

Remote testing		
• In PA1, if you	44	0.814286
achieved best	44	0.814286
	44	0.814286
coverage, you also 📃	44	0.814286
got best score!	43	0.8
	43	0.8
	43	0.8
	43	0.8
	44	0.8
	41	0.8
	38	0.8
	44	0.8
CS 164 Lecture 14	Fall 2004	3

The moral

- Essentially, the recommended strategy is to - goal: no one can maintain your programs
 - means: develop an obscure language for your programs
- But if this is your goal, why a new language?
 - tons of unmaintainable Java programs written
 - some even submitted as cs164 projects 😊
 - I am sure you can succeed with just Java, too.
- A better road to profit
 - develop a language: can be obscure, even horrible, but make
 - sure it's horibly useful, too (ex.: perl, C++, Visual Basic, latex)

5

- then publish books on this language 😊

CS 164 Lecture 14 Fall 2004

Lecture Outline

- Stack machines
- The MIPS assembly language
- The x86 assembly language
- A simple source language
- Stack-machine implementation of the simple language

CS 164 Lecture 14 Fall 2004

\square

Code	Acc	Stack
acc ← 3	3	<init></init>
push acc	3	3, <init></init>
$acc \leftarrow 7$	7	3, <init></init>
push acc	7	7, 3, <init></init>
$acc \leftarrow 5$	5	7, 3, <init></init>
acc ← acc + top_of_stack	12	7, 3, <init></init>
рор	12	3, <init></init>
acc ← acc + top_of_stack	15	3, <init></init>
рор	15	<init></init>

From Stack Machines to MIPS

- The compiler generates code for a stack machine with accumulator
- We want to run the resulting code on an x86 or MIPS processor (or simulator)
- We implement stack machine instructions using MIPS instructions and registers

CS 164 Lecture 14 Fall 2004

Simulating a Stack Machine...

- The accumulator is kept in MIPS register \$a0
 in x86, it's in %eax
- The stack is kept in memory
- The stack grows towards lower addresses - standard convention on both MIPS and x86
- The address of the next location on the stack is kept in MIPS register \$sp
 - The top of the stack is at address \$sp + 4
 - in x86, its' %esp

CS 164 Lecture 14 Fall 2004

MIPS Assembly MIPS architecture Prototypical Reduced Instruction Set Computer (RISC) architecture. Arithmetic operations use registers for operands and results Must use load and store instructions to use operands and results in memory. 32 general purpose registers (32 bits each) We will use \$\$, \$a0 and \$t1 (a temporary register)

MIPS	x86
lw reg1 offset(reg2)	movl offset(reg ₂), reg ₁
add reg1 reg1 reg2	add reg ₂ , reg ₁
sw reg1 offset(reg2)	movl reg1 offset(reg2)
addiu reg1 reg1 imm	add imm, reg1
li reg imm	movl imm, reg

MIPS	×86	
\$a0	%eax	
\$sp	%esp	
\$fp	%ebp	
\$†	%ebx	

Code Generation for Add	
$cgen(e_1 + e_2) =$	
cgen(e ₁)	
push \$a0	
$cgen(e_2)$	
\$†1 ← †op	
add \$a0 \$t1 \$a0	
рор	
 Possible optimization: Put the result of e₁ directly in register \$t1? 	
CS 164 Lecture 14 Fall 2004 33	

Code Generation for Sub and Constants

- At least for expressions

CS 164 Lecture 14 Fall 2004

CS 164 Lecture 14 Fall 2004

Summary

- The activation record must be designed together with the code generator
- Code generation can be done by recursive traversal of the AST
- We recommend you use a stack machine for your Decaf compiler (it's simple)

CS 164 Lecture 14 Fall 2004

49

CS 164 Lecture 14 Fall 2004

Example

```
def fib(x) = if x = 1 then 0 else
if x = 2 then 1 else
fib(x - 1) + fib(x - 2)
```

- What intermediate values are placed on the stack?
- How many slots are needed in the AR to hold these values?

CS 164 Lecture 14 Fall 2004

Object Layout

- OO implementation = Stuff from last lecture + More stuff
- OO Slogan: If B is a subclass of A, then an object of class B can be used wherever an object of class A is expected
- This means that code in class A works unmodified for an object of class B

CS 164 Lecture 14 Fall 2004

65

Two Issues

- How are objects represented in memory?
- How is dynamic dispatch implemented?

CS 164 Lecture 14 Fall 2004

Using Dispatch Tables

- The dispatch pointer in an object of class X points to the dispatch table for class X
- Every method f of class X is assigned an offset O_f in the dispatch table at compile time

CS 164 Lecture 14 Fall 2004

