
1

Compilers in Real Life

Dave Mandelin
2 Dec 2004

Software Development Time

1/6
Code

1/2
Test

1/3
Design

Test
1/2

Code
1/6

Design
1/3

From The Mythical Man-Month by Fred Brooks

Can we do more error checking and less testing?
Better yet, can we avoid writing bugs in the first
place?

Software Maintenance

Maintenance is
Fixing bugs
Enhancing functionality
Improving performance
Refactoring

60/60 Rule
60% of project cost is maintenance
60% of maintenance is enhancements
30% of maintenance cost is reading existing
code
From Facts and Fallacies of Software
Engineering by Robert Glass

Lessons from Real Life

Software needs to be
Reliable
Maintainable
Understandable
…especially if it’s any good.

Solutions for Real Life

How can we write reliable, maintainable,
understandable software?
Design a new language!

A language specially designed to handle your
problem
Program is short, focused on task
“Junk” implementation details hidden

And maintainable in one place
Error checking
Error avoidance

Celebrity Endorsements

2

Compilers are Software

Programming language tools need to
be maintainable, understandable too

Compilers, code analyzers, debuggers
We could design special languages to
help implement our languages

Too much for most projects
Can be done, though (PA3, yacc)

Focus on simplicity instead

Case Study 1: Search Results

Project Search

Department Search

The Problem

Many search types
Want same look and feel for all

Easy to learn, use, and understand
Need different result format

Different titles, links

Solution 1: Spaghetti code
if (type == PROJECT) {

link1 = “project.asp?” + name;
link2 = “grant.asp?” + id;

} else {
link1 = “dept.asp?” + id;
link2 = null;

}
…
System.out.println(link1);
if (type == PROJECT) {

System.out.println(link2);
}

Maybe it works, maybe you get fired
Unmaintainable

Solution 2: Write it over and over

Write each search page as a separate
class

Maybe Alice does departments, Bob
does projects, …

Hard to keep consistent look and feel

Solution 3: Recipes

Write each search page as a separate
class

Follow a fixed recipe each time
Example: recursive descent parsing

Follow a fixed recipe for each production

Good strategy
But not the best!

3

Recipes

What’s good about recipes?
Figure out how to do it only once
Avoid bugs if the recipe is correct

What’s wrong with recipes?
Type it in many times
Can type in bugs each time
Boring

A Better Way

Factor out the repetition
Describe the differences with a notation

PA3: grammar file
Search: describe result format

Implement the repeated parts with
interpreters, compilers, and libraries

PA3: parsing engine, table generator
Search: interpreter

RFL: Result Format Language

Column
title=“Dept”
source_data=“dept”
type=STRING
link=“dept.asp?deptid={ID}”

Column
title=“Name”
source_data=”description”
type=STRING

Report Format Language

A configuration language for reports
Syntactic sugar for the recipe code
Raises level of abstraction

Java has abstraction features, too
methods, classes
Sometimes Java is not good enough

PA3: parsing table is unreadable

Need a new language

RFL Interpreter

Search results come from database
RFL program is an AST

Created programmatically – no front end
Run RFL program on each result tuple

340200,”Admin”
340300,”Outreach”

Column

title=“Dept”
source_data=“dept”
type=STRING
link=“dept.asp?deptid={ID
}”

Column

title=“Name”
source_data=”description”
type=STRING

RFL Interpreter <tr><td><a href=…

RFL Interpreter

Allowed rapid development of many
search pages

One day, a user sends an email…
Site is slow when displaying 5000 search
results

Don’t ask
What can we do?

4

Running RFL

Interpreter
for col in columns

// Visit each column

Object data =
row.getData(col.name);

String s = col.format(data);

if (col.hasLink()) {

col.writeLink(row);
}

print(s);

if (col.hasLink()) {

print(“”);
}

Hand-written
// First column

data = row.getData(“name”);

s = col.format(data);
col.writeLink(row);

print(s);

print(“”);

// Second column

data = row.getData(“title”);

s = col.format(data);

print(s);

RFL Compiler

a.k.a. code generator
Compile ASTs to HLL code (VBScript)
Performs easy optimizations

Loop unrolling
Constant propagation

Easy because compiler knows which
assignments it is generating

10x speedup

Expressiveness

Configuration languages

Little languages

Domain-specific languages (DSLs)

General-purpose languages (GPLs)

Expressiveness,
M

aintenance Effort

RFL

VHDL, PostScript, UnrealScript

Java, Perl, Decaf

make, PA2 lexer spec

Implementation Performance

Interpreter

Basic Compiler

Optimizing Compiler

Fancy Optimizing Compiler

Execution Speed,
D

evelopm
ent Effort

RFL Interpreter

javac, RFL Compiler

PA6, gcc

PA4

Usability

Author

Hackers

Programmers

Users

U
sability,

Language D
esign Effort

one-off code generators

Java, Perl, Decaf

RFL, X configuration scripts

UnrealScript

Evolution of RFL

Config Language

Little Language

DSL

GPL

Interpreter Compiler Fancy Compiler

v0.001

Interpreter
Compiler

5

Case Study 2: Little Reports

4,000Profit

70,000Expenses

14,000Deferred Revenue

60,000Revenue

CBL: Cash Balance Language

‘Profit’=GROUP((REV + DEF) + EXP)
‘title’=GROUP(…) is CBL syntax
REV

Like a primitive zero-argument function
Evaluated using a database query
What happens if we need values from a web
site?

Need extensibility
CBL has an interface for implementing new
primitives by writing a simple class

Error Checking in CBL

Debits and credits are confusing
Which is right, REV – DEF or REV + DEF?
“That’s like asking the square root of million. No
one will ever know.” – Nelson Muntz

A type system
Two types: UP and DOWN
Same types must add, different types must
subtract
Can check this statically
Is there a better way?

Error Avoidance in CBL

Just type REV ± DEF
CBL figures out the right operation
Program is underconstrained
Language implementation uses
inference to select operations

CBL Implementation

Like PA1-PA3, but simpler
Hand-written DFA lexer

I didn’t have a lexer generator
Hand-written recursive descent parser

Works well for little languages
Interpreter

Operation inference
Expression evaluator
Extension interface

CBL In Practice

I developed it in a few days
It was easy after PA1-PA3

Gave the code to another CS 164
graduate, who

Added some new features
Started writing programs

Users ask for a new report
It’s done in 60 seconds

6

CBL Evaluation

Much better than RFL
Text-based language
Error avoidance
Maintainable implementation

Break

After the break…
DSLs for game programming

Case Study 3: UnrealScript The Unreal Engine

The Unreal engine is the game engine which
powered Unreal, and many more since.

Unreal, Unreal 2, UT, UT 2003, UT 2004, Deep Space 9:
The Fallen, Deus Ex, Deus Ex: Invisible War, Postal 2,
Duke Nukem Forever, …

Since it was as customizable as Quake and
featured its own scripting language UnrealScript, it
soon had a large community on the internet which
added new modifications to change or enhance
game play.

From http://en2.wikipedia.org/wiki/Unreal

Customizing Games

Unreal and similar games
Multiplayer simulations on the Internet

Unreal Tournament 2004, EverQuest 2,
The Sims Online

Customers expect to be able to download new
characters, levels, game types, and to make
their own
Are customers going to write 10k lines of C to
add a surprise birthday party to The Sims?
In-house game designers don’t necessarily want
to use C either

Customizing Games

Game-specific programming concepts
Independent actors

E.g., person, car, elevator
Sounds like a Java class
Or it is a thread? And can we have 10k threads?

Have behavior
Java methods, sounds OK

Behavior depends on current state
Class or methods change over time? Can’t do that!

Events, duration, networking

7

UnrealScript

Design Goals
From http://unreal.epicgames.com/UnrealScript.htm
Directly support game concepts

Actors, events, duration, networking
High level of abstraction

Objects and interactions, not bits and pixels
Programming simplicity

OO, error checking, GC, sandboxing

Several architectures were explored and
discarded

Java: too slow (Java 1.1)
VB-based language: C programmers didn’t like it

UnrealScript

Looks like Java
Java-like syntax
Classes, methods, inheritance

Game-specific features
States, networking

Runs in a framework
Game engine sends events to objects
Objects call game engine for services

Actor States
void spokenTo(Speaker s) {

if (state == ANGRY) {
shootAt(s);

} else {
sayHi(s);

}
}

void bumpsInto(Object obj) {
backUp();
say(“Raaaaaaargh!!!”);
state = ANGRY;

}

// And what about inheritance?

state angry {
begin:

say(“Raaaaaaargh!!!”);

void spokenTo(Speaker s) {
shootAt(s);

}
}

void bumpsInto(Object obj) {
backUp();
GotoState(‘angry’);

}

void spokenTo(Speaker s) {
sayHi(s);

}

Networking

Unreal network architecture
Server maintains simulation objects
Client also maintains simulation objects
Server replicates simulation objects to client

Sends copies of as many objects as bandwidth allows
Client also predicts object changes

Hides latency

Language Support
simulated keyword
Indicates a function that can run in client
prediction

Errors in UnrealScript

Static checking
UnrealScript supports traditional static
checking

Just like PA4, PA5, Java
Name checking
Type checking

Dynamic techniques

Dynamic Error Handling

Null pointer dereference
Not a problem!

Or not a bad problem, anyway
Raise an exception, return to framework
One event fails, the system survives

Infinite loops and infinite recursion
Hard for game engine to recover from
singular function declaration

Means “don’t recur into me”
Declare bugs out of existence

8

Language Flexibility

Configuration languages

Little languages

Domain-specific languages (DSLs)

General-purpose languages

Flexibility,
M

aintenance Effort

RFL, X config scripts

UnrealScript, VHDL

Perl

CBL, make

Performance

Implementation
Compiles to VM bytecode (like Java)

Performance
20x slower than C

Ugh! Even Java is only 2-4x slower.
But wait…

Even with 100s of objects CPU spends only 5%
time running UnrealScript
Engine does most of the work
Doesn’t need to be fast

Interpreter

Bytecode Interpreter

Basic Compiler

Optimizing Compiler

Fancy Optimizing Compiler

Implementation Quality

Execution Speed,
D

evelopm
ent Effort

PA1, CBL, RFL Interpreter

RFL Compiler

Java 1.5 HotSpot VM, gcc, PA6

PA5

UnrealScript, Java 1.0

The Unreal Engine

Why was it so successful?
Many reasons

From a language point of view
Domain-specific concepts

Easy to use

Based on existing languages
Easy to learn

Runs slow
Easy to implement

Language Flexibility

Configuration languages

Little languages

DSLs

GPLs

Flexibility,
M

aintenance Effort

Report Format Language

UnrealScript: high abstraction, easy to use

Perl: high abstraction, years of development

CBL: easy development and maintenance

Interpreter

Bytecode Interpreter

Basic Compiler

Optimizing Compiler

Fancy Optimizing Compiler

Implementation Quality

Execution Speed,
D

evelopm
ent Effort

CBL: quick development

Report Format Lang: a few simple optimizations

Java 1.4 HotSpot VM, gcc

PA5

UnrealScript: slow language, fast library

9

Usability

Author

Hackers

Programmers

Users

U
sability,

Language D
esign Effort

Sometimes appropriate: PA5 tools

CBL

X configuration scripts

UnrealScript: high level,
based on popular languages

Creating Your Own Language

CS 164
Report Format Language == PA1
CBL == PA1-PA3
UnrealScript == PA1-PA5
You have more than enough skills!

Hard part is language design
Requires experience
So create some languages!

Getting Started

Language Design
Factor out differences from stereotypical code
Base on existing languages
Extensibility is good

Implementation
Interpreter
Compiler

Compile to HLL: C, Java bytecodes, CLI
Libraries

Easy to make fast
Good libraries make a language popular

Java, Perl, Python

