Fall 2004 39

The Activation Record

• Code for function calls and function 
definitions depends on the layout of the 
activation record

• A very simple AR suffices for this language:
– The result is always in the accumulator

• No need to store the result in the AR
– The activation record holds actual parameters

• For f(x1,…,xn) push xn,…,x1 on the stack
• These are the only variables in this language

CS 164  Lecture 14  Fall 2004 40

The Activation Record (Cont.)

• The stack discipline guarantees that on 
function exit $sp is the same as it was on 
function entry
– No need to save $sp

• We need the return address
• It’s handy to have a pointer to start of the 

current activation
– This pointer lives in register $fp (frame pointer)
– Reason for frame pointer will be clear shortly

CS 164  Lecture 14  Fall 2004 41

The Activation Record

• Summary: 
– For this language, an AR with the caller’s frame 

pointer, the actual parameters, and the return 
address suffices

• Consider a call to f(x,y), The AR will be:

y
x

SP, FP

AR of f

stack growth
old FP

CS 164  Lecture 14  Fall 2004 42

Code Generation for Function Call

• The calling sequence is the instructions (of 
both caller and callee) to set up a function 
invocation

• New instruction: jal label
– Jump to label, save address of next instruction in 

$ra
– x86: the return address is stored on the stack by 

the call label instruction



CS 164  Lecture 14  Fall 2004 43

Code Generation for Function Call (Cont.)

cgen(f(e1,…,en)) = 
push $fp
cgen(en)
push $a0
…
cgen(e1)
push $a0
jal f_entry

• The caller saves its value 
of the frame pointer

• Then it saves the actual 
parameters in reverse 
order

• The caller saves the 
return address in 
register $ra

• The AR so far is 4*n+4
bytes long

CS 164  Lecture 14  Fall 2004 44

Code Generation for Function Definition

• New instruction: jr reg
– Jump to address in register reg

cgen(def f(x1,…,xn) = e) = 
move $fp $sp
push $ra
cgen(e)
$ra ← top
addiu $sp $sp z
lw $fp 0($sp)
jr $ra

• Note: The frame pointer 
points to the top, not 
bottom of the frame

• The callee pops the return 
address, the actual 
arguments and the saved 
value of the frame pointer

• z = 4*n + 8

CS 164  Lecture 14  Fall 2004 45

Calling Sequence. Example for f(x,y).

Before call           On entry         In body        After call

SP

FP

y
x

old FP

SP

FP

SP

FP

y
x

old FP

SP

FP RA
…

CS 164  Lecture 14  Fall 2004 46

Code Generation for Variables

• Variable references are the last construct
• The “variables” of a function are just its 

parameters
– They are all in the AR
– Pushed by the caller

• Problem: Because the stack grows when 
intermediate results are saved, the variables 
are not at a fixed offset from $sp

CS 164  Lecture 14  Fall 2004 47

Code Generation for Variables (Cont.)

• Solution: use a frame pointer
– Always points to the return address on the stack
– Since it does not move it can be used to find the 

variables
• Let xi be the ith (i = 1,…,n) formal parameter of 

the function for which code is being 
generated

CS 164  Lecture 14  Fall 2004 48

Code Generation for Variables (Cont.)

• Example: For a function def f(x1,x2) = e the 
activation and frame pointer are set up as 
follows:

x1 is at fp + 4
x2 is at fp + 8

• Thus: 
cgen(xi) = lw $a0 z($fp)

( z = 4*i )
x2

x1

old FP

SP

FP RA
…



CS 164  Lecture 14  Fall 2004 49

Summary

• The activation record must be designed 
together with the code generator 

• Code generation can be done by recursive 
traversal of the AST

• We recommend you use a stack machine for 
your Decaf compiler (it’s simple)

CS 164  Lecture 14  Fall 2004 50

Summary

• See the PA4 starter kit for a large code 
generation example

• Production compilers do different things
– Emphasis is on keeping values (esp. current stack 

frame) in registers
– Intermediate results are laid out in the AR, not 

pushed and popped from the stack

CS 164  Lecture 14  Fall 2004 51

Allocating Temporaries in the AR

CS 164  Lecture 14  Fall 2004 52

Review

• The stack machine has activation records and 
intermediate results interleaved on the stack

AR
Intermediates

AR
Intermediates

CS 164  Lecture 14  Fall 2004 53

Review (Cont.)

• Advantage: Very simple code generation

• Disadvantage: Very slow code
– Storing/loading temporaries requires a store/load 

and $sp adjustment

CS 164  Lecture 14  Fall 2004 54

A Better Way

• Idea: Keep temporaries in the AR

• The code generator must assign a location in 
the AR for each temporary



CS 164  Lecture 14  Fall 2004 55

Example

def fib(x) = if x = 1 then 0 else 
if x = 2 then 1 else  

fib(x - 1) + fib(x – 2)

• What intermediate values are placed on the 
stack?

• How many slots are needed in the AR to hold 
these values?

CS 164  Lecture 14  Fall 2004 56

How Many Temporaries?

• Let NT(e) = # of temps needed to evaluate e

• NT(e1 + e2)
– Needs at least as many temporaries as NT(e1)
– Needs at least as many temporaries as NT(e2) + 1

• Space used for temporaries in e1 can be reused 
for temporaries in e2

CS 164  Lecture 14  Fall 2004 57

The Equations

NT(e1 + e2) = max(NT(e1), 1 + NT(e2))
NT(e1 - e2) = max(NT(e1), 1 + NT(e2))

NT(if e1 = e2 then e3 else e4) = max(NT(e1),1 + NT(e2), NT(e3), NT(e4))
NT(id(e1,…,en) = max(NT(e1),…,NT(en))

NT(int) = 0
NT(id) = 0

Is this bottom-up or top-down?
What is NT(…code for fib…)?

CS 164  Lecture 14  Fall 2004 58

The Revised AR

• For a function definition f(x1,…,xn) = e the AR 
has 2 + n + NT(e) elements
– Return address
– Frame pointer
– n arguments
– NT(e) locations for intermediate results

CS 164  Lecture 14  Fall 2004 59

Picture

Temp 1
RA
x1

. . .
xn

Old FP

Temp NT(e)
. . .

SP

FP

CS 164  Lecture 14  Fall 2004 60

Revised Code Generation

• Code generation must know how many 
temporaries are in use at each point

• Add a new argument to code generation: the 
position of the next available temporary



CS 164  Lecture 14  Fall 2004 61

Code Generation for + (original)

cgen(e1 + e2) = 
cgen(e1) 
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e2)
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4

CS 164  Lecture 14  Fall 2004 62

Code Generation for + (revised)

cgen(e1 + e2, nt) = 
cgen(e1, nt) 
sw $a0 -nt($fp)
cgen(e2, nt + 4)
lw $t1 -nt($fp)
add $a0 $t1 $a0

CS 164  Lecture 14  Fall 2004 63

Notes

• The temporary area is used like a small, fixed-
size stack

• Exercise: Write out cgen for other constructs

CS 164  Lecture 14  Fall 2004 64

Code Generation for 
Object-Oriented Languages

CS 164  Lecture 14  Fall 2004 65

Object Layout

• OO implementation = Stuff from last lecture + 
More stuff

• OO Slogan: If B is a subclass of A, then an 
object of class B can be used wherever an 
object of class A is expected

• This means that code in class A works 
unmodified for an object of class B

CS 164  Lecture 14  Fall 2004 66

Two Issues

• How are objects represented in memory?

• How is dynamic dispatch implemented?



CS 164  Lecture 14  Fall 2004 67

Object Layout Example

class A {
int a = 0;
int d = 1;
int f() { return a = a + d }

}

class  B extends A {
int b = 2;
int f() { return a } //override
int g() { return a = a - b }

}

class  C extends A {
int c = 3;
int h() { return a = a * c }

}

CS 164  Lecture 14  Fall 2004 68

Object Layout (Cont.)

• Attributes a and d are inherited by classes B
and C

• All methods in all classes refer to a

• For A methods to work correctly in A, B, and C
objects, attribute a must be in the same 
“place” in each object

CS 164  Lecture 14  Fall 2004 69

Object Layout (Cont.)

An object is like a struct in C.  The reference
foo.field

is an index into a foo struct at an offset 
corresponding to field

– Objects are laid out in contiguous memory
– Each attribute stored at a fixed offset in object
– When a method is invoked, the object is this and 

the fields are the object’s attributes

CS 164  Lecture 14  Fall 2004 70

Object Layout

• The first 3 words of an object contain header 
information:

Dispatch Ptr
Attribute 1
Attribute 2

. . .

Class Tag
Object Size

Offset

0

4

8

12

16

CS 164  Lecture 14  Fall 2004 71

Object Layout (Cont.)

• Class tag is an integer
– Identifies class of the object

• Object size is an integer
– Size of the object in words

• Dispatch ptr is a pointer to a table of methods
– More later

• Attributes in subsequent slots

• Lay out in contiguous memory
CS 164  Lecture 14  Fall 2004 72

Subclasses

Observation: Given a layout for class A, a layout 
for subclass B can be defined by extending 
the layout of A with additional slots for the 

additional attributes of B

Leaves the layout of A unchanged 
(B is an extension)



CS 164  Lecture 14  Fall 2004 73

Layout Picture

cda*6CtagC

bda*6BtagB

da*5AtagA

201612840Offset 

Class

CS 164  Lecture 14  Fall 2004 74

Subclasses (Cont.)

• The offset for an attribute is the same in a 
class and all of its subclasses
– Any method for an A1 can be used on a subclass A2

• Consider layout for An · … · A3 · A2 · A1

A2 attrs
A3 attrs

. . .

Header
A1 attrs.

A1 object

A2 object

A3 object

What about 
multiple 
inheritance?

CS 164  Lecture 14  Fall 2004 75

Dynamic Dispatch

• Consider again our example
class A {

int a = 0;
int d = 1;
int f() { return a = a + d }

}

class  B extends A {
int b = 2;
int f() { return a }
int g() { return a = a - b }

}

class  C extends A {
int c = 3;
int h() { return a = a * c }

}

CS 164  Lecture 14  Fall 2004 76

Dynamic Dispatch Example

• e.g()
– g refers to method in B if e is a B

• e.f()
– f refers to method in A if f is an A or C

(inherited in the case of C)
– f refers to method in B for a B object

• The implementation of methods and dynamic 
dispatch strongly resembles the 
implementation of attributes

CS 164  Lecture 14  Fall 2004 77

Dispatch Tables

• Every class has a fixed set of methods         
(including inherited methods)

• A dispatch table indexes these methods
– An array of method entry points
– A method f lives at a fixed offset in the dispatch 

table for a class and all of its subclasses

CS 164  Lecture 14  Fall 2004 78

Dispatch Table Example

• The dispatch table for 
class A has only 1 
method

• The tables for B and C
extend the table for A
to the right

• Because methods can be 
overridden, the method 
for f is not the same in 
every class, but is always 
at the same offset

hfAC

gfBB

fAA

40Offset 

Class



CS 164  Lecture 14  Fall 2004 79

Using Dispatch Tables

• The dispatch pointer in an object of class X
points to the dispatch table for class X

• Every method f of class X is assigned an 
offset Of in the dispatch table at compile 
time

CS 164  Lecture 14  Fall 2004 80

Using Dispatch Tables (Cont.)

• Every method must know what object is “this”
– “this” is passed as the first argument to all 

methods
• To implement a dynamic dispatch e.f() we

– Evaluate e, obtaining an object x
– Find D by reading the dispatch-table field of x
– Call D[Of](x)

• D is the dispatch table for x
• In the call, this is bound to x


